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Abstract The annual peak growth and trend shift of
vegetation are critical in characterizing the carbon
sequestration capacity of ecosystems. As the well-known
area with the fastest vegetation growth in the world, the
Loess Plateau (LP) lands find an enhanced greening trend
in the annual and growing-season. However, the spatio-
temporal dynamics of vegetation peak growth and break-
points characteristics on time series still needs to be
explored. Here, we performed tendency analysis to
characterize recent variations in annual peak vegetation
growth through a satellite-derived vegetation index
(NDVImax, Maximum Normalized Difference Vegetation
Index) and then applied breakpoint analysis to capture
abrupt points on the time series. The results demonstrated
that the vegetation peak trend had been significantly
increasing, with a growth rate at 0.68�10–2$a–1 during
2001–2018, and most pixels (70.81%) have a positive
linear greening trend over the entire LP. In addition, about
83% of the breakpoint type on the monthly NDVI time
series is a monotonic increase at the pixel level, and most
pixels (57%) have detected breakpoints after 2010. Our
results also showed that the growth rate accelerates in the
northwest and decelerates in the southeast after the
breakpoint. This study indicates that combining abrupt
analysis with gradual analysis can describe vegetation
dynamics more effectively and comprehensively. The
findings highlighted the importance of breakpoint analysis
for monitor timing and shift using time series satellite data
at a regional scale, which may help stakeholders to make
reasonable and effective ecosystem management policies.

Keywords vegetation greenness, gradual trend, break-
point, BFAST algorithm, the Loess Plateau area

1 Introduction

Vegetation provides water retention and climate regulation
services, progressively shapes and beautifies the land-
scape, and provides numerous invaluable ecosystem
services which are beneficial for natural ecosystem and
human society alike (Li and Pan, 2018; Wang et al., 2020).
Recent studies have reported that global vegetation shows
an obvious greening trend due to the improvement of
hydrothermal conditions and human interference (Wang
et al., 2018a; Piao et al., 2019), The greening areas are
mainly concentrated in the northern hemisphere, especially
in the high latitudes, China and India (Chen et al., 2019),
and the central United States (Tang et al., 2015). The
browning area is only concentrated in rainforests and
metropolises (Pütz et al., 2014; Zhou et al., 2014; Zhong et
al., 2019). Meanwhile, global arid and semi-arid regions
have also experienced significant overall vegetation
greening processes (Fensholt et al., 2012; Andela et al.,
2013). From the spatial perspective, the areas with
perceptible trend of turning ‘green’ are predominantly
located in the driest areas, such as Saharan Africa and
Australia (Poulter et al., 2014; Kaptué et al., 2015; Brandt
et al., 2017). At present, many studies have paid attention
to the spatiotemporal dynamics of vegetation greenness in
the annual and growing seasons at the continental and
global scale. However, there is still a lack of knowledge
about local vegetation’s peak growth across arid and semi-
arid areas.
The breaks for the additive seasonal and trend (BFAST)
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algorithm is proven to have the ability to detect the
breakpoints of seasonal and trend on the satellite time
series, indicating the spatial distribution of breakpoint type
and breakpoint year (Watts and Laffan, 2014). In addition,
traditional methods such as Mann-Kendall (MK) and
Copula-Based Abrupt Variations Detection (CAVD) are
usually used to determine the breakpoints of vegetation
variation (Deng et al., 2018; Zhao et al., 2019). However,
these methods may limit vegetation change information
mining to some extent, neglecting the analysis on the
vegetation dynamics at different time intervals and the
clustering patterns on satellite time series. At present,
BFAST has been successfully applied to study spatiotem-
poral breakpoints of satellite time series (He et al., 2020a).
For example, the BFASTalgorithm can effectively monitor
vegetation cover changes in the Kurdistan province of Iran,
and describe the normalized difference vegetation index
(NDVI) behavior in terms of greenness, phenophase,
abrupt changes for the different land covers (Gholamnia
et al., 2019). BFAST has also been applied to monitor the
GIMMS LAI data set of karst areas with most breakpoints
during 2002–2004 and explained that the large-scale
ecological restoration projects have enhanced carbon
sequestration and thus mitigated climate warming (Tong
et al., 2018). BFAST was also used to monitor ‘when’ and
‘where’ trend changes in China. It found that vegetation in
northern China was mainly affected by land-use changes
dominated by forestry projects, while in southern China
were more affected by climate change (Ma et al., 2019).
The Loess Plateau is located in the central part of China,

