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Abstract To visualize and analyze the impact of
uncertainty on the geological subsurface, on the term of
the geological attribute probabilities (GAP), a vector
parameters-based method is presented. Perturbing local
data with error distribution, a GAP isosurface suite is first
obtained by the Monte Carlo simulation. Several vector
parameters including normal vector, curvatures and their
entropy are used to measure uncertainties of the isosurface
suite. The vector parameters except curvature and
curvature entropy are visualized as line features by
distributing them over their respective equivalent structure
surfaces or concentrating on the initial surface. The
curvature and curvature entropy presented with color
map to reveal the geometrical variation on the perturbed
zone. The multiple-dimensional scaling (MDS) method is
used to map GAP isosurfaces to a set of points in low-
dimensional space to obtain the total diversity among these
equivalent probability surfaces. An example of a bedrock
surface structure in a metro station shows that the
presented method is applicable to quantitative description
and visualization of uncertainties in geological subsurface.
MDS plots shows differences of total diversity caused by
different error distribution parameters or different distribu-
tion types.

Keywords uncertainty, geological sub-surface model,
vector parameters, multiple-dimensional scaling

1 Introduction

Three-dimensional geological model is a kind of mathe-
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matical model that illustrates the spatial distribution of
geological structures or properties in 3D perspective.
Similar to 2D geological mapping, a good 3D model also
helps geologists understand the geological processes.
However, due to sparsity or imprecision of input data
and incomplete recognition of geological phenomena,
uncertainty inevitably exists in the modeling process and
the final modeling result (Bardossy and Fodor, 2004; Bond
et al., 2007; Wellmann et al., 2010; de Kemp et al., 2016;
Gonzélez-Garcia and Jessell, 2016). The qualitative and
quantitative description of uncertainties in geological
models seriously impacts decision-making in applications
in many fields, such as mineral prospecting and oil and gas
reservoir appraisal (Thore et al., 2002; Bistacchi et al.,
2008; Scheidt et al., 2015; Lee et al., 2016). In the past
decade, a number of studies have largely discussed the
detection, evaluation, and analysis of uncertainties in 3D
geological modeling (e.g., Mann, 1993; Tacher et al.,
2006; Caers, 2011; Bond, 2015).

The uncertainty existing in 3D geological model is
attributed mainly to three components: imprecise measure-
ments in input data, error generated during the modeling
process, and imprecise or unknown information (Mann,
1993; Bardossy and Fodor, 2004; Wellmann et al., 2010).
Uncertainties caused by imprecise information cannot be
quantitatively described easily. Error generated during the
modeling process is a type of stochastic error that shows up
in the process of interpolation of the subsurface or is
caused by combining data. Currently, most studies are
focusing on quantifying uncertainties caused by imprecise
measurements of input data for 3D modeling. Imprecise
measurements in input data include measurement errors
and imprecise interpretation, such as stratigraphic contact
position. Uncertainty caused by imprecise measurements
appears as uncertain positions between different lithologi-
cal boundaries or rock types.
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Attempting to reduce impacts to the final model, some
methods focus on the variability of uncertainty introduced
by humans or computation during data collection, proces-
sing, and representation (Thore et al., 2002; Jones et al.,
2004; Tacher et al., 2006; Lindsay et al., 2012). Some other
methods attempt to quantify impacts of errors and
uncertainties in final 3D models (Caumon et al., 2009;
Jessell et al., 2010; Wellmann et al., 2010; Wellmann and
Regenauer-Lieb, 2012). Assuming that errors existing in
input data are independent of each other and each type of
error is described by a certain distribution, such as a normal
distribution or uniform distribution (Wellmann et al.,
2010), uncertainties are characterized by measuring a
distribution function parameter (such as the standard
deviation) at a single-point position. With the variogram
or covariance model, geostatistical method explores
uncertainty quantitatively and the spatial relationships
between sample points (Bardossy and Fodor, 2004; Tacher
et al., 2006). Building a 3D model suite with perturbed
input data is an alternative option for uncertainties
analysis. Lindsay et al. (2012, 2013) analyzed uncertainty
in the final model with a suite of implicit models generated
from orientation measurements. Also, geometry uncer-
tainty in 3D model with perturbed input data can be
described with a set of geometrical ‘geodiversity’ metrics
(Lindsay et al., 2013). A stochastic downscaling method
based on orientation variations of fault is presented to
simulate multiple fault surfaces with different topological
relations (Julio et al., 2015). When input data and a final
3D model are represented using raster models such as the
voxel or grid, geostatistical methods or information
entropy-based methods become an effective choice for
error or uncertainty analysis on each vertex (Chilés et al.,
2004; Calcagno et al., 2008; Guillen et al., 2008;
Wellmann et al., 2010; Wellmann and Regenauer-Lieb,
2012).

