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Abstract In recent years, many different techniques are
applied in order to draw maximum power from photo-
voltaic (PV) modules for changing solar irradiance and
temperature conditions. Generally, the output power
generation of the PV system depends on the intermittent
solar insolation, cell temperature, efficiency of the PV
panel and its output voltage level. Consequently, it is
essential to track the generated power of the PV system and
utilize the collected solar energy optimally. The aim of this
paper is to simulate and control a grid-connected PV
source by using an adaptive neuro-fuzzy inference system
(ANFIS) and genetic algorithm (GA) controller. The data
are optimized by GA and then, these optimum values are
used in network training. The simulation results indicate
that the ANFIS-GA controller can meet the need of load
easily with less fluctuation around the maximum power
point (MPP) and can increase the convergence speed to
achieve the MPP rather than the conventional method.
Moreover, to control both line voltage and current, a grid
side P/Q controller has been applied. A dynamic modeling,
control and simulation study of the PV system is
performed with the Matlab/Simulink program.

Keywords photovoltaic system, maximum power point
(MPP), adaptive neuro-fuzzy inference system (ANFIS),
genetic algorithm (GA)

1 Introduction

Among the alternative sources, the PV systems is
considered as a natural energy source that is more useful,
since it is clean, plentiful, free and participates as a main

element of all other procedures of energy production in the
world. To track the incessantly diverging MPP of the solar
array, the maximum power point tracking (MPPT) control
method plays a significant part in the PV arrays [1,2]. To
control maximum output power, it is highly recommended
that the MPPT system be used [3].
The most prevalent techniques are the perturbation and

observation (P&O) algorithm [3,4], incremental conduc-
tance (IC) [5,6], fuzzy logic [7,8] and artificial neural
networks (ANN) [9–11]. P&O and IC can track the MPP
all the time, regardless of the atmospheric conditions, type
of PV panel, by processing real values of PV voltage and
current. Due to the aforementioned inquiries, the profits of
P&O and IC methods are low cost execution and
elementary method. One of the drawbacks of these
techniques, however, is the vast variation of output
power around the MPP even under steady-state, which
lead to the loss of available energy more than other
methods [12,13]. The rapid changing of weather condition
affects the output power, making these methods unable to
easily track the MPP.
Using fuzzy logic can dramatically solve the two

problems mentioned. In fact, fuzzy logic controller can
reduce oscillations of output power around the MPP and
losses. Furthermore, in this way, convergence speed is
higher than the other two ways mentioned. A weakness of
fuzzy logic in comparison with ANN refers to oscillations
of output power around the MPP [14,15].
Nowadays, artificial intelligence (AI) methods have

numerous applications in determining the size of PV
systems, MPPT control and optimal structure of PV
systems. In most cases, multilayer perceptron (MLP)
neural networks or radial basis function network (RBFN)
are employed for modeling PV module and MPPT
controller in PV systems [10–12,16–18].
The ANN can be considered as a robust technique for

mapping the inputs-outputs of nonlinear functions, but it
lacks subjective sensations and acts as a black box. On the
other hand, fuzzy logic has the ability to transform
linguistic and mental data into numerical values. However,
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the determination of membership functions and fuzzy rules
depends on the previous knowledge of the system. Neural
networks can be integrated with fuzzy logic and through
the combination of these two smart tools, a robust AI
technique called adaptive neuro-fuzzy inference system
(ANFIS) can be obtained [19–21].
GA is used for data optimization and then, the optimum

values are utilized for training neural networks and the
results show that the GA technique has less fluctuation in
comparison with the conventional methods [22–24].
However, one of the major drawbacks in the papers
mentioned that they are not practically connected to the
grid in order to ensure the analysis of PV system
performance.
In this paper, first, the 360 data of temperature and

irradiance as the input data are given to GA and optimal
voltage (VMPP) corresponding to the MPP delivery from
the PV system. Then the optimum values are utilized for
training the ANFIS.

