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Abstract The application of a quantum-inspired firefly
algorithm was introduced to obtain optimal power quality
monitor placement in a power system. The conventional
binary firefly algorithm was modified by using quantum
principles to attain a faster convergence rate that can
improve system performance and to avoid premature
convergence. In the optimization process, a multi-objective
function was used with the system observability constraint,
which is determined via the topological monitor reach area
concept. The multi-objective function comprises three
functions: number of required monitors, monitor over-
lapping index, and sag severity index. The effectiveness of
the proposed method was verified by applying the
algorithm to an IEEE 118-bus transmission system and
by comparing the algorithm with others of its kind.

Keywords quantum-inspired binary firefly algorithm,
topological monitor reach area, power quality

1 Introduction

With the advancement of the electrical energy industries,
electric utility providers and end users have become
increasingly concerned about power quality (PQ). Elec-
trical PQ can be defined as the level through which
utilization and delivery of electric power influence the
performance of user equipment [1]. Generally, PQ
problems are caused by PQ disturbances such as
harmonics, voltage swell, voltage sag, and transients.
Among these disturbances, voltage sag is the most frequent

and harmful event. It causes heavy losses because of the
failure or malfunction of sensitive industry equipment and
loads. Therefore, monitoring voltage sag to mitigate the
problem is crucial.
One way to monitor the voltage sag event is by installing

power quality monitors (PQM) at each bus in the power
system. Cristaldi et al. [2] proposed the installation of
PQM at each bus and the linking of these PQM through a
communication facility such as the Internet. However, this
option is not cost effective as the cost increases with a
larger number of PQM. This option also causes data
redundancy [3]. Thus, the number of PQM should be
decreased to boost the efficiency of the monitoring system.
Since placing PQM at each bus is not feasible, optimal
distribution of a number of PQM should be determined so
that the installed PQM can monitor the entire system with
minimum redundancy.
One of the first studies that aimed to obtain the optimum

number and location of PQM introduced the covering and
packing concept by using GAMS [3]. Another researcher
used branch and bound algorithm, which divided the
solution space into smaller spaces [4]. However, this
algorithm might provide the wrong solution with the
selection of a wrong branch in the earlier stages [5].
Meanwhile, meta-heuristic algorithms such as the genetic
algorithm (GA) are employed in the optimal placement of
PQM [6–8]. However, the GA requires long processing
time to enable the convergence of the solution; thus,
alternative techniques with better performance such as
particle swarm optimization (PSO) [9] and gravitational
search algorithm (GSA) [10] have been introduced.
The main purpose of this paper is to introduce a new

algorithm known as quantum-inspired binary firefly
algorithm (QBFA) to solve the problem of optimal PQM
placement. This algorithm is a result of applying quantum
behavior to the conventional firefly algorithm (FA) [11] to
avoid premature convergence and improve efficiency [12–
15]. The study is structured as follows. The basic principle
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of the FA is presented in the next section, followed by a
brief explanation of the application of the algorithm in
PQM placement. Subsequently, results from the QBFA
based on simulation data are provided and discussed.
Lastly, the conclusions are drawn.

2 Firefly optimization algorithm

2.1 Firefly algorithm

The FAwas developed by Yang [11] based on the behavior
of fireflies. Each particular species produces a unique
pattern of flashing lights, which can be related with the
objective function to be optimized through a particular
formulation. For simplicity in describing the FA, three
idealization rules are applied:①All fireflies are unisex and
therefore one firefly tends to be attracted to others
regardless of their sex. ② Attractiveness is proportional
to brightness; thus, for any two flashing fireflies, the
brighter one tends to attract one that is less bright. As
distance increases, the attractiveness decreases with
decreasing brightness. A firefly tends to move randomly
if no brighter firefly exists.③ The brightness of a firefly is
decided by the value of the objective function. For the
maximization problem, the brightness is proportional to
the value of the objective function, and other forms of
brightness can be determined in a way similar to the fitness
function in the GA. Based on these rules, the basic steps of
the FA can be determined as shown in Fig. 1.
The attractiveness function β(r) can be any monotoni-

cally decreasing function with the generalized form as
follows [11]:

βðrÞ ¼ βoe
– γrm   ðm³1Þ, (1)

where r is the distance between two fireflies, βo is the
attractiveness at r = 0 and γ is the light absorption
coefficient. Next, the distance between any two fireflies i
and j at xi and xj is the Cartesian distance rij [11]:

rij ¼ xi – xj
�� ���� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

ðxi,k – xj,kÞ2
vuut , (2)

where xi,k is the kth component of the spatial coordinate xi
of ith firefly. The movement of a firefly i that is attracted to
a brighter firefly j is decided by [11]:

xi ¼ xi þ βoe
– γ r2ijðxj – xiÞ þ phi rand –

1

2

� �
, (3)

where the second term represents attraction and the third
term corresponds to randomization with the randomization
parameter phi and a uniformly distributed random number
generator rand.