which is one of the most famous loess covered areas (Yang
et al., 2019b). It is an arid and semi-arid region with forest,
typical grassland and desert grassland extending from
southeast to northwest. Since the 2000s, ecological
restoration projects, including the Three-North Shelter
Forest, the Grain for Green, and the Protection of Natural
Forests, have promoted the vegetation growth in LP
substantially (Cao et al., 2011). Ecological projects have
changed regional processes of vegetation growth, nutrition
cycle and energy exchange (Wu et al., 2019a), which has
fundamentally improved the ecological environment and
vegetation production (Fu et al., 2017). However, most
previous studies in the LP mostly focused on the long-term
gradual change of vegetation index and its response to
climate; it is still unclear whether there were abrupt
changes in the long term vegetation trend.
Based on the Google Earth Engine (GEE) cloud

computing platform, this study preprocessed the Moder-
ate-resolution Imaging Spectroradiometer (MODIS) NDVI
data set. We analyzed the gradual trend and abrupt change
of vegetation time series over the LP. The scientific
questions of this study are mainly: 1) whether there is
significant spatial heterogeneity in the interannual char-
acteristics of peak greenness on the LP; 2) when, where,
and what type of breakpoint occurred in vegetation time
series during 2001–2018; 3) whether the BFAST algorithm

can accurately and effectively detect the major break-
points.

2 Materials and methods

2.1 Overview of the study area

The Loess Plateau is located in the center of China in
spatial terms, the transition zone between semi-arid and
arid areas, and it is the most concentrated and largest loess
zone on the earth. The Loess Plateau comprising eastern
Qinghai, southeast Gansu, Ningxia, Shaanxi, Shanxi, and
part of Inner Mongolia (Fig. 1). The Loess Plateau covers
an area of 640000 km2, and the altitude is 200–4975 m
(Wang et al., 2016). The climate can be classified as
continental monsoon. The average annual precipitation is
below 400 mm, with the precipitation exhibiting a pattern
of gradual decrease from the south-east to the northwest
part of Loess Plateau. The average annual temperature is
around 9°C, and the average annual evapotranspiration
ranges from 820 to 1650 mm (Wang et al., 2016; Wang
et al., 2018c). The soil has high porosity and low capacity
of water retention, facilitating a potential of evaporation at
high rate (Zhao et al., 2017). The forests had been widely
distributed in Loess Plateau throughout history. However,
the deforestation process as a result of human activities
during the past century has inevitably escalated the
magnitude of soil erosion in this area (Guo et al., 2019).

2.2 Data introduction

MODIS NDVI has a positive relationship with vegetation
coverage and biomass (He et al., 2020b), suitable as the
preferred indicator for vegetation monitoring and evalua-
tion over the LP (Liu et al., 2017). In this study, the GEE
platform provided a MOD13A1 NDVI data set with a
spatial resolution of 500 m.
To analyze vegetation dynamics at different time scales

(month, year), the maximum value composite (MVC) was
used to generate monthly and annual NDVI maximum
values (Holben, 1986). The formula is as follows:

NDVImax ¼ maxðNDVIiÞ, (1)

where NDVIi refers to the NDVI value of time variable
i (i = 1, 2, 3,..., 23); MOD13A1 provides 23 images a year.
NDVImax refers to the NDVI annual and monthly
maximum corresponding each pixel during 2000–2018.
It should be noted that the initial digital number of the
MODIS NDVI used here is between –2000 and 10000 (the
true NDVI needs to be multiplied by a scale factor of
0.0001).
We also collected Landsat surface reflectance images

(Landsat) on the GEE platform, including TM, ETM+,
and OLI image archives. The CFMask algorithm is used to
detect and remove interference from clouds, shadows,
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snow, and ice, and then extract the greenness value of the
vegetation. According to Eq. (1), we calculated the
NDVImax of MODIS and Landsat images, separately.
The MCD12Q1 land cover data set was used to generate

a biomes type map on the LP (Fig. 1(b)). According to the
International Geosphere-Biosphere Program (IGBP) plan,
this data set was classified using a supervised decision tree
classification with a spatial resolution at 500 m. The time
resolution is one year. The land cover types were divided
into 17 types, including 11 natural vegetation types, 3 land
development and mosaic types, and 3 non-grassland types.
On the basis of MCD12Q1 land classification, we obtained
seven biome types over the LP.

