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Abstract Platinum (Pt)-based materials are still the most
efficient and practical catalysts to drive the sluggish
kinetics of cathodic oxygen reduction reaction (ORR) in
proton exchange membrane fuel cells (PEMFCs).
However, their catalysis and stability performance still
need to be further improved in terms of corrosion of both
carbon support and Pt catalyst particles as well as Pt
loading reduction. Based on the developed synthetic
strategies of alloying/nanostructuring Pt particles and
modifying/innovating supports in developing conventional
Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as
the recently burgeoning hot materials with a potential to
achieve the maximum utilization of Pt are comprehen-
sively reviewed in this paper. The design thoughts and
synthesis of various isolated, alloyed, and nanoparticle-
contained Pt SACs are summarized. The single-atomic Pt
coordinating with non-metals and alloying with metals as
well as the metal-support interactions of Pt single-atoms
with carbon/non-carbon supports are emphasized in terms
of the ORR activity and stability of the catalysts. To
advance further research and development of Pt SACs for
viable implementation in PEMFCs, various technical
challenges and several potential research directions are
outlined.
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1 Introduction

With the increase of energy demand and the aggravation
of environment pollution, it is urgent to develop high-
efficient and safe technologies for energy storage and
conversion of clean electricity generated from renewable
and sustainable energy sources such as solar, wind,
waterfall, and geothermal. [1,2]. Electrochemical energy
technologies including proton exchange membrane fuel
cells (PEMFCs) have been identified as reliable options
[3-5], which can achieve the conversion of chemical
energy (i.e., hydrogen energy) to electrical energy.
However, the sluggish kinetics of oxygen reduction
reaction (ORR) at the cathode of PEMFC needs an
electrocatalyst to accelerate its rate to meet the
requirement of practical application rate [6—8]. Therefore,
the development of highly active and stable ORR
electrocatalysts is desperately needed. So far, platinum
(Pt)-based materials still remain the most practical ORR
electrocatalysts. However, such Pt-based catalysts show
some drawbacks of scarce Pt resources, high-cost, and
unsatisfying activity/stability [9,10]. Currently, the
commercially available carbon-supported Pt catalysts
with 2-4 nm of Pt nanoparticles have been widely
applied in hydrogen-fed PEMFCs. Regarding their
performance, some degradation modes have been
identified, such as the corrosion of both carbon support
and Pt nanoparticles due to their oxidation in acidic
solution, high temperature, and oxygen pressure as well
as high cathode potentials [11-13].

To tackle the aforementioned challenges, the strategies
of Pt-alloying and nanostructuring have been shown
effective in reducing the usage of Pt metal loading and
improving catalytic ORR performance. Alloying of Pt
with cheap transition metals such as Fe, Co, Ni, Cu, and
Mn can mainly regulate the electronic/geometric struc-
ture effects [14—16], and nanostructuring such as from
particles to wires, tubes, cages, plates, and frames can
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usually create highly active facets and stable skeletons for
catalytic ORR [17-20].

In view of the above alloying and nanostructuring
strategies for developing Pt-based catalysts, the other
important research direction has emerged in recent years,
i.e., the development of single-atom catalysts (SACs)
with significant reduction of Pt loading and maximum of
its utilization as well as the ideal model for a fundamental
understanding of the catalysis mechanisms [21-24]. Such
SACs strategy has been expected to accomplish the low-
cost and high-performance low/ultralow-Pt catalysts. In
this paper, the burgeoning Pt SACs are comprehensively
summarized, mainly including design thoughts (single-
atomic Pt coordinating with non-metals and alloying with
other metals to form variously isolated, alloyed and
nanoparticle-contained Pt SACs) and metal-support
interactions (Pt single-atoms with carbon/non-carbon
supports). Overall, this review will present methodolo-
gies, fundamentals, mechanisms, and applications to
provide insights into the further development of SACs for
ORR in PEMFCs.

2 Conventional Pt-based catalysts

Fundamentally understanding the catalytic ORR
mechanisms from the electronic and geometric structures
at an atomic level is conducive to developing high-
performance electrocatalysts. Up to the present, there are
still no overwhelming consensus because there are no
sufficient experimental validation techniques to
accurately identify the formed intermediates during the
reaction.

2.1 Oxygen reduction pathway

Overall, ORR can occur through 4e~ reduction from O, to
H,O in acidic electrolytes, generally involving two
different pathway processes. One of the pathways is a
direct 4e~ reduction to produce H,O (Eq. (1)); the other is
the stepwise 2e~ reduction with the hydrogen peroxide
(H,0,) intermediate (Egs. (2) and 3).

One-step 4e~ process:

02 +4H++4e_ b 2H20 (1)

Stepwise 2e~ process:
0,+2H" +2¢” — H,0, 2)
H,0,+2H"+2e” — 2H,0 3)

The different active catalysts can possess different
ORR pathways. For example, less reactive metals (e.g.,
Au and Hg) are reported to have 2e~ reduction, while 4e~
reduction can occur on highly-active catalysts.
Katsounaros et al. [25] suggested that electrochemistry of
H,0, on Pt could be useful for the understanding of ORR

207

mechanisms, due to the applied potential determined Pt
surface state and reaction direction. H,O, could interact
with the reduced surface sites to decompose into
adsorbed OH. When H,0, interacted with the oxidized Pt
sites, it was oxidized to O, via the reducing surface. In
general, the 4e~ pathway has been agreed to be the
favorable route in PEMFCs because the ORR does not
lead to peroxides that cause certain degradation of
electrodes and electrolyte membranes and the cell can
have a high energy efficiency due to the 4¢~ process. The
density functional theory (DFT) calculations confirm that
the 4e~ path can occur via dissociation or association
mechanisms on Pt(111), as shown in Fig. 1 [26].
Additionally, the peroxo mechanism with “tandem” 2e~
paths can occur, which is unfavorable because the
produced H,O, can reduce the electron transfer number
and increase the degradation rate of electrode and
membrane.