This new FA can outperform other traditional algorithms
such as the GA and PSO consistently in terms of efficiency
and success rate [11].

2.2 Binary firefly algorithm

A binary firefly algorithm (BFA) was proposed by Sayadi
et al. [16]. It is a discrete version of FA, which provides the
output in binary number with either ‘1’ or ‘0’. When firefly
i is attracted to firefly j, its position xi changes from a
binary to a real number. Therefore, sigmoid function S(xi)
shown in Eq. (4) [16] is used to restrict the continuous
output between zero and one. The value of S(xi) determines
the probability of bit xi becoming ‘1’ as shown in Eq. (5)
[16].

SðxiÞ ¼
1

1þ expð – xiÞ
, (4)

xi ¼
1, if   SðxiÞ > rn,

0, otherwise,

(
(5)

where rn is a uniform random variable in interval [0,1].

Fig. 1 Flowchart of firefly algorithm
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2.3 Quantum-inspired binary firefly algorithm

The proposed QBFA is an efficient optimization technique
inspired by the conventional BFA and the principle of
quantum mechanics. The first quantum-inspired comput-
ing theory was proposed by Moore and Narayanan [17].
The quantum bit (Q-bit) is the smallest unit for quantum
computing, which may be in the state of ‘1’ or ‘0’ or in a
linear superposition of the two [13]:

ψi ¼ α 0i þ β 1i,jjj (6)

where α and β are complex numbers that specify the
probability amplitudes of the corresponding states. αj j2 and
βj j2 indicate the probability that a Q-bit can be found in a
‘0’ or a ‘1’ state, respectively. Therefore, the states can be
normalized to unity as follows [13]:

αj j2 þ βj j2 ¼ 1: (7)

The state of a Q-bit is updated through a quantum gate
also known as a reversible gate, and can be represented as a
unitary operator U. Types of quantum gates include NOT
gate, controlled NOT gate, rotation gate, and Hadamard
gate [18]. In this study, a rotation gate as shown in Eq. (8)
is used because it has been applied to numerous heuristic
search algorithms [12–15].

UðΔ�iÞ ¼
cosðΔ�iÞ – sinðΔ�iÞ
sinðΔ�iÞ cosðΔ�iÞ

" #
, (8)

where Δθi, i = 1, 2, 3…, n, is the rotation angle of each Q-
bit toward either 0 or 1 state depending on its sign.
This proposed rotation gate consists of two techniques,

namely, the coordinate rotation gate and the dynamic
rotation angle approach, which are used to update Q-bits
and determine the magnitude of the rotation angle,
respectively. Therefore, no pre-specified lookup table is
necessary, and the rotation angle can be formulated as:

Δ�i

¼�� xi þ βoe
– γr2ijðxj – xiÞ þ phi rand –

1

2

� �� �
,

(9)

where θ is the rotation angle magnitude that decreases
monotonously from θmax to θmin along the iteration. Then,
the Q-bit individual string is updated based on the rotation
angle and rotation gate as shown in Eq. (10) [13]. Lastly,
the position of the firefly is updated by the probability of
βj j2 as shown in Eq. (11) [13].

αiðt þ 1Þ
βiðt þ 1Þ

" #
¼ UðΔ�iÞ �

αiðtÞ
βiðtÞ

" #
, (10)

xi ¼
1 if   βiðt þ 1Þj j2 > rn,

0 otherwise:

(
(11)

3 Application of FA for optimum PQM
placement

Before the proposed QBFA is applied, the PQ monitor
observability concept and the three common elements used
in optimization, namely, decision vectors, objective
function, and optimization constraints, have to be defined.