2.3 Gradual analysis

This study analyzed NDVImax from the provinces, and
biomes and pixel scales over the LP. Trend analysis refers
to the persistence of a specific indicator of the time series
(such as NDVI, temperature, precipitation, etc.) over a long
period of time and concerning overall increase or decrease.
Linear regression is applied to calculate the inter-annual
variation trend of NDVImax under different time (year,
month) and space (LP, province, and biome) scales. The
slope of the linear regression equation is defined as the
annual trend of the indicator. The formula for calculating
slope is as follows:

Slope ¼ n� Σn
i¼1ði� xiÞ –Σn

i¼1iΣ
n
i¼1xi

n� Σn
i¼1i

2 – ðΣn
i¼1iÞ

, (2)

where the Slope is the linear regression equation fitted by
NDVImax, which indicates the changing trend from the
time series; i is the time variable, and n is the number of
years. When Slope< 0, it means NDVI decreases with

time; and when Slope> 0, it means that NDVI increases
with time. The larger the absolute value of Slope, the larger
the magnitude of change of NDVI. To determine whether
the linear trend of NDVI is significant or not, the t statistic
was used to conduct a significance test at the significance
level of 0.1, 0.05, and 0.01, respectively.

2.4 Abrupt analysis

We applied Break for the Additive Season and Trend
(BFAST) analysis on per-pixel level to identify abrupt
points in the vegetation time series and automatically
decompose the time series into trend terms, season terms,
and residual terms (Watts and Laffan, 2014). BFAST
repeatedly and iteratively detects the time and number of
abrupt points in time series, and describes vegetation’s
characteristics according to the direction and amplitude of
the breakpoints, which can be used to analyze satellite time
series. Verbesselt et al. (2010a, 2020b) provided BFAST
algorithm to detect jumping points in satellite time series,
combined with actual events to explain the detected
breakpoints. The BFAST algorithm has been used to
analyze the long-term time series of the spectral index in
remote sensing images, detecting seasonal changes (annual
temperature, precipitation, or changes in vegetation types,
etc.), revealing trend changes (annual average precipita-
tion, land management changes, land degradation, etc.),
and identifying abrupt points (deforestation, urbanization,
floods, fires, etc.). It is advantageous in that there is no
need for selecting a specific reference period, setting
thresholds, or defining change orbits. Moreover, it can
analyze long-term trend terms and seasonal terms in other
scientific fields such as hydrology, climatology, econo-
metrics, etc. (Verbesselt et al., 2010a, 2010b)

Fig. 1 Biome distribution of the Loess Plateau, the biome type is from MCD12Q1 products.
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2.4.1 BFAST decomposition model

The BFAST algorithm decomposes the integrated time
series into three parts: trend, seasonality, and residual. An
additive decomposition model that iteratively fits a
piecewise linear trend and seasonal model was used to
detect and characterize the breakpoints in the trend and
seasonality on time series. Assume that an additive
decomposition model can iterate out and trend a piecewise
linear model that matches seasonality. The algorithmic
form of this model is:

Yt ¼ Tt þ St þ et t ¼ 1,2,3,:::,n, (3)

where Yt is the value observed at time t; Tt is the trend
component; St is the seasonal component; et is the residual
component, which is a variable component independent of
seasonality and trend. Assume that Tt’s change is a cent
segment which is linear, and there are t1, t2,..., tm.

Tt ¼ αj þ βjt, (4)

where the range of t is t j–1< t< t j and j = 1, 2, ...,m; αj and
βj is intercept and slope of the continuous linear model,
respectively, which can be obtained from the size and
direction of the breakpoints. The slope is the trend that
gradually changes between the detection breakpoints. The
magnitude of each breakpoint is the difference of Tt on tj–1
and tj. Seasonal trends can be expressed as:

St ¼
Xs – 1

i¼1
gi,jðdt,i – dt,0Þ, (5)

where s is the seasonal period (such as the number of
observations per year); gi,j is the impact factor for the ith
time period. When time t is the ith observation, dt,i = 1,
otherwise 0, therefore, when t is the 0-th seasonal period,
dt,i – dt,0 = –1. For t for other seasonal periods, dt,i – dt,0 = 1.
Usually dt,i is considered as a seasonal dummy variable; it
has two values of 0 and 1 to account for seasonal periods in
the regression model.
In the above decomposition model, parameters such as

the location and number of breakpoints need to be
determined. Under the interference of natural disasters,
human activities, and sensor errors, it is susceptible to
produce erroneous time series breakpoints. Verbesselt
pointed out that the ordinary least squares residual-based
moving sum (OLS-MOSUM) can tackle this problemmore
effectively, and Bayesian information criterion (BIC) can
be a plausible approach to determine the optimal number of
breakpoints (Verbesselt et al. 2010a).