2 Photovoltaic cell mode

Figure 1 shows the equivalent circuit of a PV array [2,3].
The characteristic of the solar array is explained as

IPV ¼ Id þ IRP þ I , (1)
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where I is the output current, V is the output voltage, IPV is
the generated current under a given insolation, Id is the
diode current, IRP is the shunt leakage current, I0 is the
diode reverse saturation current, n is the ideality factor
(1.36) for a p-n junction, Rs is the series loss resistance
(0.1Ω), RP is the shunt loss resistance (161.34Ω), and Vth

is known as the thermal voltage. q is the electron charge
(1.60217646 � 10–19 C), K is the Boltzmann constant
(1.3806503 � 10–23 J/K) and T (Kelvin) is the temperature
of the p-n junction. Eg is the band gap energy of the
semiconductor (Eg &1.1 eV for the polycrystalline Si at

25°C), I0,n is the nominal saturation current, T is the cell
temperature and Tn is the cell temperature at reference
conditions. Red sun 90W is implemented as the reference
module for simulation and the name-plate details are listed
in Table 1. The array is the combination of 7 cells in series
and 7 cells in parallel of the 90 W modules; accordingly,
the array generates 4.4 kW.

3 GA Technique and ANFIS

3.1 Steps of implementing GA

The GA based offline trained ANFIS is employed to
provide the reference voltage corresponding to the
maximum power. Alongside, GA is utilized for optimum
values which are then used for training ANFIS [22–24].
The procedure employed for implementing GA is as
follows [22–25]: Assigning the objective function and
recognizing the design parameters; determining the initial
production population; evaluating the population using the
objective function; and conducting convergence test stop if
convergence is provided.
The objective function of GA is employed for its

optimization by finding the optimum X = (X1, X2, ..., Xn) to
put the F(X) in the maximum value, where the number of
design variables are considered as 1, where X is the design
variable equal to array current (IX) and F(X) is the array
output power which should be maximized [22]. The GA
parameters are tabulated in Table 2. The correlation
between the voltage and current of the array can be
expressed as

FðX Þ ¼ VX IX , (5)

0< IX<ISC: (6)

By maximizing this function, the optimum values for
VMPP andMPP will be obtained in any specific temperature
and irradiance intensity.

Fig. 1 Equivalent circuit of the photovoltaic array

Table 1 Red sun 90W module

Current at
maximum
power IMP/A

Voltage at
maximum power

VMP/V

Maximum
power

PMAX/ W

Open circuit
voltage
VOC /V

Short circuit
current
ISC/A

Total number of
parallel cells

NP

Total number of
series cells

NS

4.94 18.65 90 22.32 5.24 1 36
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3.2 ANFIS

ANFIS refers to adaptive neuro-fuzzy inference system.
An adaptive neural network has the advantages of learning
ability, optimization and balancing. However, a fuzzy logic
is a method based on rules constructed by the knowledge
of experts [20,21]. The good performance and effective-
ness of fuzzy logic are approved in nonlinear and
complicated systems. ANFIS combines the advantages of
adaptive neural network and fuzzy logic. For a fuzzy
inference system, with 2 inputs and 1 output, a common
rule set is obtained with 2 fuzzy if-then rules by Eqs. (7)
and (8). The fuzzy rules can typically be
Rule 1: If x is A1 and y is B1; then

f1 ¼ p1xþ q1yþ r1, (7)

Rule 2: If x is A2 and y is B2; then

f2 ¼ p2xþ q2yþ r2, (8)

where x and y are the inputs and f is the output. [A1, A2, B1,
B2] are called the premise parameters. [pi, qi, ri] are called
the consequent parameters, i = 1, 2. These parameters are
called result parameters. The ANFIS structure of the above
statements is shown in Fig. 2.