Scalar parameters that are used to measure uncertainties
in the methods mentioned above achieve low-dimension
representation of uncertainties. Note that scalar parameter
usually is summarized with parametric statistics such as
mean value and standard deviation (Hollister, 2015). Many
studies have shown that multiple models display overall
similar, whereas possibly significant differences in geolo-
gical architecture maybe exist (Jessell et al., 2010;
Wellmann et al., 2010; Lindsay et al., 2012). Naturally,
in three-dimensional space, uncertainty in the 3D geolo-
gical model has high dimensional and anisotropic
characteristics. Especially, when multiple 3D geological
models are obtained and used to describe spatial
uncertainties, parametric statistics show global variations
as a whole entity and geometrical measures are difficult to
exactly reveal differences of geological elements. A set of
geometrical ‘geodiversity’ metrics including depth, curva-
ture, and geological complexity is proposed as indicators
for analyzing uncertainty in structural surface suite
(Lindsay et al., 2013). However, some questions remain:

Can uncertainties in 3D geological model be characterized
by other parameters, such as vector parameters? Which
kind of vector parameter(s) is fit for uncertainty measure-
ment? How do these parameters measure and represent
uncertainties variation? In this study, some vector para-
meters including normal vector, curvatures and their
entropy are introduced to measure uncertainty in the
geological subsurface. To explore vector properties of
uncertainty, we reconstruct an isosurface suite with scalar
quantitative indicators such as geological attribute prob-
ability (GAP, Hou et al., 2019). The vector and geometric
parameters are used to represent the geometry of the
isosurface. Thus, uncertainties in subsurface are converted
into spatial variations of vector and geometric parameters.
Perturbed input data with different error distributions and
the response of uncertainties presented by parameters for
the GAP subsurface suite are discussed with the multiple-
dimensional scaling (MDS) method.

2 Methods
2.1 Study area and basic idea

This study is carried out based on fault subsurface at a
metro station of Line 11 in the downtown area of
Guangzhou city, southern China. According to a previous
geological investigation (Guangdong Geological and
Mineral Bureau, 1989), the Guangsan Fault lies along
the section of Metro Line 11 (Fig. 1). A metro system is a
convenient means of public transportation. During the
design and construction of a metro system, the 3D
distribution of lithologies, strata, and faults forms a basis
for assessing aquifer recharge and vulnerability and should
be a particular concern (Turner and Kessler, 2015).
Faulting changes rock mechanics and may cause geologi-
cal problems such as water inrush and slope collapse.
Therefore, building a 3D fault surface model with bore-
holes was the first step for analyzing the impact of the fault
to the metro design and construction. Here, core samples
from 21 boreholes were collected and interpreted to obtain
exact stratigraphic information. The fault surfaces revealed
by the boreholes were constructed with GOCAD®™ and
smoothed using the Discrete Smoothing Interpolation
(DSI) method. The contact positions of fault and strata
were not clear because of cracked rock samples. Hence,
errors exist in measuring fault positions. Measurement
errors will impact and propagate to errors on the fault
subsurfaces that we constructed.

A step-wised uncertainty analysis method, in this study,
is proposed as shown in Fig. 2. First, a geological model is
constructed and used as a best-guess model. Error
distribution functions are preset on each sample point.
Note that recognizing the contact between two formations
in a borehole or outcrop is a tough task. Therefore,
selecting error distribution should be carefully carried out
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Fig. 1 Bedrock geology map. 1—Lower section of Dalangshan Group of Cretaceous; 2—Upper section of Sanshui Group of
Cretaceous; 3—Donghu section of Sanshui Group of Cretaceous; 4—Xihao section of Sanshui Group of Cretaceous; 5—Lower section of
Sanshui Group of Cretaceous; 6—Upper section of Baihedong Group of Cretaceous; 7—Subrhyolite; 8—Guangsan Fault; 9—Burried