2.4.2 Detecting major trend shifts in satellite time series
data

To detect the NDVI major breakpoint of the time series, we
applied the BFAST method by the “bfast01” function of
package ‘bfast’ (available at Additive Season and Trend

project website) in the R platform to detect the most
important breakpoints at a per-pixel level during 2001–
2018, and further determine the position and time of the
breakpoint. The BFAST algorithm can detect 6 different
types of breakpoints (supplement Fig. 1 according to the
previous studies (de Jong et al., 2013)), namely monotonic
increase, monotonic decrease, increase with a negative
break, decrease with a positive break, increase to decrease,
and decrease to increase. It can be intuitively understood
that the monotonic increase and decrease, the breakpoints
detected by the BFAST algorithm, are consistent with the
trend direction before and after the breakpoint. However,
the trends of increase with a negative break and decrease
with a positive break are interrupted, although the trend
direction is still the same, the value of NDVI interrupts the
previous change trend at a certain point in time due to
natural disturbances or human activities.

3 Result

3.1 Overall trends of peak greenness from MODIS

Figure 2(a) shows the linear growth trend of vegetation
greenness in the LP during 2001–2018, with an average
growth rate of 0.68�10–2$a–1. The multi-year average
value of NDVImax was 0.542, and the lowest and highest
value appeared in 2001 and 2018, respectively. After 2011,
the value of NDVImax was all higher than 0.54. Figure 2(b)
exhibited an increasing trend of the vegetation greenness
of each province in LP. The annual greenness of SX, SHX,
and GS was highly ranked with different proportion
accounting for 29.68%, 22.64%, and 17.19% of the total
greenness. From 2011 to 2018, the proportion of greenness
decreased from 7.30% to 6.04% in QH, while the
corresponding values in NMG increased from 12.41% to
14.39%. As shown in Fig. 2(c), the proportion of each
biome’s greenness in total greenness remained basically
unchanged. GL, CP, and FR possessed a relatively high
proportion with 54.46%, 27.56%, and 8.58% respectively.
The linear trend and P value of greenness change over

the LP in the spatial dimension is demonstrated (Fig. 3).
Since 2001, we found that NDVImax of 93.21% pixels over
the LP displays an increasing trend, and 70.81% of pixels
showed a significant increase. The average growth trend is
5.6�10–3$a–1, and the area with average growth rate
exceeding 5�10–3$a–1 accounts for 62.73% of the entire
region. Area with average growth rate exceeding 4$10–3

and 3�10–3$a–1 accounted for 70.68% and 78.41%
respectively. The pixels with a decrease rate greater than
3�10–3$a–1 accounted for only 2% and were concentrated
in irrigation areas such as river valleys and cities under
strong human disturbance. The MODIS NDVImax of most
pixels have significantly changed, and the proportions of
P< 0.1, P< 0.05, and P< 0.01 in the total pixels was
78.54%, 72.53%, and 58.84%, respectively (Fig. 3(b)).
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3.2 Timing and shift in trends of MODIS NDVI time series

The BFAST method was applied on NDVI at a per-pixel
level to identify the major breakpoints in satellite time
series over the LP. The results showed that BFAST
detected 6 major breakpoint types (Fig. 4(a)) and found
that most of the breakpoints showed an increasing trend
before and after each breakpoint; i.e., a monotonic
increase. The monotonic increase is the dominant break-
point type which accounts for 83.18% on the LP; and the
number of pixels that have decreased accounted for only
2.29%. The proportion of increase with a negative break
and decrease with a positive break consists 7.79% and
0.68%. And the pixels with reversed trends, decrease to

increase and increase to decrease accounted for 2.43% and
3.60%, respectively. BFAST has disclosed that the satellite
time series has abrupt changes between 2004 and 2015
(Fig. 4(b)), and the time nodes of breakpoints at a per-pixel
level were moderately dispersed. About 58% of pixel
breakpoints occur after 2010. The year with the largest
number of breakpoints was 2011, and 2008 was the year
with the smallest number of breakpoints.
The BFAST method revealed the change amplitude of

the MODIS NDVI time series before and after the
breakpoint (Fig. 5), and the changes were essentially
consistent with the linear trend of NDVI during 2000–
2018. The growth trend at pre-stage (before the breakpoint)
accounted for 87.35% of all pixels over the LP and the

