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Abstract Energy efficiency, which consists of using less
energy or improving the level of service to energy
consumers, refers to an effective way to provide overall
energy. But its increasing pressure on the energy sector to
control greenhouse gases and to reduce CO2 emissions
forced the power system operators to consider the emission
problem as a consequential matter besides the economic
problems. The economic power dispatch problem has,
therefore, become a multi-objective optimization problem.
Fuel cost, pollutant emissions, and system loss should be
minimized simultaneously while satisfying certain system
constraints. To achieve a good design with different
solutions in a multi-objective optimization problem, fuel
cost and pollutant emissions are converted into single
optimization problem by introducing penalty factor. Now
the power dispatch is formulated into a bi-objective
optimization problem, two objectives with two algorithms,
firefly algorithm for optimization the fuel cost, pollutant
emissions and the real genetic algorithm for minimization
of the transmission losses. In this paper the new approach
(firefly algorithm-real genetic algorithm, FFA-RGA) has
been applied to the standard IEEE 30-bus 6-generator. The
effectiveness of the proposed approach is demonstrated by
comparing its performance with other evolutionary multi-
objective optimization algorithms. Simulation results show
the validity and feasibility of the proposed method.

Keywords economic power dispatch (EPD), firefly algo-
rithm (FFA), real genetic algorithm (RGA), hybrid method

1 Introduction

The economic power dispatch (EPD) problem has been

one of the most widely studied subjects in the power
system community since Carpentier first published the
concept in 1962 [1]. The EPD problem is a large-scale
highly constrained nonlinear non-convex optimization
problem [2]. To solve it, a number of conventional
optimization techniques such as nonlinear programming
(NLP) [3], quadratic programming (QP) [4], linear
programming (LP) [5,6], and interior point methods [7],
Newton-based method [8], mixed integer programming
[9], dynamic programming [10], and branch and bound
[11] have been applied. All of these mathematical methods
are fundamentally based on the convexity of objective
function to find the global minimum. However, the EPD
problem has the characteristics of high nonlinearity and
nonconvexivity.
The applications of the conventional optimization

techniques such as the gradient-based algorithms is not
good enough to solve this problem because it depends on
the existence of the first and the second derivatives of the
objective function and on the well computing of these
derivative in large search space.
Therefore, the conventional methods based on the

mathematical technique cannot guarantee the finding of
the global optimum. In addition, the performance of these
traditional approaches also depends on the starting points
and is likely to converge to local minimum or even diverge.
Recently, many attempts to overcome the limitations of

the mathematical programming approaches have been
investigated such as meta-heuristic optimization methods,
tabu search (TS) [12], simulated annealing (SA) [13],
genetic algorithms [14], evolutionary programming (EP)
[15], artificial neural networks [16], particle swarm [17],
ant colony optimization (ACO) [18], and harmony search
algorithm [19].
Their applications to global optimization problems

become attractive because they have better global search
abilities over the conventional optimization algorithms.
The meta-heuristic techniques seem to be promising and
evolving, and have come to be the most widely used tools
for solving the EPD.
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For minimization/maximization problems, the meta-
heuristic methods make it possible to find solutions closer
to the optimum but with high cost in time.
The problem proposed in the present paper is optimiza-

tion of the fuel cost, pollutant emissions and system loss
simultaneously while satisfying certain system constraints.
To achieve a good design with different solutions in a
multi-objective optimization problem, fuel cost and
pollutant emissions are converted into a single optimiza-
tion problem by introducing the penalty factor. Now the
power dispatch is formulated into a bi-objective optimiza-
tion problem, two objectives with two algorithms, firefly
algorithm for optimization of the fuel cost, pollutant
emissions and the real genetic algorithm (RGA) for
minimisation of the transmission losses.
The method proposed in the present paper is tested on

the electrical network IEEE 30 bus. Simulation results
confirm the advantage of computation rapidity and
solution accuracy of the proposed method. These results
show that the proposed method is promising.