Fault; 10—Metro Line and metro stop; 11—Modeling area.
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Fig. 2 Flowchart of vector parameters-based uncertainty analysis for 3D geological subsurface.

according the lithology related to the contacts. Here, the
error distribution on sample point is preset according to the
basic idea presented by Wellmann et al. (2010). On
unsampled points, error distribution functions are deter-
mined by the error distribution function of the nearest
sample point. Then, a model suite is constructed by the

Monte Carlo (MC) simulation with error distributions.
Simulation results at each point indicate an occurrence of
lithology termed with GAP. In fact, the GAP value of each
point is an occurrence of a type of attributes appeared. A
GAP isosurface suite with error perturbance in input data is
constructed to visualize and analyze uncertainty variation



Weisheng HOU et al. Geological model uncertainty analysis and its application in metro construction 695

differences. Several types of parameters including normal
vector, principal curvature and their entropy are introduced
to characterize the variation of isosurface geometry.
Finally, geometry variations among different GAP iso-
surfaces characterized with vector parameters are com-
pared with different methods.

2.2 Geological attribute probability and its isosurface

Any spatial point underground has its own attributes, such
as geochemical element components, physical properties,
or lithological characteristics. In 3D geological modeling,
geological contacts are determined according to attributes
of neighboring geological blocks. For example, the
geometry of a geological structures is determined by
lithology that are correlated to the contact. In essence,
geometry uncertainty of subsurface is the uncertainty of
geological attributes in 3D space (e.g., Tacher et al., 2006;
Wellmann et al., 2010; Hou et al., 2019). The spatial error
distribution can be characterized by probability (Tacher
et al., 2006), and the probability can be calculated as (Hou
et al., 2019):

b
PUA) = F) = [ 1) 1)

where z is the depth of contact, f{z) is the probability
density function, ¢ and » are bounded values of the
confidence interval at a chosen level, the cumulative
distribution function P(4) is a function of position or z
value. Therefore, the error distribution at a point can be
transferred into an occurrence of lithology or other
geological attributes, which is termed with GAP.

On the sample point, a normal distribution correspond-
ing to a continuous contact and a uniform distribution
corresponding to a missing contact are the most typical
geological attribute probability density functions (Well-
mann et al., 2010; Li et al., 2013). On the unsampled
points, errors can be estimated or predicted by variogram
model in traditional statistics, based on priori assumption
that a single error distribution (Gaussian) exists across all
kinds of spatial data. With the terminology of GAP,
different kinds of spatial error distribution can be
transformed into GAP values and be summed directly
with an entropy-based weight method (Hou et al., 2019). In
the entropy-weighted method, errors are followed or
limited by error distributions of the endpoints, which
results in errors on the unsampled points are smaller than
the values on the sample points.

However, the error at the unsampled point should be
bigger than the error at the sample point. Also, uncertainty
on the unsampled points should be greater than uncertainty
on the sample points as pointed out by Wellmann et al.
(2010). Therefore, in this study, we assumed that:

1) The confidence interval of an unsampled point has
positive correlation with the distance of the nearest

borehole. It means that the closer to the borehole, the
smaller the confidence interval should be at the node.

2) With the increase of the distance between the node
and nearest borehole, the parameters of the error distribu-
tion function show a nonlinear increasing trend from slow
to fast.

3) The standard deviation and the error impact of
known points can be adjusted with changing the
parameters of the equation.

To describe the characteristics of uncertainties on
unsampled points mentioned above, here, a function with
standard deviation related to sample points is presented:

ei—1 ]
1 + 1:| O sample min(l)e

o(i) = {A X

X = dmin(i)/max(dmin)a X € [0’1]’ (2)

where d,i,(7) is the distance between the ith node on the
subsurface network and the nearest sample point and max
(dinin) 1s the maximum value of all d;,. x;, termed the
“regularized distance”, equals 0 when the node is
coincident with the sample point, and x; = 1 if the node
is the farthest node to the sample point. Ggample min(i) is the
standard deviation on the nearest sample point to a current
node. When the unsampled point is at the same distance
from two sample points, the smaller value of Ggampic min(?)
is selected. 4, termed the “distance factor,” is a constant for
amplifying the error impact in input data and can be given
by any positive number that is larger than 1. The distance
factor in fact is a kind of scaling factor to enlarge the
extreme value of the confidence interval. It also helps to set
discretionarily according to the need of visualization.
Therefore, the standard deviation on each point of the
subsurface can be obtained. Figure 3 illustrates the
variation of standard deviation variation with distance.
The left image in Fig. 3 shows three points with different
distances to a sample point. The points marked (D and
are the farthest and shortest point to their nearest sample
point respectively. When all sample points have the same
standard deviation value, the standard deviation increases
when the distance gets longer, as shown in the right image
of the Fig. 3. Figure 4 shows the variation of standard
deviation on the surface with different distance factors
when the standard deviation is 1.0. The standard deviation
is obviously larger on unsampled points than on sample
points. Also, the value of standard deviation on the
unsampled points increases with distance increase. This
means that unsampled points have more uncertainty than
the sample points.