This structure has five layers. It can be seen that the
nodes of the same layer have the same functions. The i
output node in layer 1 is named as Q1i.
Layer 1: Every node in this layer consists of an adaptive

node with a node function. There are

Q1,i ¼ mAiðxÞ,   for  i ¼ 1,2, (9)

Q1,i ¼ mBi�2ðyÞ  for  i ¼ 3,  4, (10)

where x (or y) is the input of node i and Ai (or Bi–2) is a
fuzzy set related to that node. In other words, the output of

this layer is its membership value. Each parameter in this
layer is regarded as a default parameter.
Layer 2: Each node in this layer is labeled with an “n”

and the output of each node is the product of multiplying
all incoming signals for that node. These nodes perform the
fuzzy AND operation, and there are

Q2,i ¼ wi ¼ mAi
ðxÞ mBi

ðyÞ  for  i ¼ 1,2, (11)

where the output of each node indicates the firing strength
of each rule.
Layer 3: Each node in this layer is labeled with an “N ”.

The nodes in this layer calculate the normalized output of
each rule. Then there are

Q3,i ¼ wi ¼
wi

w1 þ w2
,  i ¼ 1,2, (12)

where wi is the firing strength of that rule. The output of
this layer is called the normalized firing strength.
Layer 4: Each node in this layer is associated with a node

function. Then there is

Q4,i ¼ wi fi ¼ wiðpixþ qiyþ riÞ, (13)

where wi is the normalized firing strength of the third layer
and {pi, qi, ri} are parameter sets of the node i. The
parameters of this layer are called “consequent para-
meters”.
Layer 5: The single existing node in this layer is labeled

as Σ. It computes the sum of all its input signals and sends
them to the output section.

Q5,i ¼
X
i

wi fi ¼

X
i

wifi
X
i

wi

, (14)

where Q5,i is the output of the node i in the fifth layer. For
this reason, first, all existing rules will be established in
layer 1.
This paper uses a hybrid learning algorithm to identify

the parameters of Sugeno-type fuzzy inference systems. It
utilizes a combination of the least-squares method and the
back propagation gradient descent method for training
network. A Sugeno-type fuzzy inference system (FIS)
structure is applied using Matlab toolbox to produce an FIS
structure for the data of PV system based on different
proposed Gauss membership functions. The inputs of the
ANFIS model can be considered irradiance as a first input
and temperature as a second input. Then, the output
voltage of the PVmodule with the ANFIS output voltage is
deducted to obtain the error signal. Then, through a PI

Table 2 GA parameters

Number of design variable Population size Crossover constant Mutation rate Maximum generations

1 27 75% 13% 24

Fig. 2 ANFIS architecture of a 2-input first-order Sugeno fuzzy
model with 2 rules

324 Front. Energy 2015, 9(3): 322–334



controller, this error signal is given to a pulse width
modulation (PWM) block. The block diagram of the
proposed MPPT scheme is demonstrated in Fig. 3.

The PV system is designed in order to obtain optimum
values by GA. A set of 360 data of temperature and
irradiance are regarded as inputs as shown in Fig. 4(a) and

the output is VMPP corresponding to the MPP delivery from
the PV panels as depicted in Fig. 4(b). Then these optimum
values are utilized for training the ANFIS. By following
Fig. 4(a), all input are 360 data in which a set of 330 data
are used for training the developed ANFIS model. Besides,
a set of 30 data samples are not included in the training.
The input temperatures range from 5°C to 55°C in the steps
of 5°C and irradiances vary from 50W/m2 to 1000W/m2 in
the steps of 32W/m2.
The ANFIS input structure is depicted in Fig. 5 which

includes five layers. The inputs of ANFIS can be
considered irradiance. The structure shows two inputs of
the solar irradiance and cell temperature, which are
translated into appropriate membership functions. Three
functions for the solar irradiance are displayed in Fig. 6 and
three functions for the temperature are illustrated in Fig. 7.
They have 9 fuzzy rules in total as exhibited in Fig. 8.
These rules have a unique output for each input.
The network is trained for 5000 epochs. After training,

the output of the trained network should be very close to
the target outputs as shown in Fig. 9. According to Figs. 10
and 11, VMPP is compared with the target values while in
Figs. 12, 13 and 14 the output of ANFIS test is compared