2.2 Synthetic strategies

Currently, Pt-based catalysts remain the highest-perfor-
mance materials in PEMFCs, where massive Pt is used at
their cathodes to overcome the sluggish kinetics of ORR.
Building upon a moderately bound surface oxygen, Pt
and its alloys adhere to the Sabatier principle, expediting
the sluggish kinetics of ORR. However, there are some
drawbacks in the use of Pt that have an unsatisfying
activity/stability and cost effectiveness of catalysts, resul-
ting in possible obstacles to the large-scale sustainable
commercial applications of the PEMFC technology [27].
Conventionally, the high-performance ORR catalysts
can be reasonably designed from two aspects of modif-
ying/innovating supports and alloying/nanostructuring Pt
particles. On the one hand, the modified and innovated
carbon materials can be used not only as the catalyst
supports but also as the non-precious metal catalysts

Fig. 1 Schematic

representation  of
mechanisms on Pt(111) by calculations
permission from Ref. [26]).

proposed  ORR
(adapted with
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[28-38]. These novel carbons can create active sites,
which will synergistically promote the activity and
stability enhancement of Pt catalyst particles. Moreover,
some carbons can be designed as high-performance non-
precious metal catalysts such as the popular iron-
nitrogen-carbon (Fe—N—C). On the other hand, the ORR
activity/stability of Pt particles can be improved by
effective alloying and nanostructuring strategies. The
construction of various Pt-based alloys with transition
metals and nanostructures with different shapes can
reasonably adjust the electronic/geometric structures,
alleviate the dissolution of transition metals, and reduce
the Pt usage [39—41].

2.2.1 Modifying/innovating supports

The ORR activity and stability of a Pt-based catalyst can
be seriously affected by the inert/poor activity of
commercial carbon support and its susceptible corrosion
under high potential/temperature and acidic environment.
As identified, there is only a weak interaction (van der
Waals forces) between Pt and traditional carbon support
due to the fully saturated valence shell and almost zero
unpaired surface electrons of carbon, directly resulting in
the rapid accumulation of Pt through dissolution, surface
migration and separation during the electrochemical
operation [42]. With respect to this, the modifying/inno-
vating supports can help improve the electrocatalytic
performance [13]. Zhang & Chen [43] prepared the N-
doping carbon black (NCB) by annealing commercial
Vulcan XC-72R in gaseous ammonia (NH3). The resulted
NCB supported Pt nanoparticles (Pt/NCB) catalyst
exhibited the enhanced electrocatalytic ORR capacity via
a proposed oxygen spillover effect, as can be seen from
Fig. 2(a). Cai et al. [44] developed a novel N-doped
carbon semi-tube (N-CST) as the functional support of Pt
nanoparticles and the interfacial Pt—N—C sites as the new
ORR active route could promote the electrocatalytic
activity of the obtained Pt/N-CST catalyst (Fig. 2(b)). N-
doping into carbons can not only create the additional
active sites to improve the catalytic activity but also
confer a strong metal-support interaction to enhance the
ORR stability. Gong et al. [45] used MOF-derived N-
doped carbon skeleton with separated Mn single-atoms
(Mn-SAs/N-C) as the support to anchor Pt, in which their
strongly coupled interactions could limit the overgrowth
of Pt. The designed Pt@Mn-SAs/N-C nanocatalyst with
an ultra-low amount of Pt (Fig. 2(c)) showed an excellent
mass activity, long-term stability, and methanol tolerance
toward ORR. Liao et al. [46] dispersed Pt nanoparticles
onto the ZIF-8 derived hollow N-coordination iron atoms
embedded in carbon (Fe-NC) dodecahedral nanomaterial
(Fig. 2(d)). The prepared Pt@Fe-NC has multiple active
centers and hollow porous structure, showing a half-wave
potential of 0.936 V, a mass activity of 1.34 A/mgp,, and
an excellent electrochemical stability.
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To thoroughly eliminate carbon corrosion, non-carbons
have been considered to be the effective supports [11].
Lin et al. [47] synthesized the novel SnS,/SnO, support
to deposit Pt nanoparticles (Pt-SnS,/SnO;) as an ORR
catalyst, as shown in Fig. 2(e), in which Pt nanoparticles
are mainly decorated at the SnS,/SnO, interface. As a
result, the mass activity of Pt-SnS,/SnO, catalyst was
about 4 times higher than that of Pt/C. In terms of
stability, the electrochemically active surface area
(ECSA) and mass activity of Pt-SnS,/SnO, only
decreased by 18.2% and 23.7%, respectively, after 50000
cycles in the high-potential region (1.0-1.6 V).