Fig. 2 Interannual variation of NDVImax and total greenness of Loess Plateau during 2001–2018. (a) Annual max NDVI; (b) annual total
greenness and its distribution of different regions. GS: Gansu, HN: Henan, NMG: Inner Mongolia, NX: Ningxia, QH: Qinghai, SHX:
Shaanxi, SX: Shanxi; (c) annual total greenness and its distribution of different region biomes: FR: forests, SS: shrubs and savannas, GL:
grasslands, CP: croplands, UB: urban and built-up lands, BR: barren land.

Fig. 3 Spatial patterns of annual linear trends of MODIS NDVImax over the Loess Plateau for the period 2001–2018. Blue represents a
positive change (trend> 0), and red represents a negative change (trend< 0). (a) Spatial trend of NDVImax; (b) significance of NDVImax.
In addition, pixels with a linear trend are statistically significant at P< 0.01, P< 0.05, and P< 0.1.
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number of pixels with a growth rate of more than
5�10–4$mm–1 accounts for 36.76%. The results reveal that
most of the pixels showed a positive trend before the
breakpoint, and only a small part of central Gansu and the
Guanzhong Plain showed a negative trend. In post-stage
(after the breakpoint), the increasing trend accounts for
85.59% of all the pixels, and the number of pixels
increasing at a rate of more than 5�10–4$mm–1 accounts
for 41.44%. The negative trend was randomly distributed
without noticeable tendency of spatial clustering on the LP.
In addition, we calculated the difference in change

amplitude before and after breakpoint (post minus pre).
Figure 5(c) showed that the rate of NDVI change in south-
east of the LP slowed down after the abrupt change, yet the
growth rate was changing faster than before in the north-
west of the LP. Moreover, we found that the linear trend
can merely indicate the overall change of vegetation
greenness during the study period, and the BFAST method
can explicitly examine the specific breakpoint and
changing intensity of vegetation in the study area.

As of NDVI change at the provincial scale, the growth
rates of GS, NMG, NX, and QH before the breakpoint was
higher than those after the breakpoint; while the growth
rate of HN, SHX and SX decreased significantly after
breakpoint (Fig. 6). At provincial scale, change amplitude
can be correlated to the geographical location of the
provinces. NDVI of provinces situated in the north-west
part of Loess Plateau displayed an elevated growth rate
after the breakpoint; meanwhile, NDVI of provinces
situated in the south-east part of Loess Plateau displayed
a declined growth rate after the breakpoint. For biomes,
GL, which biomes type possesses the largest potential
capacity for vegetation growth, had a growth rate
exceeding 2�10–4$mm–1 after a breakpoint. However, the
growth rate of FR and SS remains stable after a breakpoint,
and it is not likely to maintain vegetation greening at
previous rate in the future. The CP’s growth rate decreased
after the breakpoint, which meant that the relative
contribution of cropland to vegetation improvement
decreased.

Fig. 4 Spatial distribution of per-pixel NDVI breakpoints detected by breaks for additive season and trend (BFAST). (a) Spatial
distribution of six breakpoint types; (b) spatial distribution of the year of breakpoint detection and histogram of pixels with different
breakpoint type and year were shown in the sidebar.

Panxing HE et al. Variation of spatiotemporal trend in vegetation greenness based on MODIS NDVI 373



3.3 Effectiveness of the BFAST algorithm through two
typical cases

Figure 7(a) showed the significance of the variation
amplitude before and after the breakpoint. The significance
level is defined as 0.05. It can be found that the vegetation
greenness before and after breakpoint in 83.68% of pixels
of the LP has changed significantly. 5.17% of pixels were
significant before the breakpoint and 4.09% were sig-
nificant after the breakpoint. Only 7.88% of the pixels were
not significant. As illustrated in Fig. 8(a), the proportion of
unstable pixels was more than 90% to the two segments
(before and after the breakpoint), which implies that the
majority of vegetation pixels in the LP were not sustained
abidingly at a state of high resilience and can be altered
with forestation effort.
The effectiveness of the BFAST method in monitoring