Fig. 3 Proposed MPPT scheme

Fig. 4 Data
(a) Inputs data of irradiation and temperature; (b) VMPP corresponding to MPP
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with the target values, showing high precision with less
than 2% absolute error between estimated voltage and real
measured data. This error can be reduced by increasing the
number of the training data for ANFIS. The proposed
approach has the capability of estimating the amount of
generated PV power at a specific time. The ANFIS based
temperature and irradiation confirms satisfactory results
with minimal error and the generated PV power is
optimized significantly with the aids of the GA algorithm.

4 Control strategy (P/Q)

Synchronous reference calculates quantities of d-axis, q-
axis and zero sequence in two axis rotational reference
vector for three phase sinusoidal signal, as illustrated in
Fig. 15. The equations are given by Eqs. (15) and (16).
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The inverter control model is illustrated in Fig. 16. The
active and reactive components of the injected current are
id and iq, respectively. For the independent control of both
id and iq, the decoupling terms are used. To synchronize the

Fig. 5 ANFIS controller structure

Fig. 6 Solar irradiance membership function for ANFIS

Fig. 7 Temperature membership functions for ANFIS
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Fig. 8 Fuzzy rules

Fig. 9 Output of ANFIS with the amount of target data

Fig. 10 Output of ANFIS VMPP with the amount of target data

Fig. 11 Total error percentage of VMPP after training data
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converter with the grid, a three phase lock loop (PLL) is
used. The PLL reduces the difference between the grid
phase angle and the inverter phase angle to zero using the
PI controller. It is worth mentioning that the PLL provides
the grid phase angle, which is necessary for the Park
transformation model (abc ! dq). The goal of controlling
the grid side is to keep the DC link voltage in a constant
value regardless of production power magnitude. Its output
is applied as the reference for the active current controller,
whereas the reactive current reference is usually set to zero
in normal performance. When the reactive power has to be
controlled in some cases, a reactive power reference must
be imposed to the control system.
The internal control-loop controls the grid current while

the external control loop controls the voltage [26]. Also,
the internal control-loop is responsible for power quality

Fig. 12 Output of ANFIS test with the amount of target data

Fig. 13 Output of ANFIS test of VMPP with the amount of target data

Fig. 14 Error percentage of test data of VMPP after training data

Fig. 15 Synchronous reference machine
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such as low total harmonic distortion (THD) and
improvement of power quality whereas the external
control-loop is responsible for balancing the power. For
reactive power control, the reference voltage will be set the
same as the DC link voltage. In grid-connected mode, PV
module must supply local needs to decrease the power
from the main grid. One of the main aspects of P/Q control
loop is grid connected and stand-alone function. The
advantages of this operation mode are higher power
reliability and higher power quality. The active and
reactive power are presented by

P ¼ 3

2
ðVgdId þ VgqIqÞ, (17)

Q ¼ 3

2
ðVgqId –VgdIqÞ: (18)

If synchronous frame is synchronized with grid voltage,

the voltage vector is V = Vgd + j0, and the active and
reactive power may be expressed as

P ¼ 3

2
VgdId , (19)

Q ¼ 3

2
VgdIq: (20)

5 Simulation results

In this section, simulation results under different terms of
operation use with Matlab /Simulink is presented. The
system block diagram is shown in Fig. 17. The structure of
P/Q strategy is displayed in Fig. 18. The detailed model
descriptions are given in Appendix.
To compare the accuracy and efficiency of the four