2.2.2  Alloying/nanostructuring Pt particles

Although Pt is the most reliable ORR catalyst to attenuate
reaction barrier, it still does not sufficiently meet the
practical requirements. Moreover, the scarcity of Pt
results in a high-cost. In this regard, Pt-alloying with
abundant transition metals seems to be an effective way
to overcome the above challenges. On the one hand, the
electronic/geometric structure effects can effectively
regulate the electrocatalytic ORR performance enhance-
ment [48—50]; on the other hand, the reduced Pt usage
can greatly improve the cost effectiveness of fuel cells.
Nanostructured Pt-based alloys can greatly enhance the
electrocatalytic performance, which generally have
various morphologies such as wires, networks, and
dendrites [51]. Tang et al. [52] developed a surface/near-
surface composition modulation technique that could
enable the one-dimensional Pt—Ni nanowires (NWs) (Fig.
3(a)) to exhibit an excellent catalytic ORR activity and
stability. =~ High-temperature  pyrolysis under the
atmosphere of NHj; produced the final Pt—Ni/C—NHj;
NWs where the outermost Pt-skin had a high Ni/Pt
atomic ratio. Experimental and theoretical results
suggested that Pt—Ni/C-NH; NWs had the optimal
adsorption energy of oxygen intermediate reconstruction
of structure and composition, exhibiting an excellent
specific activity of 3.86 mA/cm? and a mass activity of
1.02 A/mgp; as well as a good stability compared with
Pt/C. Liao et al. [53] fabricated the composition-graded
PtCuz;@Pt;Cu@Pt nanodendrites exposed with high
index surfaces (HISs) through a combination of
atmosphere-modulation synthesis and electrochemical
dealloying (Fig. 3(b)). Both Pt-alloying with Cu and HISs
together contributed to the outstanding catalytic ORR
activity of such characteristic catalyst with mass/specific
activities of 14 and 24 times higher than that of the
commercial Pt/C catalyst, respectively. In addition, the
characteristic nanodendrite architecture promoted the
stability. Zhang et al. [54] presented a novel synthetic
process (Fig. 3(c)) of S-doped AuPbPt alloy nanowire-
networks (NWNs) in aqueous solution by the conformal
growth of Pt onto the pre-formed S-doped AuPb NWNs.
The excellent electrocatalytic ORR performance could
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Fig. 2 Schematic illustrations of various modifying/innovating supports for Pt-based catalysts.
(a) Pt/NCB catalyst and its possible oxygen spillover effect (adapted with permission from Ref. [43]); (b) Pt/N-CST (adapted from Ref.
[44] under the terms of CC BY NC ND license; (¢) Pt@Mn-SAs/N-C (adapted with permission from Ref. [45]); (d) Pt@Fe-NC (adapted
with permission from Ref. [46]); (¢) Pt-SnS,/SnO, (adapted with permission from Ref. [47]).

benefit from the formation of appropriate amount of PtS
in the resulting catalyst.

Alloying-induced ligand/strain effects can promote the
ORR kinetics of Pt by regulating the near-surface atomic
arrangement [55]. However, during the long-term ORR
process, spontaneous surface segregation and subsequent
dealloying could occur, resulting in a structural collapse
and severe decline in ORR performance of Pt-based

nanostructures [56]. Compared with the traditional Pt—-M
alloys, Pt—rare earth (RE) alloys were found to have an
extremely low alloy formation energy which can further
enhance the stable presence of RE atoms in characteristic
alloys [57,58]. Qian et al. [59] developed a universal,
scalable, and green synthetic method for Pt-RE alloy
catalysts (Fig. 3(d)). Incorporating RE atoms could well
modulate the electronic structure of Pt to accelerate the
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Fig. 3 Schematic illustrations of various nanostructured Pt-based alloy catalysts.
(a) Pt-Ni—-NH3 NWs (adapted with permission from Ref. [52]); (b) Pt—Cu nanocrystals (adapted with permission from Ref. [53]);
(c) S-doped AuPbPt alloy NWNs (adapted with permission from Ref. [54]); (d) Pt—RE alloys (adapted with permission from Ref. [59]);
(e) graphene-supported Pt—Pr/PrsO; (adapted with permission from Ref. [60]).

catalytic ORR kinetics and significantly enhance the
energy barrier for Pt demetallation to improve the ORR
stability. As a result, the optimal platinum-yttrium (Pt;Y)
catalyst showed the best electrocatalytic activity and
stability. Its mass activity reached 5.3 times that of
commercial Pt/C catalyst, decreasing by only 35.7% after
60000 potential cycles. Wu et al. [60] successfully
utilized praseodymium (Pr) for the construction of
graphene-supported PrcO;;-assisted Pt—Pr (Pt—Pr/PrcOy)
catalyst by the combined co-reduction of Pt and Pr salts

and further thermal oxidation treatment (Fig. 3(e)). The
excellent ORR performance could be associated with the
electron transfer from PrgOy; to Pt surface and the strong
oxophilicity of Pr to adjust Pt active site to promote O,
adsorption/dissociation.