abrupt changes of vegetation dynamics can be verified
based on a known observation site. In this study, we
selected the Junger coalmine area to verify the effective-
ness of the BFAST algorithm. The Junger coalmine is the
largest open-pit coalmine in Asia, the coal production of
which accounts for about 1/6 of the total coal production in
China. The coal seam is thick, buried shallower, and the
geological structure is stable, suitable for open-pit mining.
The pixel selected is in the south-east area of the Junger
coalmine, which was excavated after 2010. As showed in
Fig. 7(c), the vegetation greenness was still high before
2010, but the greenness declined significantly after 2010.
Meanwhile, we also downloaded the annual maximum
NDVI data set of the Landsat satellite in the black frame
circle (Fig. 7(b)) on the GEE cloud platform to verify the
MODIS NDVI. The vegetation greenness of the sample
points was relatively high in 2001; however, the open-pit
coal mine area gradually expanded to the sample point in
the south-east after 2010. Greenness exhibited a simulta-
neous decline with the mining area expanded into the
sample point after 2010 (Fig. 7(d)). During this period, the
vegetation changed from greening to browning.
Furthermore, the impact of human activities on the

abrupt change from browning to greening was investi-
gated. We selected the Hongsibu irrigation area of the
Ningxia Poverty Alleviation and Irrigation Project
(NPAIP) as a research site (Fig. 8(b)). The Hongsibu,
located in the middle of Ningxia, is the main battlefield of
the national water conservancy project, and also is the
largest ecological migration plan in China. Due to the lack
of rainfall in southern Ningxia, agricultural production is
low and socio-economic development is lagging. To solve
the poverty in southern Ningxia, the government first
raised the water level of the Yellow River to a certain
elevation through pumping stations. Then the high-
elevation water was self-irrigated to the Hongsibu area,
to develop an artificial oasis. We found the BFAST
algorithm can effectively monitor that the year node of

breakpoint is 2009, and the vegetation greenness rises from
0.2 to 0.6 during 2009–2018 (Fig. 8(c)). The barren desert
was originally poorly vegetated due to lack of water
resources, but now it has been transformed into cropland
with higher greenness. Landsat NDVI data set from 2001
to 2018 can also found that the vegetation greenness was
very low before 2008. Since 2009, the greenness of the
selected sample points increased notably compared with
the previous (Fig. 8(d)), which is consistent with MODIS
NDVI. In short, these two cases are provided to validate
that the BFAST algorithm can effectively detected the
breakpoints in vegetation time series.

4 Discussion

4.1 Enhance the growth of vegetation and its possible
impact factors over the LP

We used a remote sensing image data set, a linear trend
model, and a breakpoint method to study the spatiotem-
poral change in vegetation greenness. The peak growth of
vegetation (NDVImax) can accurately quantify the best
growth state in a year (Yang et al., 2019a). Previous studies
found that the variance in vegetation productivity is
primarily restrained by the peak growth and the length of
the growth season (Xia et al., 2015). Accordingly, the peak
growth is critical in characterizing the capacity of
terrestrial ecosystem productivity and configuration of
the seasonality of atmospheric CO2 concentration (Huang
et al., 2018). This study found that the peak growth of
vegetation across the LP consistently exhibited linearly
increasing trends during the past two decades (2000–
2018). More than 70% of the pixels had a significant
increasing trend (Fig. 3). Meanwhile, we found that the
fastest increase in peak vegetation greenness occurred in
the central area of the LP, such as Northern Shaanxi,
Southern Ningxia, Eastern Gansu, and Western Shanxi.
The negative-trend pixels appeared mostly near cities and
remote areas. Furthermore, we observed that the peak
growth of each province and biome also had demonstrated
widespread increasing trends over 2000–2018 (supplement
Fig. 2). Notably, grassland and cropland had higher growth
rates, which are 0.78�10–2$a–1 and 0.63�10–2$a–1, respec-
tively. In particular, we noted that inter-monthly vegetation
changes are a substantial component of enhanced peak
growth. Therefore, we further analyzed the spatiotemporal
dynamics of maximum vegetation greenness for every
month, and found that the growth season (June to October)
is the main period of vegetation restoration on the LP
(supplement Figs. 3 and 4). Overall, the above results
indicated that the vegetation greenness had increased
significantly at different spatiotemporal scales over the LP,
and the vegetation has been restored remarkably and
widespread greening has taken place during in the past two
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Fig. 5 Spatial distribution of (a) NDVI magnitudes before breakpoint year; (b) NDVI magnitudes after breakpoint year; and (c)
difference of NDVI magnitudes before and after breakpoint year.