2.3 Parameters for uncertainty measurement and its
visualization

In this study, several types of vector parameters, including
the normal vector and principal curvature, as well as mean
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shortest distance from the nearest sample point respectively in the left image. The color bars in the right illustrated the standard deviation
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Fig. 4 Uncertainties distribution on subsurface with different distance factors and standard variation is 1.0 at the sample points. The left
image shows the relationship between standard deviation variation with regularization distance, in which different distance factors are 1
(blue line), 7 (green line), and 13 (red line). The standard variation with different distance factors is shown in the middle image. The GAP
values in green, brown, and blue in the right image are 0.1, 0.5, and 0.95, respectively, in which the distance factors are same to the middle

images.

curvature and Gaussian curvature are discussed to
characterize the impact of uncertainty on subsurface
geometry.

With the variation of GAP values, the geometry of the
buffer zone varies constantly. The normal vector describes
the orientation of the local surface. It is meaningful to
describe uncertainty by depicting the variation of normal
vectors on a geological subsurface. We need to obtain the

unit normal vectors N of each node. The unit normal vector

on a certain node can be obtained by weighting and
summing the normal vectors of the triangles neighboring
the node. As shown in Fig. 5, the purple vectors are the unit
normal vectors, and all normal vectors point to the same
side of a surface.

The orientation variation of GAP isosurfaces can be
characterized clearly by normal vectors. However, the
curvature property in different tangential directions varies
on a structural surface. Also, this type of anisotropic
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Fig. 5 Typical surface with their vectors and a local effect graph. (a) Vector parameters on four typical surfaces (After Lindsay et al.,
2013). (b) Local effect graph of vector parametric system on a surface triangle network.

feature is a very important factor for quantifying
uncertainties among GAP isosurfaces. Differential geo-
metry provides an appropriate method for establishing the
tangent vector system. Here, a pair of principal curvature

. . . . . —

vectors including the major principal curvature vector e,
. . . e .

and the minor principal curvature vector e, are assigned on

each node. The direction and the length of e_f are the major
principal direction and the absolute value of the major
principal curvature ky, respectively. Likewise, the direction

of ez is the minor principal direction and the length of e; is
the absolute value of the minor principal curvature k,. The
two principal directions are always perpendicular to each
other and correspond to the maximum and minimum
normal curvature, respectively. Therefore, they are the
most typical tangent vectors that can fully depict the
anisotropy feature of the uncertainty of a geological
subsurface. In this study, the principal curvature vectors are
obtained based on the algorithm provided by Dong and
Wang (2005) and visualized in the form of line features, as
shown in Fig. 5(a). The length of the principal curvature
vector line represents the magnitude of the absolute value
of the principal curvature, and the vector arrows are
assigned either black or gray color to distinguish values of
positive and negative curvature, respectively (Fig. 5(b)).

Some scalar parameters including mean curvature and
Gaussian curvature, which can describe the geometrical
variation of GAP isosurfaces, are also discussed. These
two parameters can be obtained from principal curvatures
as follows:

ky + k)

=28 G, @

where k; and k, are two principal curvatures, and M, G are
mean curvatures and Gaussian curvature, respectively.

Geometrically, mean curvature describes the average
degree of curvature in all directions at a certain point,
whereas Gaussian curvature reflects the total degree of
curvature at a certain point. Figure 5(a) shows the positive
and negative discriminant of Gaussian curvature and mean
curvature of four typical surfaces. Obviously, the geome-
trical variation can be described by Gaussian curvature and
mean curvature.