3 Burgeoning Pt single-atom catalysts

To achieve the low/ultralow-Pt usage for advanced ORR
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catalysts, many different strategies such as alloying
[61-63], core-shell/Pt-skin nanostructuring [64], and Pt
SACs designing [65] have been proposed to improve the
utilization of Pt. Pt SACs show great promise in reducing
catalyst loading and cost to achieve high-performance
due to their maximum atomic utilization and atom-
adjustable active structure [66]. SACs are a new class of
heterogeneous catalysts in which each active metal atom
can be atomically dispersed and fixed on the support. In
fact, they have similarities to homogeneous catalysts.
When these metal single-atoms are coordinated with or
anchored by a surface atom of support, surface atoms can
be regarded as the ligands in homogeneous catalysts
which can not only stabilize metal atoms but also
participate in catalytic reactions [67]. The preparation
methods of SACs mainly include chemical vapor
deposition [68], atomic layer deposition [69], pyrolysis
[70], wet chemical method [71], photochemical method
[72], co-precipitation [73], atomic capture [74], and so
on. However, the content of individual metal atoms in the
whole catalyst is usually less than 5 wt.% (mass fraction),
greatly restricting the number of catalytic sites and thus
the activity of the catalyst [75]. Moreover, the stability of
monoatomic structures is often poor, making it easy for
them to aggregate into nanoparticles [76].

So far, great progresses have been made in the
synthesis, characterization, and preliminary application of
SACs. However, the issues of low atomic density and
poor stability still hinder the wide practical applications
of SACs. To obtain highly active and stable Pt SACs,
some effective strategies can be continually considered to
pursue high-density atomic Pt sites and strong metal-
support interactions.

3.1 Design thoughts

It is well known that the catalytic activity and selectivity
of SACs are directly related to its electronic structure,
which can be effectively regulated depending on metal
atom types, local coordination environments, supports,
and so on. Thanks to the maximum metal utilization, Pt
SACs can give a high intrinsic catalytic activity. In terms
of ORR selectivity, in general, there will be an expected
4e selection path. However, controversies on the 2e /4e~
selectivity are noted for different Pt SACs and a high
selectivity for H,O, production can be found in most
cases. Some factors like the Pt coordination environments
(coordination element and coordination number) can
affect the ORR selectivity of product type and its
concentration, essentially depending on the manipulation
of dissociative and associative mechanisms.

Mainly, Pt single-atoms can reside in the Pt SACs by
coordinating with non-metals and alloying with metals
through a reasonable design. With Pt single-atom as the
center, different types and numbers of non-metal/metal
atoms can coordinate and/or alloy with Pt atoms.

Notably, the neighboring atoms can also participate in the
ORR process and the first/second coordination shells of
Pt can have significant effects on its activity and
selectivity by regulating the local geometry and charge
density of centered Pt atom. In the first coordination
shell, Pt single-atoms can couple with the adjacent atoms
by Pt-nonmetal/metal interactions. Moreover, it is also
found that some carbon atoms in the second coordination
shell can act as active sites for enhancement of
electrocatalytic ORR performance.

3.1.1 Single-atomic Pt coordinating with non-metals

Generally, the single-atomic Pt can coordinate with non-
metallic atoms such as B, C, N, O, P, and S in the carbon
substrates for the construction of Pt SACs. For example,
the Pt—N, coordinations are the most popular ones. N-
doped carbons containing pyridinic-N, graphitic-N, or
pyrrolic-N have been shown to be the promising supports
for coordinating Pt single-atoms due to their porous
structure, high specific surface area, and abundant N-sites
[77-79]. ORR electrocatalysis on an N-coordinated
single-atomic Pt (Pt;—N,) site can be proceeded by a 2¢~
pathway to the production of H,O; on Pt SACs and a 4e~
pathway to the production of H,O. The Pt—Njy site of a Pt
atom coordinating with four pyridinic-N is well-known
for electrocatalysis [80,81]. Song et al. [82] investigated
the graphene-supported different Pt species (nanoparticle,
cluster, and single-atom) and found that the isolated Pt
single-atoms could follow a two-electron pathway while
the Pt nanoparticles had a complete 4¢ reduction.

To maintain a good catalytic performance at a low Pt
content, it is necessary to further improve the inherent
catalytic ORR activity and stability of the single-atomic
Pt site, which needs a reasonable change of its electronic
structure and coordination environment. The two-
dimensional boron carbon nitride (BCN) materials with a
graphene-like structure have the advantages from boron
nitride and graphene, such as high specific surface area
and good electrochemical catalytic activity and stability
[83]. The electron-rich N atoms and electron-deficient B
atoms on the surface of BCN can make BCN have
excellent electrochemical properties and provide
abundant sites for anchoring Pt atoms. Zhang et al. [84]
used electrochemical deposition for realizing the BCN
nanosheets as a substrate to preserve Pt single-atoms (Pt
SAs-BCN) (Fig. 4(a)) with densely accessible Pt—Ny4
active sites. Such catalyst with an efficient and stable
ORR activity exhibited a maximum power density of
936.31 mW/cm? in microbial fuel cells. Zhu et al. [85]
studied a Pt SAC of the atomic Pt sites with N and P co-
coordination on a carbon matrix (PtNPC) with the P-
modified Pt—Nj sites (Fig. 4(b)), which promoted the
intrinsic catalytic ORR activity by altering the d-band
center of Pt. Moreover, the introduction of a second
isolated metal single-atom site has been shown to further