2 Problem formulations

The EPD problem is a nonlinear, non-convex optimization
problem which determines the optimal control variables
for minimizing the certain objectives subject to the several
equality and inequality constraints. The EPD problem is
generally formulated as

f ðx,uÞ, (1)

subject to

gðx,uÞ ¼ 0, (2)

hðx,uÞ£0, (3)

where g(x, u) is the typical equality constraint, h(x, u) is
inequality constraints, x is the vector of state variables
consisting of slack bus power PG1, load bus voltages U,
reactive power generator outputs QG, and transmission line
loading S. Hence x can be expressed as

xT ¼ ½PG1,UL1,:::,ULNPQ
,QG1,:::,QGNg

,S11,:::,S1N1
�, (4)

where NPQ, Ng and Nl are the number of load buses, the
number of generators and the number of transmission lines,
respectively. u is the vector of control variables consisting
of generator real power outputs except at the slack bus PG ,
generator voltages UG, transformer tap settings T and
reactive power injections QC . Hence, u can be expressed
as

uT ¼ ½PG2,:::,PGNg
,UG1,:::,UGNg

,T1,:::,TNt
,QC1,:::,QCNc

�,
(5)

where Nt is the number of regulating transformers and Nc is
the number of VAR compensators.

2.1 Objective functions

2.1.1 Minimization of fuel

The goal of the conventional EPD problem is to find an
optimal allocation for generating powers in a power
system. The power balance constraint and the generating
power constraints for all units should be satisfied. In other
words, the EPD problem (see Fig. 1) is to find the optimal
combination for power generations which minimizes the
total fuel cost while satisfying the power balance equality
constraint and several inequality constraints in the system
[20].
The total fuel cost function is formulated as

f ðPGÞ ¼
XNg

i¼1

fiðPGiÞ, (6)

fiðPGiÞ ¼ aiP
2
Gi þ biPGi þ ci, (7)

where f ðPGÞ is the total production cost in $/h; fiðPGiÞ is
the fuel cost function of unit i in $/h; ai, bi, and ci are the
fuel cost coefficients of unit i; and PGi is the real power
output of unit i in MW.
In minimizing total fuel cost (see Fig. 2) the following

constraints should be satisfied.

Fig. 1 Principle of EPD
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2.1.2 Minimization of real power loss

The main objective is to minimize the network active
power loss while satisfying a number of operating
constraints. The objective function may be expressed as

PL ¼
XN1

k¼1

gk ½U 2
i þ U 2

j – 2UiUjcosðαi – αjÞ�, (8)

where gk is the conductance of a transmission line k
connected between the ith and jth bus, while Ui, Uj, αi, and
αj are the voltage magnitudes and phase angles of the ith
and jth bus, respectively.

2.1.3 Total emission cost minimization

The most important emissions considered in the power
generation industry due to their effects on the environment
are sulfur dioxide (SO2) and nitrogen oxides (NOx). These
emissions can be modeled through functions that associate
emissions with power production for each unit. One
approach to represent SO2 and NOx emissions is to use a
combination of polynomial and exponential terms [21]:

EðPGÞ ¼
X

ðαiP2
Gi þ βiPGi þ giÞ þ εiexpðliPGiÞ, (9)

where αi, βi, gi, εi and li are coefficients of the ith
generator emission characteristics.
The bi-objective combined economic emission dispatch

problem is converted into a single optimization problem by
introducing the price penalty factor h as follows,

MinF ¼ FCþ h$EC,

F ¼
XNg

i¼1

fiðPGiÞ þ h
XNg

i

EðPGiÞ,

subjected to the power flow constraints of equations. The
price penalty factor h blends the emission with fuel cost

and F is the total operating cost in $/h. The price penalty
factor hi is the ratio between the maximum fuel cost and
maximum emission of the corresponding generator.

hi ¼

XNg

i

f ðPmax
Gi Þ

XNg

i

EðPmax
Gi Þ

: (10)

The following steps are used to find the price penalty
factor for a particular load demand:
1) Find the ratio between the maximum fuel cost and

maximum emission of each generator.
2) Arrange the values of the price penalty factor in

ascending order.
3) Add the maximum capacity of each unit Pmax

Gi one at a
time, starting from the smallest hi unit untilX

Pmax
Gi ³PD: (11)

4) At this stage, hi associated with the last unit in the
process is the price penalty factor h for the given load.
The above procedure gives the approximate value of

price penalty factor computation for the corresponding
load demand. Hence a modified price penalty factor (hm) is
introduced in this work to give the exact value for the
particular load demand. The first two steps of h computa-
tion remain the same for the calculation of the modified
price penalty factor. Then it is calculated by interpolating
the values of hi corresponding to their load demand values.

2.2 Problem constraints

2.2.1 Active power balance equation

For power balance, an equality constraint should be
satisfied. The generated power should be the same as the
total load demand added to the total line losses, which is
represented as

XNg

i¼1

PGi ¼ Pload þ PL, (12)

where
XNg

i¼1

PGi is the total system production, Pload is the

total load demand, PL is the total transmission loss of the
system in MW, and Ng is the number of generator units in
the system.
The exact value of the system losses can be determined

by means of a power flow solution. The most popular
approach for finding an approximate value of the losses is
by using Kron’s loss formula as given in Eq. (5), which
represents the losses as a function of the output level of the
system generators.