Fig. 6 Difference of NDVI before and after breakpoint.
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Fig. 7 Junger coalmine pixel with abrupt changes. (a) BFAST method detected the significance on the pixel scale over the Loess Plateau;
(b) location of the Junger coal mine; (c) BFAST decomposition results between 2000 and 2018; (d) annual max NDVI (30 m) of Landsat
satellites is processed and downloaded on the Google Earth Engine platform from 2001 to 2018, and blue indicates the higher the value of
NDVI, while red indicates the lower.

Fig. 8 Hongsibu irrigation area with abrupt human-induced changes. (a) BFAST method detected the stability on the pixel scale over the
Loess Plateau; (b) location of the Hongsibu; (c) BFAST decomposition results between 2000 and 2018; (d) annual max NDVI (30 m) of
Landsat satellites is processed and downloaded on the Google Earth Engine platform from 2001 to 2018, and blue indicates the higher the
value of NDVI, while red indicates the lower.

376 Front. Earth Sci. 2022, 16(2): 368–380



decades, which is consistent with previous research (Fu
et al., 2017; Wang et al., 2018b; He et al., 2020b).
Breakpoints type of monotonic greening comprise the

vast majority in the vegetation time series, which meant
that the greenness at per-pixel level has predominantly
increased both before and after the breakpoint. This is
similar compatible with the result of gradual change
analysis, and the catastrophe analysis also revealed that the
vegetation in the LP presents a gradual recovery tendency.
In particular, our research focused on the variations of
vegetation before and after the breakpoint. We found that
the growth rate in the southeast of the LP declined rapidly
after the breakpoint, while the northwest significantly
increased. This may be attributed to the fact that, after the
rapid vegetation restoration in the southeast, the greenness
had reached a certain saturation level (Ma et al., 2019). It
could also be explained by the fact that the vegetation
coverage in the north west was relatively scarce (Ning
et al., 2015), the growth of pioneer species was relatively
slow, and it only showed a rapid growth trend in recent
years after pioneer species have established. It is worth
noting that the main vegetation type in the north west of
the LP is grassland. Therefore, we predict that under
the scenario of continuous vegetation restoration in the
north-west, grassland will continue to grow rapidly and
become the biome with the most potential of greening in
the LP. In conclusion, the combination of gradual analysis
and abrupt analysis can comprehensively reveal that the
widespread increase of LP’s vegetation greenness in the
past two decades, which can be credited to vegetation
restoration.
The arid and semi-arid ecosystem is fragile and

complex, which is extremely vulnerable to disturbance
from human activities (Li and Pan, 2018). A series of
ecological restoration projects have been implemented on
the LP, especially the implementation of the “Grain-to-
Green Program,” featuring the administrative actions
empowered by central government, the vast amount of
investment and the far-reaching influence (Wu et al.,
2019a; Han et al., 2020), which improved the vegetation
coverage and carbon sequestration capacity to great extent
(Xiao, 2014; Zhang et al., 2018; Wang et al., 2018d). The
government has made overzealous legislative efforts to
stop agriculture practices on steep slopes which are prone
to heavy runoff, counteract desertification, and promote
vegetation restoration by afforestation and grazing prohi-
bition as per local conditions (Yang et al., 2019b). The
gully area of the LP is where ecological restoration projects
have the most conspicuous rehabilitation outcome (Cao
et al., 2011; Lu et al., 2018; Ma et al., 2019). Vegetation
growth had increased rapidly and significantly since 2001,
the cumulative area of returning grain to green is in line
with the greenness increasing, which indicated that the
term ‘green’might be preliminarily attributed to the impact
of ecological restoration projects (Li et al., 2019; Han et al.,
2020).

The vegetation greenness increased rapidly over the LP
from 2001 to 2018, and all vegetation biomes showed an
increasing trend, especially the greenness of cropland. In
the past, the yield and aboveground biomass of most crops
on LP were low, due to lack of fertilizer application and
effective irrigation, which resulted in the low greenness
value of cropland in the LP. However, the extraordinary
progress of the Chinese economy after 2001 has enabled
the government to devote more resources in agricultural
production (Qiao et al., 2018). A series of policies that aim
to increase crop yields have been implemented (Wu et al.,
2019b). For example, the encouragement of chemical
fertilizer application has contributed to increase of crop
yields and fertilizer application rate. Agriculture manage-
ment strategies and techniques (e.g. mulching) facilitate
corn (wide leaves) to be planted, and the original low-yield
crops are replaced by improved varieties with higher yield
(Lu and Liao, 2017). It is worth mentioning that the
construction of terraces helps reduce water runoff and soil
erosion on the LP (Sun et al., 2019). The Chinese
government has constructed a large number of stepped
sections of farmland along the contour lines on the slopes
of the LP (LaFevor, 2014), thus levelling the originally
steep slopes from 5°–25°, and then modifying the ground
slope and runoff coefficient, reducing soil erosion and
increasing accumulation of organic carbon on the LP
(Wang et al., 2018c). These measures improved the growth
conditions of crops, and at the same time, promoted the
increase of the cropland greenness in satellite images.