212

improve the catalytic performance. For instance, the
isolated bimetallic sites SACs show an excellent
electrocatalytic performance compared to monometallic
SACs. A case in point is that, Cao et al. [86] prepared a
Fe/Pt SAC (Fe Pt;/NC) with uniformly dispersed Fe—Ny4
and Pt—N4 active sites which showed enhanced
bifunctional electrocatalytic ORR performance and
hydrogen evolution reaction (HER). Zhong et al. [87]
successfully synthesized a bimetallic SAC of isolated Pt
and Fe single-atoms anchored on the N-doped carbon

Electrochemical workstation

— —
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(PtFeNC) through a novel strategy of capsulating Pt
species into the cavities of Fe-doped zeolite imidazolate
framework. This PtFeNC catalyst with isolated Pt—N4
and Fe—Njy sites exhibited a high activity and stability,
with a specific capacity of 807 mAh/g in the zinc-air
battery. Additionally, the metal nanoparticles presented in
the local environment can also affect the properties of
single-atomic Pt site [88]. Xiao et al. [89] designed a
hybrid Pt-Fe-N—C catalyst consisting of Pt-Fe alloy
nanoparticles and Pt and Fe single-atoms in N-doped
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Fig. 4 Schemes of various SACs by single-atomic Pt coordinating with non-metals.
(a) Pt SAC prepared by electrochemical deposition (adapted with permission from Ref. [84]); (b) PtNPC sample (C, H, O, P, N, and Pt
atoms being represented by gray, white, red, pink, blue, and yellow balls, respectively) (adapted with permission from Ref. [85]);
(c) HAADF-STEM image of Pt—Fe—N—C electrocatalyst and its corresponding EELS analysis (Fe and Pt single-atoms being marked by
blue and red circles, respectively) (adapted from Ref. [89] under the terms of CC BY license); (d) configurations of Pt single-atom
coordinated with neighboring S/N/C atoms in two-dimensional carbon matrix (left) and illustration of oxygenated intermediates adsorption

on Pt—S4 motif (right) (adapted from Ref. [90] under the terms of CC BY license).

carbon support (Fig. 4(c)). The synergistic effects among
different active sites could promote the electrocatalytic
activity and stability. In a fuel cell, such Pt—-Fe—-N—C
catalyst demonstrated a Pt mass activity surpassing that
of commercial Pt/C by 3.7 times, alongside the
remarkable stability of maintaining 97% of the activity
after 100000 cycles.

In addition to atomical Pt—N coordination, other non-
metallic atoms can also coordinate with Pt single-atom
for the development of high-performance Pt SACs. Zhao
et al. [90] manipulated the ORR pathways through
studying the local Pt single-atom coordination
environment of Pt—C, Pt—-N—-C and Pt—S—C (Fig. 4(d))
using a combined experimental and theoretical approach.
The Pt—C motif could be conducive to the dissociative
reduction, while direct protonation into H,O, for Pt—S
and Pt—N motifs. Furthermore, Choi et al. [91] selectively
synthesized atomically dispersed Pt catalyst on S-doped
zeolite template carbon (ZTC) with an extra-large S-
content of 17 wt.% and a high surface area of
approximately 2800 m2/g. The rich S-functional groups
could stabilize the atomically dispersed Pt to form a
unique Pt—S4 coordination with a high selectivity for
H,0, product. Zhang et al. [92] established isolated Pt
atoms stabilized by amorphous tungstenic acid (HyWOy4)
on WO; nanoplates using an in sifu photodeposition
strategy. Pt atoms could coordinate with oxygen atoms
from the [WOg¢] octahedra of HyWO,, and the strong
Pt—O bonding provided both an excellent catalytic ORR
activity and stability.

3.1.2 Single-atomic Pt alloying with metals

Noteworthily, alloying single-atomic Pt with metals
through metal bonds has also attracted more and more

attentions. Typically, the single-atom alloy (SAA)
catalysts have been developed in which atomically
dispersed metal sites are on the surface of metal or
throughout the metal catalyst [93]. The properties of
active single-atoms can be regulated by controlling both
the electronic and geometric structures [94]. Through fine
selection of matrix metals and adjustment of local atomic
structure, the high-performance Pt SAA catalysts can be
well designed. For instance, Chen et al. [95] reported
the outstanding CO-tolerance and ORR performance
by the “neighboring Pt atoms” in the ultrathin wrinkled
FePt nanosheets with a high ECSA of 545.54 m?%/gp
(Fig. 5(a)). Liu et al. [96] synthesized the typical
Pt;Co@Pt-SAC catalyst by a versatile bioinspired self-
assembly method (Fig. 5(b)), in which the Pt3;M nanopar-
ticles are coated with single-atom Pt—C4 decorated
carbon. As depicted in Fig. 5(c), the strong electronic
interaction between single-atoms and nanoparticles can
be confirmed by the DFT calculated differential charge
densities of Pt;Co/in-plane Pt and Pt;Co/edged Pt (a
single-atom Pt placed in-plane on a Pt;Co-decorated
graphene sheet or at the edge of the sheet). Compared
with the commercial Pt/C, this catalyst exhibited both
exceptional mass and specific activities with an order of
magnitude higher, and only a 10 mV decay could be in
half-wave potential throughout 50000 cycles.