Fig. 2 Fuel cost curve of thermal generator
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PL ¼
XNg

i¼1

XNg

j¼1

PiBijPj þ
XNg

i¼1

B0iPGi þ B00, (13)

where Bij is the transmission loss coefficient, Pi and Pj are
the power generation of the ith and jth units, B0i is the ith
element of the loss coefficient vector, B00 is the constant

loss coefficient, and
XND

j¼1

PDj is the total system demand.

The equality constraints on real and reactive power at
each bus are given as

PGi –PDi –Ui

XNb

j¼1

Uj½Gijcosðαi – αjÞ –Bijsinðαi – αjÞ� ¼ 0,

(14)

QGi –QDi –Ui

XNb

j¼1

Uj½Gijsinðαi – αjÞ –Bijcosðαi – αjÞ� ¼ 0,

(15)

where i = 1,2, ..., Nb, and Nb is the number of buses; QGi is
the reactive power generated at the ith bus; PDi and QDi are
the bus real and reactive load, respectively; Gij and Bij are
the transfer conductance and susceptance between bus i
and bus j, respectively; Ui and Uj are the voltage
magnitudes at bus i and bus j, respectively; and αi and αj
are the voltage angles of bus i and bus j, respectively.

2.2.2 Active power generation limits

Generation constraints: The generator voltages, real power
outputs and reactive power outputs are restricted by their
lower and upper bounds as follows:

Umin
Gi £UGi£Umax

Gi , (16)

Pmin
Gi £PGi£Pmax

Gi , (17)

Qmin
Gi £QGi£Qmax

Gi : (18)

Transformer constraints: The transformer tap settings are
restricted by their minimum and maximum limits as
follows:

Tmin
i £Ti£Tmax

i : (19)

Shunt VAR constraints: The reactive power injections at
the buses are restricted by their minimum and maximum
limits as

Qmin
Ci £QCi£Qmax

Ci : (20)

Security constraints: The security constraints include the
constraints of voltage magnitudes at load buses and
transmission line loadings as follows:

Umin
Li £ULi£Umax

Li , (21)

Sli£Smax
li : (22)

3 Firefly algorithm (FFA)

Fireflies (lightning bugs) use their bioluminescence to
attract mates or prey. Some of them live in moist places
under debris on the ground, others beneath bark and
decaying vegetation. FFA was developed at Cambridge
University in 2008 [22] by using the following three
idealized rules:
1) All fireflies are unisex so that a firefly will be attracted

to other fireflies regardless of their sex [23].
2) Attractiveness is proportional to their brightness; thus

for any two flashing fireflies the less bright will move
toward the brighter [24]. The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If there is no brighter firefly than a particular one
it will move randomly.
3) The brightness of a firefly is affected or determined by

the landscape of the objective function. On the first rule,
each firefly attracts all the other fireflies with weaker
flashes [25].
The brightness of a firefly is affected or determined by

the landscape of the objective function. For a maximization
problem the brightness can simply be proportional to the
value of the objective function. Other forms of brightness
can be defined in a similar way to the fitness function in
genetic algorithms based on these three rules.

3.1 Attractiveness

The light intensity I varies with distance r [26], which is
expressed by

IðrÞ ¼ I0e
–gr2 : (23)

As attractiveness of a firefly is proportional to the light
intensity [27] seen by adjacent fireflies, the attractiveness β
of a firefly can now be defined by

βðrÞ ¼ β0e
–gr2 , (24)

where I is the light intensity, I0 is the original light
intensity, g is the light absorption coefficient, and β0 is the
attractiveness [28].

3.2 Distance and movement

The distance between any two fireflies i and j at xi and xj is
the Cartesian distance given by Ref.[29] as
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rij ¼ xi – xj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

ðxi,k – xj,kÞ2
vuut , (25)

where xi,k is the kth component of the spatial coordinate xi
of the ith firefly, k = 1 to d, which d denotes the
dimensionality of a problem.
The movement of a firefly i attracted to another more

attractive firefly j is determined by

xiþ1 ¼ xi þ β0e
–gr2ijðxj – xiÞ þ α rand –

1

2

� �
, (26)

where the first term is the current position of a firefly [30],
the second term is used for considering the attractiveness
of a firefly to light intensity seen by adjacent fireflies, and
the third term is used for the random movement of a firefly
in case there are not any brighter ones.
The coefficient α is a randomization parameter deter-

mined by the problem of interest, while rand is a random
number generator uniformly distributed in the space (0, 1)
[31]. As will be seen in this implementation of the
algorithm, β0 = 0.1, α 2 (0, 1) and the attractiveness or
absorption coefficient γ = 1.0 which guarantees a quick
convergence of the algorithm to the optimal solution will
be used [32].