3.1 Monitor observability concept

The monitor observability concept is necessary in
determining the PQM placement. This concept is used to
ensure the observability of the entire power system. The
monitor reach area (MRA) [4] is one of the conventional
observability concepts that is only suitable for meshed
networks. Therefore, in this study, the topological monitor
reach area (TMRA) concept [19] is applied. The TMRA
matrix is a combination of the MRA matrix and the system
topology matrix (T) achieved by using operator ‘AND’ as
shown in Eq. (12). TMRA is used to further restrict the
monitor coverage to fulfill both the radial and meshed
topologies. Similar to the MRA matrix, the TMRA matrix
column is correlated to bus number, and its row is
correlated to fault location. More details on TMRA can be
found in the study conducted by Ibrahim et al. [19].

TMRAðj,kÞ ¼ MRAðj,kÞ⋅Tðj,kÞ,  8j,k: (12)

3.2 Optimization decision vector

The optimization process explores the solution space as
defined in the objective function through the bits
manipulation of the decision vector subject to the system
constraints. To satisfy the solution process, the monitor
placement (MP) vector is introduced in this study to
represent the binary decision vector (xij) in the optimiza-
tion process. The bits of this vector indicate the need of the
monitor to be installed at a particular bus in the power
system. The dimension of the vector corresponds to the
number of buses in the power system. A bit with the value
of zero in the nth location in the MP vector indicates that
no monitor is required at bus n, and a bit with the value of
one indicates that a monitor should be installed at bus n.
The MP vector can be described as [5]:

MPðnÞ ¼ 1, if PQM is required at bus n,

0, otherwise,

(
  8n:

(13)

3.3 Objective function

The purpose of the optimization is to determine the
minimum number of PQMs required by the optimal
placement while maintaining the observability of any fault
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occurrence, which may lead to voltage sag events in the
power system. Therefore, the objective function is
formulated in such a way that determines the optimal
number of required monitors as well as the optimal
locations where the monitors can be installed. The number
of required monitors (NRM) to be minimized [5] can be
expressed as follows:

NRM ¼
XN
n¼1

MPðnÞ: (14)

At the same time, additional parameters are required to
determine the best locations for installing the monitors.
Thus, the monitor overlapping index (MOI) and the sag
severity index (SSI) are employed to evaluate the
suggested PQM placement in the optimization process
[5]. The MOI refers to the level of overlapping in the PQM
coverage as given by the suggested placement. This index
value should be minimized to attain optimal PQM
placement. The value can be calculated based on the
following expression [5]:

MOI ¼
X

ðTMRA�MPTÞ
NFLT

, (15)

where NFLT represents the total number of fault locations
when all types of faults are considered.
Meanwhile, the SSI reflects the severity level of a

specific bus on the voltage sag event because any fault
occurrence can cause a significant drop in the voltage
magnitudes of most of the buses in the affected system. As
a result, the highest SSI value among those in the same
NRM should be obtained to find the best PQM placement
in the system. The severity level (SL) should be derived
first based on the threshold t in p.u. before the SSI is
calculated as follows [5]:

SLt ¼ NSPB

NTPB
, (16)

where NSPB is the number of phases that experience
voltage sag with magnitudes below t in p.u., and NTPB is
the total number of phases in the system.
Subsequently, the SSI value is obtained by applying

weighting factors for different SLs. The lowest t value has
the highest weighting factor (k = 5) and vice versa. Thus,
five threshold levels, namely, 0.1, 0.3, 0.5, 0.7, and 0.9 p.u.
are included in this study. The SSI can be calculated as
illustrated in Eq. (17) [5] where the number 5 and the value
15 refer to the weighting factor levels and the total weight,
respectively. Lastly, the SSI values are stored in a matrix
where the column indicates the bus number and the row
indicates the fault type (F).

SSIF ¼ 1

15

X5
k¼1

k � SL½1 – ð2k – 1Þ=10�: (17)

However, the MOI and SSI should possess similar optimal
criteria of either maximum or minimum to facilitate their
combination. Consequently, the SSI matrix is modified to
derive a minimum criterion in optimization similar to the
case of minimization of MOI. Given that the maximum
value of SSI element is one, minimization can be
conducted by applying the complementary matrix of the
SSI. The negative severity sag index (NSSI) is then
introduced to evaluate the optimal placement of PQM in
the system. The NSSI can be obtained by using Eq. (18)
[5]. The lower the NSSI value, the better the arrangement
of PQM in the system.