Pd and Au are ideal substrates for the deposition of
isolated Pt atoms due to their comparable lattice
constants, making it possible to further regulate the
coordination environment and catalytic activity [97]. For
example, Zhang et al. [98] used atomic layer deposition
to prepare the N-doped carbon nanotubes supported Pt/Pd
SAA catalyst of Pt atoms being deposited on octahedral
Pd surfaces, which showed both significantly improved
HER and ORR activities. Besides, for Pt SAA catalysts,
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Fig. 5 Schemes of various SACs by single-atomic Pt alloying with metals.

(a) HAADF-STEM image (left), and schematic diagram of neighboring Pt atom sites in an ultrathin FePt nanosheet (right) for carbon
monoxide (CO)-tolerant ORR (adapted with permission from Ref. [95]); (b) PstM@Pt-SAC hybrid catalysts (adapted with permission
from Ref. [96]); (c) differential charge density of Pt;Co/in-plane Pt and Pt;Co/edged Pt (cyan and yellow areas representing the depletion
and accumulation of charge, respectively, and the red circles showing the charge distribution around Pt atoms) (adapted with permission
from Ref. [96]); (d) preparation schematic of Pt;Co,/N-GCNT (gray, orange, blue, and green balls representing C, N, Co, and Pt atoms,
respectively) (adapted with permission from Ref. [101]); (e) presented ORR mechanism on Pt;Co;0o/N-GCNT (gray, purple, orange, red,
and blue representing C, Co, Pt, O, and H, respectively) (adapted with permission from Ref. [101]); (f) Pt—Fe electronic coupling effect for
O, activation (adapted with permission from Ref. [102]); (g) proposed ORR mechanism on Pt single-site and Pt—Fe pairs (violet, red, dark
blue, and white representing Fe, O, Pt, and H, respectively) (adapted with permission from Ref. [102]); (h) optimized PtNiN,Cy4 structure
by DFT calculation (adapted with permission from Ref. [103]); (i) transition states (adapted with permission from Ref. [104]); (j) proposed
mechanism of PtCo-NC toward ORR (adapted with permission from Ref. [104]).
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depositing isolated Pt atoms on the surface of cheap
metals will be a more meaningful strategy [99-102].
Cheng et al. [101] reported an excellent SAA catalyst
wherein Pt—Co dual sites were wrapped within N-doped
graphitized carbon nanotubes (Pt;Co;¢o/N-GCNT). This
configuration led to the dispersion of isolated Pt atoms on
the surface of Co nanoparticles (Fig. 5(d)). As the
proposed mechanism in Fig. 5(e), the unique Pt-Co dual
sites can provide a high-efficient four-electron ORR
pathway, which is beneficial for OOH* immobilization
and OH* dissociation to enable the excellent equilibrium
of adsorption and desorption of the oxygen intermediates.
Gao et al. [102] constructed the single-site Pt—Fe pairs on
a-Fe;03(012) facets. The partially occupied orbitals
driven by strong electronic coupling could be highly
active for O, adsorption and dissociation (Fig. 5(f)), and
the proposed ORR mechanism (Fig. 5(g)) suggests that
the kinetics of ORR primarily stem from the facile
activation of O, at the Pt—Fe single-site pair and the
subsequent desorption of OH* at the Pt single-site.

More importantly, the metal atoms in the adjacent
bimetallic sites SACs can also produce direct interaction
[103—105]. Particularly, this interaction may originate
from the synergistic effect of homo/hetero-nuclear
adjacent bimetallic sites by tuning the d-band center and
orbital coupling to optimize the electronic structure and
distribution, significantly boosting the activity, selectivity
and stability for ORR. Duc Le et al. [103] synthesized a
novel electrocatalyst (PtNiga.nps-NDC) composed of
Pt—Ni dual single-atoms and Pt—Ni alloy nanoparticles
deposited on the N-doped carbon (NDC) surface. DFT
calculations showed that the PtNiN,C4 (Fig. 5(h)) could
be one of the main active sites for improved ORR
performance. Cheng et al. [104] rationally designed the
PtCo-NC binary-atom catalyst with atomically dispersed
Pt and Co on N-doped carbon by a mechano-thermal
milling strategy and Fig. 5(i) depicted its proposed ORR
pathways. Theoretical calculations revealed that Co atom
induced spin polarization of adjacent Pt atom could
accelerate the catalytic ORR kinetics (Fig. 5())).
Moreover, the resulted PtCo-NC catalyst showed a long-
term stability.

3.2 Metal-support interactions

The nature of metal-support interactions can play a
pivotal role in dictating the electrocatalytic performance
of SACs, influenced by various parameters like the type
and size of metal, chemistry of support, interface quality,
and surface structure [106]. The metal single-atoms in
SACs can be anchored by or coordinated with the surface
atoms of the support with almost 100% metal utilization.
This maximum utilization means that in the SACs each
metal atom can establish a direct contact with the support.
However, the supported nanoparticle catalysts contact
only along the periphery of their metal atoms [107].

Therefore, SACs would provide a maximized metal-
support interaction. In fact, the free energy of metal
single-atoms can increase dramatically, leading to a
propensity for their clustering and aggregation [108]. In
this regard, suitable supports are essential as they can
interact with metal single-atoms, facilitating their stable
dispersion and enhancing both the -electrocatalytic
activity and the electrochemical stability of SACs.
Therefore, the supports have significant effects on the
electrocatalytic performance, similar to the effect of
ligand molecules in homogeneous catalysts [109].