4 Genetic algorithm (GA)

For the application of the GA, the method of penalty is
used:
giðPGiÞ≥0, (i = 0, 1, …, m) are the constraints of the

inequality type, and hjðPGiÞ = 0, (j = 0, 1, …, n) are the
constraints of the equality type.
By transforming the problem into a function of penalty,

Eq. (27) can be obtained.

FðPGi,rk Þ ¼ FðPGiÞ þ
1

rk
Xn
j¼1

H
�
hjðPGiÞ

�

þ rk
Xm
i¼1

G
�
giðPGiÞ

�
, (27)

where rk is the coefficient of penalization, and the

functions of penalty H
�
hjðPGiÞ

�
and G

�
giðPGiÞ

�
are

determined by three methods of penalty:
1) Method of external penalty:

G
�
giðPGiÞ

�
¼ 0  and H

�
hjðPGiÞ

�
¼ ½hjðPGiÞ�2:

The function of penalty to be solved becomes

FðPGi,rk Þ ¼ FðPGiÞ þ
1

rk
Xn
j¼1

½hjðPGiÞ�2: (28)

2) Method of interior penalty:
In this case, only the constraints of inequality are taken

into account and are defined as

G
�
giðPGiÞ

�
¼ 1

giðPGiÞ
:

The function to be minimized will be

FðPGi,rk Þ ¼ FðPGiÞ þ rk
Xm
i¼1

1

giðPGiÞ
: (29)

3) Method of penalty mixed:
It acts in this method of a combination of both premieres

G
�
giðPGiÞ

�
¼ 1=giðPGiÞ  and H

�
hjðPGiÞ  � ¼ ½hjðPGiÞ�2:

The function to be minimized will be

FðPGi,rk Þ ¼FðPGiÞ þ
1

rk
Xn
j¼1

½hjðPGiÞ�2

þ rk
Xm
i¼1

1

giðPGiÞ
� 	

: (30)

4.1 Representation

It turns out that there is no rigorous definition of “genetic
algorithm” accepted by all in the evolutionary-computation
community that differentiates GA from other evolutionary
computation methods [33].
However, it can be said that most methods called “GA”

have at least the following elements in common:
Populations of chromosomes, selection according to

fitness, crossover to produce new offspring are random.
The chromosomes in a GA population typically take the

form of bit strings. Each locus in the chromosome has two
possible alleles: 0 and 1. Each chromosome can be thought
of as a point in the search space of candidate solutions. The
GA processes populations of chromosomes, successively
replacing one such population with another. The GA most
often requires a fitness function that assigns a score
(fitness) to each chromosome in the current population.
The fitness of a chromosome depends on the ability the
chromosome solves the problem at hand [34].

4.2 GA operators

The simplest form of GA involves three types of operators:
selection, crossover (single point), and mutation [35].

4.2.1 Selection

This operator selects chromosomes in the population for
reproduction. The fitter the chromosome is, the more likely
it is selected to reproduce.
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4.2.2 Crossover

This operator randomly chooses a locus and exchanges the
subsequences before and after that locus between two
chromosomes to create two offspring. For example, the
strings 10000100 and 11111111 could be crossed over after
the third locus in each to produce the two offspring
10011111 and 11100100. The crossover operator roughly
mimics biologic recombination between two single-
chromosome (haploid) organisms.

4.2.3 Mutation

This operator randomly flips some of the bits in a
chromosome. For example, the string 00000100 might be
mutated in its second position to yield 01000100. Mutation
can occur at each bit position in a string with some
probability, usually very small (e.g., 0.001).