NSSI ¼
X

ðONE – SSIÞ �MPT
� �

NFT
, (18)

where ONE is the matrix with all entries ‘1’ that has the
same dimension as the SSI matrix, and NFT is the number
of fault types.
All of the functions in Eqs. (14), (15), and (18) can be

combined in a single objective function by employing the
summation method because these functions have similar
optimal criteria. Nonetheless, the objective functions
should be independent from each other and must not
influence one another in obtaining the optimal solution.
The single multi-objective function used to solve the
problem for the optimal placement of PQM is derived as
follows [5]:

f ¼ ðNRM�MOIÞ þ NSSI: (19)

The MOI is inevitably given higher priority than the
NSSI in the optimization process because the value derived
through the multiplication between the NRM and the MOI
is always greater than the NSSI. This idea is similar to the
concept of the weighted sum method that is used
extensively to solve multi-objective optimization problems
[20].

3.4 Optimization constraints

The optimization algorithm should find the best solution
while satisfying all the constraints used to define the
optimal number of PQM in the system. The number of
monitors that can detect the voltage sags resulting from the
fault at a particular bus is the product of the multiplication
between the TMRA matrix and the transposed MP matrix
as shown in Eq. (20). The resulting matrix element
corresponds to the number of monitors that detect the sag
caused by the faults at a specific bus. If the value is zero, no
monitor can detect the sag, whereas if the value is greater
than one, more than one monitor can observe the fault.
Therefore, the restrictions shown in Eq. (20) [5] must be
satisfied to ensure that each fault is observed by at least one
monitor.
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Xk
i¼1

TMRAðk,iÞ �MPðiÞ³18k: (20)

3.5 QBFA implementation steps for optimal PQM
placement

The steps taken by the QBFA to obtain the optimal PQM
placement in power systems are as follows:
1) Randomly initializing all entries of the MPs (firefly

position xij) in the swarm within a feasible arrangement.
Initializing all Q-bit individuals by setting them to
1=

ffiffiffi
2

p þ jð1= ffiffiffi
2

p Þ.
2) Evaluating the performance of each MP vector based

on the formulated objective function f as shown in Eq. (19).
3) Updating the light intensity and movement of the

fireflies based on Eq. (3).
4) Updating the rotation angle Δθi (t + 1) as well as the

Q-bit individual [α (t+ 1), β (t+ 1)] based on Eqs. (9) and
(10), respectively.
5) Updating the MP vector by bit updating xi (t + 1)

based on the criteria provided in Eq. (11).
6) Evaluating the newMP vector and reject those that do

not fulfill the optimization constraints as shown in Eq.
(20).
7) Repeating step 5) until all fireflies obtain their suitable

positions and until the population size can be maintained at
the same value.
8) Repeating step 2) until the optimization convergence

criteria are achieved, in which case, the convergence
criteria becomes the maximum number of iterations.

4 Results and discussion

An IEEE 118-bus transmission system is used to illustrate
the effectiveness of the proposed QBFA optimization
method in obtaining the optimal PQM placement. Three
types of faults, namely, three-phase faults, double-line-to-
ground faults, and single-phase-to-ground faults were
simulated at each bus using DIgSILENT software to
obtain the fault voltage matrix. The QBFA optimization
technique is then compared with an existing method
known as quantum-inspired gravitational search algorithm
(QBGSA) [14] to exhibit the outstanding performance of
QBFA in solving the same problem. Moreover, the BFA
[16] is included in the comparison to demonstrate the
improvement of the conventional method through quantum
computing. In this study, the computer with Intel Core 2
Quad CPU and the RAM of 1.94 GB at 2.66 GHz is used to
run the aforementioned algorithms.
For the optimization algorithms, the population size and

number of maximum iterations are standardized to 70 and

200, respectively. To achieve improved performance, the
randomization parameter phi used in the BFA are set to 1
with the decreasing factor of 0.99 in the following
iteration, and the attractiveness βo and light absorption
coefficient γ are set to 1 and 0.001, respectively. In this
work after some experimentation, γ is set to 0.001 as it
gives a good performance for the optimization algorithm.
The parameters of the QBFA are similar to those of the
BFA with the magnitude of rotation angle decreasing
monotonously from 0.05 π (θmax) to 0.001 π (θmin). All
initial Q-bit individuals are set as 1=