Up to this point, the supports employed for SACs
encompass both carbon-based and non-carbon materials
[110-114]. In general, non-carbon supports such as
metals, metal oxides, hydroxides, sulfides and nitrides
exhibit minimal vacancy defects which can result in
extremely low monatomic loads. Carbon-based materials
can achieve higher monatomic metal contents, such as
defective graphene, covalent triazine framework,
graphitic carbon nitrides, and heteroatoms-doped carbons
[76]. However, the weak interaction of supports and
metal does not facilitate the stable dispersion of
individual metal atoms. In addition, the insufficiently
understanding of metal-support interaction mechanisms is
still an issue in improving both activity and stability of
the prepared SACs. Therefore, it is of great value to
explore the metal-support interaction of Pt atoms with
various carbon/noncarbon supports for the preparation of
high-performance Pt SACs [115].

3.2.1 Interaction of Pt single-atoms with carbon supports

The structure and chemistry of carbon supports can
greatly influence the key properties of single-atomic Pt
active center, and such factors can be the geometric
configuration, electronic structure, and metal-support
interaction [116]. Considering the unique role of carbon
supports in stabilizing metal atoms, the type and
abundance of active sites can be controlled by rationally
designing the structure and chemical properties of carbon
materials. The interaction between carbon support and
metal atom is usually relatively weak, resulting in the
aggregation of metal atoms to particles and degradation
of catalytic activity [117]. Carbon materials can capture
higher single-atom metal content by confining or
embedding metal atoms into the carbon defects [118].
Some studies have investigated the interaction of carbon
defect with Pt single atom and its effect on ORR activity
of the resulted Pt SAC [119]. Liu et al. [120] presented a
carbon defect anchored Pt SAC (Pt;/C), showcasing a
remarkable ORR performance and an exceptionally high
utilization of Pt. Typically, the main active sites are Pt
single atoms coordinated by four carbon atoms
neighboring carbon divacancies (Pt—Cy4 sites). Through
Pt—C4 coordination (Fig. 6(a)), such Pt;/C catalyst can
provide an efficient 4e~ conversion pathway and an



216 Front. Energy 2024, 18(2): 206222

excellent performance in the acidic H,/O, single cell.
Heteroatoms-doping into carbon materials can
proficiently modulate the electronic structure [121], and
the most popular is N-doping due to its larger
electronegativity than carbon. N-doped carbon materials
have been widely used as the platforms for anchoring
metal atoms, and usually their supported Pt SACs can
produce a better electrochemical performance and
stability through the Pt—N coordination interaction. For
example, integration of N into a carbon matrix has the
potential to significantly modify the functions of support,
where abundant coordination sites can facilitate the
formation of single-atomic Pt sites [122]. The isolated
metal atom is covalently bonded with the adjacent N
atom, which can realize the fine modulation of active site
and maximize the metal-support interaction effect [98].
Liu et al. [123] used the N-doped Black Pearl (NBP)
carbon black support to synthesize an atomically
dispersed Pt;/NBP catalyst, in which the Pt atom was
coordinated with imine nitrogen groups in a nonplanar
structure. After high-temperature pyrolysis of this
Pt;/NBP, the coordination environment could be

| 0, + 4H" + 4¢~ = 2H,0

©

reconstructed as shown in Fig. 6(b). A new active center
emerged, wherein a Pt single-atom coordinated with a
pyridinic-N and two carbon atoms within a planar
structure. This led to the creation of a catalyst with
isolated Pt atoms and finely-dispersed Pt nanoparticles on
the substrate, denoted as Pt;@Pt/NBP. This catalytic
configuration significantly advanced the ORR perfor-
mance, achieving a high-efficiency 4e~ pathway for
ORR. Yang et al. [124] synthesized C4N by a one-step
hydrothermal method using 2,3-diamide phenazine as the
raw material, which was then used as a functional support
for Pt single-atom to form a new Pt@CuN electrocatalyst.
X-ray absorption fine structure revealed the coordination
number of Pt—N is 2 with an average distance of 2.02 +
0.02 A. Based on the coordination information, the ORR
models (Fig. 6(c)) for Pt@CsN were established to
perform the DFT calculations, suggesting that the strong
adsorption of reactant species was the reason for the
excellent performance.

Additionally, Zeng et al. [125] reported a Pt single-
atom grafted Fe-N—-C catalyst (Pt;@Fe-N—C) through
the process of “single-atom to single-atom” grafting,

0, +2H" +2¢ = H,0,

0, +4H" + 4e" = H,0

Fig. 6 Schematic diagrams of Pt single-atoms interacting with carbon supports.

(a) Path diagram of Pt—Cy4 coordination catalyst (adapted with permission from Ref. [120]); (b) pathway transform of Pt—N coordination
catalyst from 2e~ to 4e~ (adapted with permission from Ref. [123]); (c) ORR reaction process on 1%Pt@CsN model (adapted with
permission from Ref. [124]); (d) Pt;—O,—Fe;—N4—Cj as an active moiety in Pt;@Fe—N—C catalyst (adapted with permission from Ref.

[125]).
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where a Pt atom was successfully integrated into the
Fe—N4 center. This yielded a novel Pt;—O,—Fe;—Ny
configuration via the adjacent Fe; and Pt; atoms
coordinating with a bridging oxygen molecule (Fig. 6(d)),
which could result in both the remarkably improved
electrocatalytic ORR activity and stability.