4.2.4 A binary-coded genetic algorithm (BCGA)

Given a clearly defined problem to be solved and a bit
string representation for candidate solutions, a simple
BCGA works as follows:
1) Start with a randomly generated population of n l-bit

chromosomes (candidate solutions to a problem).
2) Calculate the fitness ƒ(x) of each chromosome x in the

population.
3) Repeat the following steps until n offspring have been

created:
Select a pair of parent chromosomes from the current

population, the probability of selection being an increasing
function of fitness. Selection is done “with replacement”,
meaning that the same chromosome can be selected more
than once to become a parent.
With probability Pc (the “crossover probability” or

“crossover rate”), cross over the pair at a randomly chosen
point (chosen with uniform probability) to form two
offspring. If no crossover takes place, form two offsprings
that are exact copies of their respective parents. (Note that
here the crossover rate is defined as the probability that two
parents will cross over in a single point. There are also
“multi-point crossover” versions of the BCGA in which
the crossover rate for a pair of parents is the number of
points at which a crossover takes place.)
Mutate the two offsprings at each locus with probability

Pm (the mutation probability or mutation rate), and place
the resulting chromosomes in the new population. If n is
odd, one new population member can be discarded at
random.
4) Replace the current population with the new

population.
5) Go to Step 2. Each iteration of this process is called a

generation. BCGA are typically iterated for anywhere from
50 to 500 or more generations. The entire set of

generations is called a run. At the end of a run there are
often one or more highly fit chromosomes in the
population. Since randomness plays a large role in each
run, two runs with different random-number seeds will
generally produce different detailed behaviors. BCGA
researchers often report statistics (such as the best fitness
found in a run and the generation at which the individual
with that best fitness was discovered) averaged over many
different runs of the BCGA on the same problem (Fig. 2).
The simple procedure just described is the basis for most

applications of BCGAs. There are a number of details to
fill in, such as the size of the population and the
probabilities of crossover and mutation, and the success
of the algorithm often depends greatly on these details.
There are also more complicated versions of BCGA (e.g.,
BCGA that work on representations other than strings or
BCGA that have different types of crossover and mutation
operators).
As a more detailed example of a simple BCGA, suppose

that l (string length) is 8, that ƒ(x) is equal to the number of
ones in bit string x (an extremely simple fitness function,
used here only for illustrative purposes), that n (the
population size) is 4, that Pc = 0.7, and that Pm = 0.001.
(Like the fitness function, these values of l and n were
chosen for simplicity. More typical values of l and n are in
the range of 50–1000. The values given for Pc and Pm are
fairly typical.) The initial (randomly generated) population
is listed in Table 1.

A common selection method in BCGA is fitness-
proportionate selection, in which the number of times an
individual is expected to reproduce is equal to its fitness
divided by the average of fitnesses in the population. (This
is equivalent to what biologists call “viability selection”)
A simple method of implementing fitness-proportionate

selection is “roulette-wheel sampling” which is concep-
tually equivalent to giving each individual a slice of a
circular roulette wheel equal in area to the individual’s
fitness. The roulette wheel is spun, the ball comes to rest on
one wedge-shaped slice, and the corresponding individual
is selected. In the n = 4 example above, the roulette wheel
would be spun four times; the first two spins might choose
chromosomes B and D to be parents, and the second two
spins might choose chromosomes B and C to be parents.
(The fact that Amight not be selected is just the luck of the
draw. If the roulette wheel were spun many times, the
average results would be closer to the expected values)

Table 1 Initial (randomly generated) population

Chromosome Chromosome string Fitness

A
B
C

00000110
11101110
00100000

2
6
1

D 00110100 3
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Once a pair of parents is selected, with probability Pc they
cross over to form two offspring. If they do not cross over,
then the offsprings are exact copies of each parent.
Suppose, in the example above, that parents B and D
crossover after the first bit position to form offspring E =
10110100 and F = 01101110, and parents B and C do not
cross over, instead forming offspring that are exact copies
of B and C. Next, each offspring is subject to mutation at
each locus with probability Pm. For example, suppose
offspring E is mutated at the sixth locus to form E' =
10110000, offspring F and C are not mutated at all, and
offspring B is mutated at the first locus to form B' =
01101110. The new population is presented in Table 2 and
the general structure of standard GA is depicted in Fig. 3.