Although the curvature can describe geometrical feature
of a point, the impact of neighboring points is not taken
into consideration. Also, curvature magnitude is extremely
uneven on some strongly undulating surfaces due to the
high sensitivity of the curvature feature. Entropy reflects
the degree of disorder at a local region around a certain
point. A larger entropy value indicates that a larger amount
of information can be provided. Entropy calculation
weakens the negative influence of the curvature not
being able to consider the larger neighborhood (Li et al.,
2015). Therefore, curvature entropy represents variation of
curvature and the complexity of a surface as well as
reduces the sensitivity of curvature. Curvature and
curvature entropy should be considered simultaneously
in order to obtain a continuous and complete description of
the geometrical variation.

Curvature entropy can be calculated as follows (Li et al.,
2015):

m

H; = *Pil(’gzpi*zpjbgzpj’ A3)
=1

where p; and p; are probabilities of curvature at the ith and
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jth nodes, respectively, and can be expressed as

K; K;
pi= m > Pj = Jm > “4)
KEYK kYK
j=1 j=1

where K; and K are the absolute values of curvature of the
ith and jth nodes, respectively, the jth node is adjacent to
the ith node, and m is the number of nodes involved in the
calculation. The variation of curvature and its correspond-
ing entropy of the subsurface have the same tendency, as
shown in Fig. 6. As the curvature entropy considers the
large neighborhood of each node, compared to variation of
curvature, variation of curvature entropy is more contin-
uous and softer at local positions. Therefore, curvature
entropy is appropriate for describing geometrical variation
of geological surfaces.

2.4  Uncertainty visualization of vector-based parameters

Theoretically, many GAP isosurfaces simulated by the MC
method can be obtained. Each point on every GAP
isosurface has its own vector parameters. Therefore, a
comparison of values of vector parameters is key to
analyzing and understanding the uncertainties among GAP
isosurfaces. Three types of uncertainties visualization
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methods are presented in Fig. 7.

Normal vectors of points on each GAP isosurface are
drawn on the corresponding surfaces in the ‘separated’
method, as shown in the first row of Fig. 7. The different
colors along the direction of the surface illustrate the GAP
value of the surface. The uncertainty difference caused by
different standard deviation values is illustrated by the
distances among normal vectors of GAP isosurfaces.
However, this type of method cannot reflect the difference
of direction of normal vectors. Therefore, an approach
termed the ‘focused’ method is also presented here, as
shown in the second row of Fig. 7. The focused method
puts the starting point of all normal vectors of each point of
the GAP isosurface on the best-guess surface. When the
GAP isosurfaces are not perturbed, all normal vectors
overlap and show as a straight line. Otherwise, the
variation of all normal vectors appears gradually in the
form of fan. The ‘stream line’ method is a third approach
for visualizing uncertainties among GAP isosurfaces. In
this situation, all normal vectors at the same location are
concatenated end-to-end into a streamline, as shown in the
third row of Fig. 7. As in the ‘focused’ method, when the
GAP isosurfaces are not perturbed, the streamline shows as
a straight line. A symmetric curve with its symmetry center
on the best-guess subsurface occurs when uncertainties
exist among the GAP isosurfaces.
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Fig. 6 Curvature and its entropy of subsurface. (a) and (b) are mean curvature and its entropy of subsurface, respectively; (c) and (d) are

Gaussian curvature and its entropy of subsurface respectively.
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3 Results

3.1 3D fault surface model and model suite generation of
study area

On the assumption that errors of fault position in borehole
follow a normal distribution, the positions of each point on
the interpolated fault surface were treated as the expected
values with a standard deviation ¢ = 1.0 m, and the fault
surface was supposed as being the best-guess surface and
used as the initial surface for model suite construction. To
discuss uncertainties variation, errors of the fault surface
were calculated by Eq. (1) with different distance factors of
3,5, 7,9, 11, and 13. Hence, the probability density
functions at each point on the fault surface could be
calculated. For each distance factor, the GAP value of
every point on the best-guess surface was calculated using
the Monte Carlo simulation method described in Section 2.
Therefore, each point has its own GAP distribution and
isosurfaces, with 50 different GAP values being con-
structed.

3.2 Results visualization
Several model suites with different distance factors and

standard deviation values were constructed. In each model
suite, 50 fault interfaces were built with GOCAD®. The

geometry difference among models with different distance
factors is not very apparent, but the distance between the
best-guess surface and other surfaces increases with
distance factor increase.