3.2.2 Interaction of Pt single-atoms with non-carbon
supports

Non-carbon materials with high corrosion resistance can
effectively mitigate or eliminate the oxidative corrosion
of carbon supports. Non-carbon materials as supports of
Pt SACs can not only stabilize the dispersed single-atom
metal centers but also changes their electronic and
geometric  structure, thus altering the catalyst
performance [126,127]. Therefore, the interactions of
single-atom Pt with non-carbon support should be given
great attention.

In the effort to improve catalyst stability, titanium
nitride (TiN) and titanium carbide (TiC) have been
suggested as non-carbon supports for Pt SACs due to
their high corrosion resistance and excellent electrical
conductivity [128]. By using TiN and TiC as supports,
Yang et al. [129] prepared two Pt SACs of Pt}/TiC and
Pt)/TiN to demonstrate the support effects (Fig. 7(a)).
Compared to Pt;/TiN, Pt;/TiC exhibits a higher activity,
selectivity, and stability in electrochemical production of
H,0,. Usually, H,O, is thought of as a byproduct of
ORR, but it is actually a valuable chemical [130]. DFT
calculations showed that Pt;/TiC could retain more
oxygen-oxygen bonds for the higher selectivity of H,O,
generation but Pt;/TiN had a strong oxygen affinity.
Additionally, this work revealed that the support could
actively participate in electrocatalytic reactions rather
than simply acting as anchoring sites of Pt single-atoms.

As is well-known, the performance of Pt SACs can be
greatly affected by the coordination environments of
metal single-atoms in near-surface regions of support,
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including surface and subsurface. Lai et al. [131]
successfully synthesized a Pt SAC, where individual Pt
atoms are uniformly dispersed on a heterogeneous
substrate comprising cobalt particles and an N-doped
carbon framework (Pt;@Co/NC). In addition to the
surface, there were Pt single-atoms in the subsurface Co
nanoparticles which could strongly regulate the catalytic
ORR efficiency of surface Pt through the change of
electronic structure and shift of d-band center. The
theoretical and experimental results revealed that
Ptj@Co/NC could exhibit a remarkable performance by
the alloyed Pt in the subsurface to augment the ORR
performance of surface Pt single-atoms (Fig. 7(b)), but
the corresponding catalyst was inactive without Pt single-
atoms dispersion in the subsurface.

4 Summary, challenges, and perspectives
4.1 Summary

Pt-based materials can largely meet the practical require-
ment for ORR electrocatalysis in PEMFCs. However,
several drawbacks could compromise the large-scale
industrial application, such as the limited reserve of Pt,
high cost, and insufficient activity/stability. With commer-
cial Pt/C catalyst as a reference, the advanced Pt-based
catalysts have been traditionally developed by alloying/
nanostructuring Pt and modifying/innovating supports to
reduce cost and enhance performance. To achieve the
maximum utilization of Pt, single-atom catalysts are
gradually becoming hot research materials. This review
summarizes various Pt single-atom catalysts including
isolated, alloyed, and nanoparticle-contained ones
through single-atomic Pt coordination with non-metals
and alloying with metals. Moreover, it discusses the
metal-support interactions of Pt single-atoms with
carbon/non-carbon supports. Overall, in light of advan-
cing cost-effective and high-performance conventional
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Fig. 7 Schematic diagrams of Pt single-atoms interacting with non-carbon supports.

(a) Support effect in single-atom catalysts (adapted with permission from Ref. [130]); (b) structural diagram of Pt;@Co/NC with Ptgpsurr
and Ptg,#(@Co/NC without Ptgypsys for ORR (adapted with permission from Ref. [131]).
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Pt-based catalysts, this paper provides an encompassing
overview of burgeoning Pt single-atom catalysts, invol-
ving design thoughts, functional properties, electroca-
talytic fundamentals and mechanisms, metal-support
interactions, application progresses, and so on.

4.2 Challenges and perspectives

While significant strides have been taken in designing
and synthesizing high-performance Pt single-atom
catalysts for ORR, there are still several challenges. First,
the site density of atomic Pt is low and its high-dispersion
is difficult. In addition, during the synthetic and
electrocatalytic process, Pt single-atoms will have a
tendency to form clusters or nanoparticles. Moreover,
there is insufficient knowledge on the influence factors of
peripheral environments on active Pt sites and its
electrocatalytic mechanisms. Furthermore, there still
exists a huge gap between research and industrial
application. To overcome these challenges in advancing
high-performance Pt single-atom catalysts, this review
presents several perspectives for future research.

(1) Adopting some effective strategies to achieve a
high density and optimal dispersion of Pt single-atoms to
improve catalytic ORR activity.

(2) Developing modified/novel supports to acquire
good corrosion resistance and strong metal-support
interaction to enhance electrochemical stability.

(3) Investigating the influences of peripheral environ-
ments on active Pt site, such as heteroatoms-doping,
defects, curvature, supports, and substituted groups.

(4) Performing high-precision in situ/operando physical
and electrochemical characterization techniques and
advanced theoretical calculations based on machine
learning and artificial intelligence to comprehensively
explore the electrocatalytic ORR mechanisms.

(5) Pushing the large-scale preparation and industrial
production of high-performance single-atom catalysts to
accelerate their commercial application in
electrochemical energy devices.
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