4.3 Real genetic algorithm (RGA)

Using the binary coding, it is rather simple to set up all the
operations. Despite everything, some disadvantages exist:
1) It can be difficult to adapt this coding to certain

problems. The traditional binary representation used for
the genetic algorithms causes difficulties for the large-sized
problems optimization to high numerical precision. For
example, with 100 variables belonging to the interval
[ – 500, 500] and whose accuracy of 6 digits after the
comma is necessary, the size of the chromosome is 3000,
which, in return, generates a space of search for

approximately 101000. For such problems, the genetic
algorithms based on binary representations have weak
performances.
2) The distance of Hamming between two close real

numbers which is the number of bits that is different from
the one with the other can be large (example: 0111 which is
worth 7 and 1000 which worth 8, the distance is 4) and
very often creates a convergence toward a non-optimal
value.
3) According to the problem, the resolution of the

algorithm can be expensive in time.
4) The crossing and the change can be unsuited (creation

of individuals not belonging to the search space).
One of the major improvements consists of using real

numbers directly [36]. RGA is a probabilistic search
technique, which generates the initial parent vectors
distributed uniformly in intervals within the limits and
obtains global optimum solution over number of iterations.
The implementation of RGA is given below. The initial

population is generated after satisfying Eq. (17). The
elements of parent vectors (PGi) are the real power outputs
of generating units distributed uniformly between their
minimum and maximum limits.
The fitness function is used to transform the cost

function value into a measure of relative fitness. The cost
function is given in Eq. (6).
The selection is based on the cost of parent vectors

f ðPGiÞ with the corresponding cost of offspring vectors
f ðPíGiÞ in this population. The best vector having the
minimum cost, whether parent vector PGi or offspring
vector PíGi is selected for the new parent for the next
generation. A non-uniform arithmetic crossover operator is
used. After the crossover is completed, non-uniform
mutation is performed. In the mutation step, a random
real value makes a random change in the mth element of

Table 2 New population

Chromosome label Chromosome string Fitness

E'
F
C

10110000
01101110
00100000

3
5
1

B′ 01101110 5

Fig. 3 General structure of standard genetic algorithm
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the chromosome [37]. After the mutation, all constraints
are checked whether violated or not. If the solution has at
least one constraint violated, a new random real value is
used for finding a new value of the mth element of the
chromosome. Then, the best solution so far obtained in the
search is retained and used in the following generation.
The RGA process repeats until the specified maximum
number of generations is reached [38]. The diagram of the
proposed algorithm is shown as follows:
Step 1 Create an initial population.
Step 2 Evaluate the adaptation of each individual.
Step 3 Is there a convergence?
If yes, post the results.
Else go to Step 4.
Step 4 Select the individuals.
Step 5 Subject the population of the crossings (non-

uniform arithmetic) and the random mutations (non-
uniform mutation).
Step 6 Evaluate the adaptation of the new individuals

and to go to Step 3.

5 Firefly algorithm-real genetic algorithm
(FFA-RGA)

It has been noticed that the meta-heuristic methods are very
efficient for the search of global solution for complex
problems better than deterministic methods. However their
disadvantage is the time of convergence caused the high
number of the agents and iterations. To solve this problem,
two meta-heuristic methods, the FFA and the RGA are
combined with a lower number of fireflies and the
population as possible. This paper proposes a hybrid
method which has two meta-heuristics, the FFA with the
RGA are employed to solve the EPD problem including
transmission losses in power system. The power dispatch
is formulated into a bi-objective optimization problem,
which is to minimize the fuel cost as well as transmission
losses. Two objectives with two algorithms, firefly
algorithm for optimization of the global cost function
and RGA for minimisation of the transmission losses. The
flow chart for the EPD using the FFA-RGA is demon-
strated in Fig. 4.

6 Simulation results

The proposed approach (FFA-RGA) for solving the EPD
problem has been applied to the standard IEEE 30 bus test
system, as displayed in Fig. 5. The line, bus data, generator
data and the minimum and maximum limits for the control
variables are given in Table 3.
The test system consists of 41 branches, 6 generator

buses placed at buses 1, 2, 13, 22 23, and 27 load-buses.
Four branches, (6, 9), (6, 10), (4, 12) and (27, 28), are
under load tap setting transformer branches within the
interval (0.9, 1.1). The possible 9 reactive power sources
within the interval (0, 0.05) are installed at bus numbers
10, 12, 15, 17, 20, 21 23, 24 and 29. The generated
voltages of the generator buses are within the range of
(0.95, 1.1) and the load bus voltages are within the range of
(0.9, 1.05). The total system demand is 2.834 pu at 100
MVA base [39].
All the simulations were performed on a personal

computer with 3 GHz Intel Processor and 2 GB of RAM
running Matlab 7.6. The results obtained by the proposed
approach are compared with the results found by other
heuristic methods reported in the literature recently.