ffiffiffi
2

p þ jð1= ffiffiffi
2

p Þ. It
means that one Q-bit individual represents the linear
superposition of all possible states with the same
probability [13]. Meanwhile, for the QBGSA, the initial
gravity constant Go is set to 100, and the best applying
force Kbest monotonously decreases from 100% (maximum
Kbest) to 2.5% (minimum Kbest). The parameter τ is set to
8% of the total number of bits. The magnitude of the
rotation angle and initial Q-bit individual are similar to
those of the QBFA. The monitor coverage control
parameter αc = 0.85 p.u. is applied to all optimization
processes.
An IEEE 118-bus system is a balanced transmission

network with two voltage levels: 138 kVand 345 kV. In the
system, 118 buses are interconnected by 177 lines, 34
generating stations, 20 synchronous condensers, and 9
transformers. The system data was provided by Christie
[21].
After conducting 30 runs in this case study, the

performances of the BFA, QBGSA, and QBFA in
obtaining the optimal PQM placement solution for the
118-bus system were determined. The best, worst, and
average values for each term are reported in Table 1. The
algorithms are compared in terms of convergence rate
(number of iterations necessary to converge), quality of
optimal solution (fitness value), and time consumed in the
optimization process. Figure 2 presents the convergence
characteristics of the BFA, QBGSA, and QBFA for an
IEEE 118-bus case study. The BFA converges in the
shortest time but the optimal solution obtained is the worst
compared with those obtained by using other algorithms.
The minimum fitness value obtained via the BFA is 217.68
and the minimum number of PQM obtained via the BFA is
35 with the placement at buses 9, 14, 20, 23, 32, 34, 35, 37,
40, 41, 44, 46, 47, 52, 61, 65, 66, 68, 71, 73, 77, 79, 81, 84,
85, 86, 87, 90, 95, 98, 102, 103, 104, 108, and 110. This
result can be accounted for by the premature convergence
of the BFA.
Meanwhile, the QBFA and QBGSA have better

convergence characteristics compared with the BFA,
which proves that the QBFA and QBGSA can escape
from premature convergence. Both algorithms have similar
solutions for fitness values although the QBFA has slightly
better performance than the QBGSA. However, the
respective computational time and convergence rate for
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the QBFA are significantly shorter and lower than the
values for the QBGSA. For the QBGSA, the optimal
number of PQM required to guarantee observability is 10
with the placement at buses 12, 22, 43, 54, 67, 71, 87, 93,
98, and 107. For the QBFA, the number of PQM required
is 10 with the placement at buses 7, 22, 43, 55, 62, 71, 87,
93, 98, and 108. The results of the optimal PQM placement
are illustrated in Fig. 3. Given that the minimum fitness
value is obtained via the QBFA, the result is employed as
the optimal solution for the PQM placement in this case
study. Thus, it can be concluded that the QBFA is the most
effective technique among the three algorithms because the
QBFA has minimum fitness value, shortest computing
time, and fastest convergence.

Table 1 Performance of BFA, QBGSA, and QBFA in obtaining optimal PQM placement solution for a 118-bus system

Method Quality (fitness) Convergence (iterations) Computational time/s

Best Average Worst Best Average Worst Best Average Worst

BFA 217.68 311.54 363.37 9 107.73 189 2.95 3.03 3.31

QBGSA 26.32 28.97 30.95 60 154.8 200 42.92 47.38 51.83

QBFA 26.26 28.97 31.06 43 101.43 186 31.39 32.53 33.75

Fig. 2 Convergence characteristics of the QBFA, QBGSA and
BFA for a 118-bus case study

Fig. 3 Optimal location of PQM in a 118-bus power system based on different algorithms
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5 Conclusions

In this study, a new method named QBFA has been
presented to solve the multi-objective optimization
problem for optimal PQM placement. The optimization
problem formulation is mainly based on the TMRA
concept and on the placement evaluation indices known
as SSI and MOI. This method has been extensively tested
on an IEEE 118-bus system, and the results have been
compared with those from other existing methods such as
the BFA and the QBGSA. In terms of performance, the
QBFA is more effective in obtaining optimal PQM
placement compared with the aforementioned optimization
techniques.
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