Fig. 16 Inverter control model

Fig. 17 Case study system
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MPPT algorithms selected in this paper, Matlab/Simulink
is used to implement the tasks of modeling and simulation.
The main objective of this case is to investigate the
comparative study of MPPT algorithms under variations of
irradiance and temperature conditions in the PV system.
The system is connected to the main grid that includes the
4.4 kW PV system and the amount of load is 4.4 kW. There
is no power exchange between the PV system and the grid
in normal condition.
The simulation is conducted for different insolations at a

fixed temperature of 25°C as shown in Fig. 19(a). The
output voltage and the current of PVare depicted in Fig. 19
(b) and (c), respectively. When the irradiance is increased
to t = 4 s and t = 8 s, it leads to an increase in the output
current of PVas shown in Fig. 19(c). The evaluation of the
proposed controller is compared and analyzed with the
conventional techniques of fuzzy logic, P&O and IC. It is
worth mentioning that the proposed MPPT algorithm can
track accurately the MPP when the irradiance changes
continuously. Besides, this method has well regulated PV
output power and it produces extra power rather than
aforementioned methods as indicated in Fig. 19(d).
Therefore, the injected power from the main grid to the
PV system is decreased as demonstrated in Fig. 19(e). The
P&O and IC methods perform a fluctuated PV power even
after the MPP operating has been successfully tracked.
To precisely analyze the performance of the ANFIS-GA

technique, the simulation is conducted for different
temperatures at a fixed insolation of 1000W/m2 as
shown in Fig. 20(a). The grid voltage is indicated in Fig.
20(b). Figure 20(c) shows the variation of the output
current of PV. The ANFIS-GA method shows smoother
power, less oscillating and better stable operating point
than P&O, IC and fuzzy logic. It has more accuracy for
operating at MPP, it generates exceeding power and it

possesses faster dynamic response than the mentioned
techniques as depicted in Fig. 20(d). Consequently, the
grid power injection to the PV system declines as
illustrated in Fig. 20(e). In the view of power stabilization,
the PV power controlled by ANFIS-GA is more stable than
that controlled by the conventional methods, which
confirms that the PV with the proposed MPPT method
can operate in the MPP for the whole range of assumed
solar data (irradiance and temperature). The characteristics
of the four MPPT techniques are presented in Table 3.

6 Conclusions

This paper discussed the modeling and simulation of a PV
system and the implementation of an MPPT algorithm.
With the aid of proposed method, the PV system was able
to perform and enhance the production of electrical energy
at an optimal solution under various operating conditions.
To achieve the maximum power from the PV system, the
GA-ANFIS technique was used. The GA was used to
provide the reference voltage corresponding to the
maximum power for any environmental changes. Then
optimized values were used for training the ANFIS. For
different conditions, the proposed algorithm was verified
and it was found that the error percentage of VMPP is from
0.05% to 1.46%. This error could be reduced by increasing
the number of the training data for the ANFIS.
By means of the ANFIS-GA algorithm, the disadvan-

tages of previous approaches could dramatically be
reduced, the oscillations of power output around the
MPP could be decreased, and the convergence speed could
be increased to achieve the MPP in comparison with the
conventional method. To control the grid current and
voltage, a grid-side controller was applied. The inverter

Fig. 18 Structure of P/Q strategy
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Fig. 19 Simulated results for PV (variation of irradiance) in case 1
(a) Irradiance; (b) inverter output voltage; (c) inverter output current; (d) PV power; (e) grid power
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Fig. 20 Simulated results for PV (variation of temperature) in case 1
(a) Temperature; (b) grid voltage; (c) inverter output current; (d) PV power; (e) grid power
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adjusted the DC link voltage while the active power and
reactive power were fed by the d-axis and q-axis,
respectively. Finally, by implementing the appropriate
controller, the PV system in grid-connected mode could
meet the need of load assuredly.

Appendix Detailed description of the model

Photovoltaic parameters: output power = 4.4 kW,
Carrier frequency in VMPPT PWM generator: 4000 Hz and
in grid-side controller: 5000 Hz
Boost converter parameters: L = 4.5 mH, C = 970 μF
PI coefficients in grid-side controller: KpVdc = 0.4, kiVdc =
7, KpId = 8, KiId = 700, KpIq = 8, KiIq = 700, Vgrid = 220 V.
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