6.1 Case 1: quadratic fuel cost minimization

In this case the objective function is a quadratic form
(Eq. (6)).
The minimum total fuel cost obtained from the proposed

FFA algorithm was 792.576410 $/h. Figure 6 shows the
convergence curve corresponding to the minimum total
fuel cost resulted from the FFA algorithm (Tables 4 and 5).
The fuel cost minimization decreased to 792.576410 $/h
(18.7600%) in Case 1 in comparison to 975.5687 $/h in
Case 2.
The results obtained from the FFA are compared with

other methods reported in the literature, as shown in Tables
5 and 6. It can be seen that the minimum total active power
losses obtained by the method is 792.576410MW, which
is less than those of the methods of MSFLA [39], GA-OPF
[40], FGA [40], IEP [41],TS [42], EP [43], Hybrid MPSO-
SFLA [44], PSO [44], SFLA [44].
The B-coefficients used in Refs. [48,49] are

Bij ¼

0:1382 – 0:0299 0:0044 – 0:0022 – 0:0010 – 0:0008

– 0:0299 0:0487 – 0:0025 0:0004 0:0016 0:0041

0:0044 – 0:0025 0:0182 – 0:0070 – 0:0066 – 0:0066

– 0:0022 0:0004 – 0:0070 0:0137 0:0050 0:0005

– 0:0010 0:0016 – 0:0066 0:0050 0:0109 0:0005

– 0:0008 0:0041 – 0:0066 0:0033 0:0005 0:0244

2
66666666664

3
77777777775
,

B0 ¼ – 0:0107 0:0060 – 0:0017 0:0009 0:0002 0:003½ �,

Mimoun YOUNES et al. Solving the multi objective optimization problem using hybrid approach 497



Fig. 4 Flow chart for EPD using FFA-RGA
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B00 ¼ 9:8557� 10 – 4:

6.2 Case 2: active power loss minimization

The objective function selected was the active power loss
minimization (Eq. (8)). The active power loss minimiza-
tion decreased to 2.75 t/h (72.2100%) in Case 2 in
comparison to 9.8950 t/h in Case 1.
The result obtained from the FFA was compared with

other methods reported in the literature. The results of this
comparison are shown in Tables 4 and 7. It can be seen that
the minimum total active power losses obtained by the
proposed FFA is 2.75MW, which is less than those of the
methods of MSFLA [39], FGA [40], IEP [41], Hybrid
MPSO-SFLA [44], PSO [44], SFLA [44], EGA [45],
EADDE [46], DE [46], and HS [47].
Figure 7 shows the convergence of the losses minimiza-

tion corresponding to the results from the FFA.

6.3 Case 3: Emission minimization

The objective function selected was the total emission cost

minimization E as defined in Eq. (9). The total emission
cost decreased to 0.20012 t/h (43.89%) in Case 3 in
comparison to 0.365141 t/h in Case 1.
Figure 8 shows the convergence of the losses minimiza-

tion corresponding to the results from the FFA.
The results obtained from the FFA were compared with

other methods reported in the literature. The results of this
comparison are shown in Table 8. It can be seen that the
total emissions are less than those of the methods of
MSFLA [47], SFLA [47], GA [47], PSO [47], and PSO
[44].

6.4 Case 4: emission, cost and losses minimization

In this case, all constraints about fuel cost, pollution
emission and system transmission loss are considered. The
EPD problem was considered as a multi-objective
problem. The best compromise solution by using the
RGAwith the FFA is given in Table 4. According to Table
4, the total active power loss found by the proposed FFA-
RGA was 4.7651MW, but it is reduced to 9.8950 as in
Case 1(51.8434% less)
The fuel cost in this case is reduced by as much as

18.1525% in comparison to 975.5687MW in Case 2.
The emission is reduced by as much as 42.6351% in
comparison to 0.358156 in Case 1.
In this case, three competing objectives, i.e., fuel cost,

losses and emission, were considered. This multi-objective
optimization problem was solved by the proposed
approach (FFA-RGA). The compromise solution was
found using the RGA, for minimizing the losses function
and integrating in the cost and emission functions. The best
solution for the minimum cost, minimum loss and the
compromise solution are given in Table 4.