4.2 Effectiveness of the BFAST method on vegetation
monitoring

Here, we used MODIS NDVI data sets from 2000 to 2018
to characterize and analyze the spatio-temporal change of
vegetation by combining gradual analysis (trend change)
and abrupt analysis (breakpoint monitoring). The gradual
analysis is the most commonly adopted trend analysis
technique, reflecting the interannual and seasonal change
trend. It can evaluate the overall change direction and
change amplitude of vegetation. However, gradual analysis
is not capable of capturing the nonlinear and nonstationary
characteristics on vegetation time series induced by climate
change and human activities (Gholamnia et al., 2019).
Previous studies have indicated that the BFAST algorithm
can discriminate timing and shift in trends of satellite time
series on vegetation time series, and amend for the defects
of gradual analysis in vegetation monitoring (Tong et al.,
2018; Niu et al., 2019). Therefore, the combination of
gradual change analysis and abrupt change analysis can
estimate vegetation greenness and carbon sink capacity
more accurately.
Furthermore, we applied the pixel-based BFAST algo-

rithm to detect the abrupt changes in vegetation dynamics
on the LP. We found that BFAST detected significant
space-time heterogeneity of vegetation greenness. Com-
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pared to other linear models or the MK test (Wu et al.,
2019a), BFASTcan distinguish ‘when’, ‘where’, and ‘what
types’ of breakpoint occurs on time series at another level
of accuracy (Niu et al., 2019), and help us analyze the
vegetation change in key areas. Fang et al. (2018) used
BFAST to detect vegetation dynamics in Quebec, Canada,
and proposed that abrupt vegetation changes considerably
varied with different land cover types. They also found that
climate anomaly and frequent fire are the primary causes of
abrupt vegetation changes (Fang et al., 2018). Geng et al.
(2019) found that browning breakpoint was more wide-
spread than greening breakpoint in Qilian Mountains using
BFAST method, and suggested that long-term overgrazing
might be the main cause of abrupt browning changes. Our
research results showed that the pixels in most areas
display greening monotonically over the LP, which meant
that the growth in most areas is gradual, and the vegetation
restoration was not interrupted. The monotonic decreases
are only concentrated in urban areas where the rapid
urbanization of China in the past ten years has exerted most
pressure (Xiong et al., 2019). Meanwhile, some drastic
vegetation greenness changes are spotted in some areas,
such as the mining of open-pit coal mines (Fig. 7), which
will interrupt the implementation of greening policy and
lead to vegetation degradation. Moreover, it should also be
mentioned that the relocation policy and soil improvement
will promote the transformation of abandoned land into
cropland (Fig. 8). As the conclusions, BFAST algorithm
has the capability to monitor the major breakpoint and
trend change on satellite time series. It can produce
intuitive results of the changing status of vegetation, which
cannot be obtained through linear and MK trend analysis.

5 Conclusions

This study used the MODIS NDVI (monthly, 500 m)
remote sensing observation data set to study vegetation’s
temporal and spatial dynamics of vegetation on the LP. Our
results indicated that the vegetation on the LP had shown a
greening trend in the past two decades. NDVI of 70.81% of
the number of pixels increased significantly; and the
proportion of pixels with positive changes during growing
season exceeded 64%. The BFAST method has a unique
advantage in satellite time series analysis, and it has high
precision in fitting trends. We found that vegetation time
series have abruptly changed during 2004–2015, and 2011
was the year with the largest number of breakpoint pixels.
The monotonic increase was the main breakpoint type,
accounting for 83.18% over the entire area. The imple-
mentation of ecological projects over the LP and cropland
management measures are the main human factors that
promote vegetation restoration. Generally, the LP has
become one of the regions with fastest-growing vegetation
cover, and can help us estimate our capacity of offsetting

anthropogenic greenhouse gases by means of vegetation
restoration.
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