In Fig. 7, normal vectors of every surface of each model
suite are displayed with different methods. With the
separated method, when standard deviation has the same
value (such as ¢ = 1.0 m), the interval of normal vectors on
every isosurface point increases with increase of the
distance factor value. This reflects the same trend as
illustrated in Fig. 4. With the focused method, when the
distance factor equals 1.0, all normal vectors on every
point of all isosurfaces show as a straight line. With
increase of the distance factor value, the straight line
spreads out into a fan. The normal vector of the best-guess
surface is located in the middle of the fan, and the other
normal vectors show an axial symmetric distribution. The
fan area expands progressively with increase of the
distance factor. With the stream line method, normal
vectors on every point of all surfaces of each model suite
distribute with point symmetry in the form of stream lines.
However, the geometry of each stream line of each surface
becomes different as the distance factor changes. The
stream line displays as a straight line of the normal vector
of the best-guess surface. The geometric shape displays as
a type of hyperbolic curve, and the curvature increases
with increase of the distance factor.
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The principal curvature vector on every point of a

surface has two main directions: eT and e3. Here, the
separated and focused methods are used to analyze
uncertainty because the stream line method is not
appropriate for visualizing the principal curvature vector.
As shown in Fig. 8, the uncertainty among GAP
isosurfaces of a model suite has the same trend. However,
the principal curvature is very sensitive to the variation of
geometrical shape. On the same point (marked with red
circles in Fig. 8), the principal curvature may change with
different distance factor values. Also, changes of the
principal curvature illustrate the geometrical variations of
GAP isosurfaces with different distance factor.

4 Discussion

4.1 Analysis with MDS

Although a vector parameter-based method of uncertainty
visualization is proposed above, uncertainty cannot be
quantitatively analyzed and visualized in detail. Never-
theless, the total diversity between the 50 GAP isosurfaces
should be visualized by an appropriate method so that the
inner uncertainty can be discussed from the macroscopic
viewpoint. The multiple dimensional scaling (MDS)
method (Borg and Groenen, 1997) is employed to map
the high-dimensional samples into low-dimensional space
based on the distance matrix, and relative distance is
provided to present differences among samples. The MDS
is a kind of distance-based metric approach to describe the
dissimilarity between data. Note that the distance can be
based on a norm, filters, wavelets, or any other relevant
metric. Therefore, the MDS is a general method for
calculating dissimilarity (Gregoire and Caers, 2015). A
distance matrix D that describe the dissimilarity between
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GAP iso-surfaces and the best guess is obtained. Then, the
D is translated into a configuration of points that defined is
an n-dimensional Euclidean space R (Gregoire and Caers,
2015). The Euclidean distances of the points in this space
represent the dissimilarities of the objects involved. A
coordinates matrix X that defines the position of each point
in R is the results of MDS. Therefore, the coordinates
MDS plot represents the dissimilarity distance of the
objects.

The total diversity of curvature and curvature entropy
are visualized by the MDS algorithm provided by Caers
(2011). In this study, Euclidean distance is used to
characterize differences among GAP isosurfaces in the
distance matrix. We mapped Gaussian curvature, mean
curvature, their entropy values, normal vectors, and
principle directions of the best-guess model and other
models with different distance factor values and deviation
values in using MDS plots (Fig. 9). The distance factor is
set as 3, 5, 7, 9, 11, and 13, and the standard deviation
values are 0.7, 1.0, 1.2, and 1.5.

In the images of each column in Fig. 9, when the
standard deviation has the same value, the distribution of
GAP isosurfaces spreads wider with increase of distance
factor value. Except for Gaussian curvature and its entropy,
all models with different GAP isosurfaces distribute as an
axial symmetric distribution with the center at the best-
guess model. Except that the different deviation value
equals 1.2, the MDS plots of mean curvature with different
deviation values distribute as a straight line. However,
error perturbation of the subsurface cannot be displayed in
the MDS plot. For the Gaussian curvature, normal vector,
and mean curvature, when the deviation value is not 1.5,
subsurface perturbation of error cannot be reflected
effectively in the MDS plot. Although MDS plots of
mean curvature entropy with different standard deviation
distribute with an axial symmetric distribution, GAP