7 Conclusions

This paper proposes a hybrid method with two meta-
heuristic methods, the FFAwith RGA. They are employed
to solve the EPD problem. The transmission losses, fuel
cost, pollutant emissions and system loss are minimized
simultaneously while satisfying certain system constraints.
The proposed algorithm has been tested on an IEEE 30-bus

Fig. 5 Single line diagram of IEEE 30 bus test system

Table 3 Generators parameters of the IEEE 30 bus

Bus Pmin
Gi /MW Pmax

Gi /MW
Cost coefficients

ai bi ci

PG1 50 200 0.00375 2.00 0.00

PG2 20 80 0.01750 1.75 0.00

PG5 15 50 0.06250 1.00 0.00

PG8 10 35 0.00834 3.25 0.00

PG11 10 30 0.02500 3.00 0.00

PG13 12 40 0.02500 3.00 0.00
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Table 4 Optimization results of FFA-RGA approach for IEEE 30-bus

Case1 Best cost (FFA) Case 2 Best losses (FFA) Case 3 Best emission (FFA) Case 4 Best comp (FFA-GA)

PG1/MW 183.6671 153.6546 155.7184 160.3670

PG2/MW 35.7766 53.7402 40.3519 52.0428

PG3/MW 24.7353 28.1859 32.8250 15.7494

PG8 /MW 11.0505 17.7983 17.3313 15.8770

PG11/MW 10.6959 17.6231 20.1661 25.4492

PG13/MW 27.3693 12.1365 20.7859 18.6795

UG1/pu 1.0177 1.0528 1.0277 0.9567

UG2/pu 1.0693 1.0965 1.0129 1.0981

UG3/pu 1.0996 0.9654 0.9822 1.0039

UG4/pu 1.0633 1.0684 1.0835 1.0740

UG5/pu 0.9728 0.9762 0.9542 1.0742

UG6/pu 1.0964 1.0334 0.9752 1.0407

TCL11 1.0828 1.0936 1.0116 1.0383

TCL12 1.0512 1.0995 0.9914 0.9200

TCL15 1.0871 1.0839 0.9101 1.0260

TCL36 1.0946 1.0882 1.0472 0.9729

QC10/pu 0.0277 0.0493 0.0496 0.0499

QC12/pu 0.0296 0.0496 0.0499 0.0416

QC15/pu 0.0418 0.0499 0.0499 0.0413

QC17/pu 0.0407 0.0488 0.0496 0.0489

QC20/pu 0.0553 0.0412 0.0497 0.0492

QC21/pu 0.0460 0.0489 0.0590 0.0498

QC23/pu 0.0439 0.0441 0.0404 0.0447

QC24/pu 0.0491 0.0499 0.0494 0.0489

QC29/pu 0.0428 0.0317 0.0492 0.0391

Fuel cost/($$h–1) 792.5764 975.56 801.5510 798.4820

Emission/(t$h–1) 0.3581 0.2028 0.2001241 0.2055

Real loss/MW 9.8950 2.7596 3.7789 4.7651

t/s 0.9687 0.4256 0.2656 0.9218

Table 5 Comparison of results by different algorithms for cost objective function of IEEE 30-bus system

Methods PG1/MW PG2/MW PG3/MW PG8/MW PG11/MW PG13/MW Loss/MW Cost/($$h–1) T/S

MSFLA [39] 179.19 48.98 20.45 20.92 11.58 11.95 9.69 802.28 –

GA-OPF [40] 174.83 48.88 23.78 20.2 13.14 12.22 – 803.92 –

FGA [40] 175.14 50.35 21.45 21.18 12.67 12.11 9.49 802 –

IEP [41] 176.24 49.01 21.5 21.81 12.34 12.01 10.87 802.47 594.08

TS [42] 176.04 48.76 21.56 22.05 12.44 12 – 802.29 –

EP [43] 173.85 50 21.39 22.63 12.93 12 – 802.62 –

Hybrid
MPSO-SFLA [44]

180.53 52.09 22.78 15.49 10 12.05 9.54 801.75 18.17

PSO [44] 180.23 52.09 22.81 15.62 10 12.21 9.56 801.89 20.19

SFLA [44] 181.06 52.17 22.47 15.35 10 12.07 9.72 802.21 20.75

FFA 183.66 35.77 24.73 11.05 10.69 27.36 185.57 792.57 1.094

FFA-RGA (Case 4) 160.36 52.042 15.74 15.87 25.44 18.67 189.87 798.48 0.92
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system to verify its efficiency. The proposed approach
appears to be very efficient in particular for its fast
convergence to the optimum and its interesting financial
profit. The effectiveness of the proposed approach is
demonstrated by comparing its performance with that of
other evolutionary multi-objective optimization algo-
rithms. The computational results reveal that the multi-
objective FFA-RGA approach has excellent convergence
characteristics and is superior to other multi-objective
optimization algorithms. Besides, the results confirm the
great potential of the proposed approach in handling the
multi-objective problems. The method can be applied to
other optimization problems.
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