unperturbed

Fig. 8 Uncertainty visualization with principal curvature vectors. The red circle marked out the variation of principal curvature vectors
change of the same point on different GAP iso-surface.
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isosurfaces of which values are larger than 0.5 are more
concentrated. The MDS plots of Gaussian curvature
entropy have an opposite trend compared to the mean
curvature entropy. When the standard deviation value is
smaller than 1.0, the tails of the MDS plots of Gaussian
curvature entropy become sparser and more disordered
with the increase of standard deviation. When the standard
deviation value is larger than 1.0, the MDS plots of
Gaussian curvature entropy distribute as a straight line.
The distribution of the major and minor principal
directions of all models appears similarly symmetric.
However, when deviation value equals 1.5, except for the
principal curvature vector, the MDS plots of all other
parameters on different GAP isosurfaces distribute as a
straight line, and the disturbance of GAP isosurfaces is not
reflected effectively. When the distance factor is a constant,
the distribution scope of GAP isosurfaces increases with
standard deviation value increase in MDS plots, as shown
in Fig. 10. For the mean curvature entropy and Gaussian
curvature entropy, the tails of the GAP isosurfaces
distribution in MDS plots have a different trend when
the standard deviation value increases.

To explore the impact of different error existing in the
GAP isosurfaces, one point was perturbed with different
standard deviation values and the GAP isosurfaces were
reconstructed. The standard deviation values on all sample
points, except the perturbed point, are preset as 1.0, and the
distance factor is 3.0. On the perturbed point, the standard
deviation values are preset as 0.5, 1.0, and 1.5. When the
standard deviation value increases from 0.15 to 1.5, the
distribution scope of GAP isosufaces in MDS plots does

| @ . . . | . [ &

not change obviously, as shown in Fig. 11. Also, for the
mean curvature entropy and Gaussian curvature entropy,
the tails of the GAP isosurfaces distribution have a
different trend irrespective of what the standard deviation
value is.

In the presented method, the distance factor and the
standard deviation together determined the shape of the
geological subsurface. When the standard deviation value
is small, the mean curvature entropy and Gaussian
curvature entropy are effective parameters for describing
the uncertainty existing in geological subsurfaces caused
by errors. The error perturbance of GAP isosurfaces can be
reflected by the mean curvature entropy and Gaussian
curvature entropy in MDS plots.

5 Conclusions

This study presented an uncertainty visualization method
with vector-based parameters for the 3D geological
subsurface. Under the premise of converting the 3D spatial
error of the modeling data into the one-dimensional
geological attribute probability distribution, the GAP
isosurface suite is constructed. To analyze the response
to different parameters, several GAP isosurface suites with
different distance factors are constructed. The vector
parameters, the curvature, and the curvature entropy of
these equivalent probability surfaces are visualized, and
the total diversity of these surfaces are expressed by the
MDS method. The case study illustrated that the principal
curvature vector is the most sensitive parameter among all
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Fig. 10 MDS plots of GAP iso-surfaces with different standard deviation values when distance factor is 1.0. Images from (a) to (f) are
different vector parameters of normal vector, mean curvature, mean curvature entropy, Gaussian curvature, Gaussian.



Weisheng HOU et al. Geological model uncertainty analysis and its application in metro construction 703

| (@ [ ()

(00000

@ Best-guessed model
00=5Qo=10 Oo= 1.5‘

Legend

Fig. 11 MDS plots of GAP iso-surfaces with one perturbed point where distance factor is 3.0, standard deviations of the perturbed point
are 0.5, 1.0, and 1.5 and other points are 1.0. Images from (a) to (f) are different vector parameters of normal vector, mean curvature, mean
curvature entropy, Gaussian curvature, Gaussian curvature entropy, and the principal vector, respectively.

the parameters presented. The curvature and its entropy are
appropriate for describing the anisotropy feature of
uncertainty in a geological surface model. Compared to
the scalar-based visualization methods, the visualization
system presented is more appropriate for revealing the
inner uncertainty of a 3D geological surface model.

In practice, a best-guess of geological structure is built
by boreholes and cross-sections. According to the
lithological types and characteristics of core samples,
error distribution function and corresponding parameters at
each contact point are preset. When the geological sub-
surface like fault or weathered bedrock is near to or
interacts with the bottom or top of metro structures, the
sub-surface of the extreme depth has the maximum or
minimum impact of metro construction. The variation of
the curvature and its entropy of sub-surfaces reflects the
difficulties of rock erosion. A suite of GAP model provides
different models for calculating rock mechanics for metro
constructions, and different probabilities for decision-
making for metro design and construction method.
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