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Abstract Tight multi-medium oil reservoirs are the main
source of hydrocarbon resources around the world. Acid
fracturing is the most effective technology to improve
productivity in such reservoirs. As carbonates are primarily
composed of dolomite and calcite, which are easily
dissolved by hydrochloric acid, high-permeability region
will be formed near the well along with the main artificial
fracture when acid fracturing is implemented in tight multi-
medium oil reservoirs. In this study, a comprehensive
composite linear flow model was developed to simulate the
transient pressure behavior of an acid fracturing vertical
well in a naturally fractured vuggy carbonate reservoir. By
utilizing Pedrosa’s substitution, perturbation, Laplace
transformation and Stehfest numerical inversion technol-
ogy, the pressure behavior results were obtained in real
time domain. Furthermore, the result of this model was
validated by comparing with those of previous literature.
Additionally, the influences of some prevailing parameters
on the type curves were analyzed. Moreover, the proposed
model was applied to an acid fracturing well to evaluate the
effectiveness of acid fracturing measures, to demonstrate
the practicability of the proposed model.

Keywords tight multi-medium oil reservoir, acid fractur-
ing, stress-sensitive permeability, composite linear flow

1 Introduction

Tight multi-medium oil reservoirs are widely distributed
around the world, and numerous studies have been
conducted on this type of reservoirs (Kossack and
Gurpinar, 2001; Kang et al., 2006; Wang et al., 2018a;
Xing et al., 2018; Xu et al., 2019). In the last few decades,

many scholars noticed the distinctive pore structure and
fluid flow mechanism in carbonate reservoirs, where
matrix, natural fractures and vugs coexist in naturally
fractured vuggy reservoirs. This renders it complicated and
intractable to characterize reservoirs accurately. Generally,
matrix and vuggy pores act as storage spaces for
hydrocarbon fluids, whereas fractures are usually
considered as a pathway for fluid flow. Furthermore, vuggy
pores can be subdivided as connected and disconnected
with natural fractures. This means that fluid in the vug can
flow into fracture directly or indirectly via the bridge of
matrix.
Due to complex pore types, it is challenging to model

fluid flow through tight multi-medium oil reservoirs. After
decades of researches, scholars have put forward some
effective methods to tackle this problem. Abdassah and
Ershaghi (1986) first proposed triple-porosity/single-per-
meability model. In their model, and unsteady-state
interporosity flow between fracture and other systems
was considered in their model. Later, Liu et al. (2003)
proposed a tri-continuum medium concept considering
pseudo-steady interporosity flow. Wu et al. (2006 and
2007) developed an analytical method for transient flow
analysis in tight multi-medium oil reservoirs, taking the
flow between vug and matrix into consideration. Camacho-
Velázquez et al. (2002) established a triple-porosity/dual-
permeability model to consider primary flow not only
through fracture system to wellbore, but also vugs system
to wellbore. Subsequently, Fuentes-Cruz et al. (2004)
extended the model to partially penetrated well. Yao et al.
(2010) established the discrete fracture-vug network model
and provided to describe fluid flow in the fractured-vuggy
porous media. Wu et al (2019) applied the discrete
fracture-vug model proposed by Yao et al. (2010) to
model macrovugs, while microfractures and microvugs are
modeled with the triple-continuum concept. Guo et al.
(2012) established a test analysis model of a horizontal
well, and triple porosity and dual permeability flow
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behavior were analyzed. Their results showed that type
curves were dominated by external boundary conditions as
well as the permeability ration of fracture system to the
sum of fracture and matrix systems.
In order to reduce flow resistance meanwhile extract

hydrocarbon resources in carbonate formations effectively,
acid fracturing has been the predominant technology
(Abass et al., 2006). Thus, it is significant and attractive
to understand the flow behavior of acid fracturing wells in
tight multi-medium oil reservoirs. Generally speaking,
carbonate minerals are composed of dolomite and calcite
which are easy to be dissolved by hydrochloric acid.
Therefore, acid fracturing can not only act as “hydraulic
fracturing”, but also act as acidification to create different
types of wormholes (Fredd, 2000; Dora, 2008; Liu et al.,
2013). As for the pressure dynamics analysis for acid
fracturing wells in tight multi-medium oil reservoirs, great
efforts have been made in the last several years. Wang et al.
(2014) developed a theoretical wormhole seepage model
for the first time. In this model, wormholes are simplified
as multi-branched fractures with an infinite conductivity.
Later, a semi-analytical model that derives from the
previous one to investigate the pressure behavior for finite
conductivity multi-branched fractures in fractured-vuggy
reservoirs in detail was also suggested by Wang et al.
(2018b). Wang and Yi (2017) studied the flow behavior of
a well with a finite-conductivity fracture in a tight multi-
medium oil reservoir. In their study, the vugs were are
conceptualized as spherical shapes and seven flow regimes
were are observed. Recently, Wang et al. (2018b)
investigated the flow behavior of acid fracturing wells in
a composite fractured-vuggy carbonate reservoirs. Lei
et al. (2018) presented an analytical solution considering
the heterogeneity of the pore networks in acidized region
by the utility of the fractal geometry theory.
It is reported that some tight multi-medium oil reservoirs

may exhibit strong stress-sensitive characteristic, which
has a significant effect on transient pressure behavior
(Zhang et al., 2017; Yang et al., 2017). Yet, the
aforementioned researches haven’t taken this factor into
consideration. Moreover, all of their wok were based on
the assumption that the fracture is completely penetrated in
the vertical direction. Unfortunately, to be our best
knowledge, fracture may be partially penetrated in actual
acid fracturing implementations. With regard to partially
penetrating fractured well, many researchers (Raghavan
et al., 1978; Rodriguez et al., 1984; Igbokoyi and Tiab,
2008; Zhang et al., 2015; Yuan et al., 2018) developed
point/slab source functions and numerical methods to deal
with it respectively. However, numerical methods are
complex and time-consuming. Compared with numerical
simulation, composite linear flow model can solve the
problem of single vertically fractured well or multi-stage
fractured horizontal well conveniently. Simultaneously, it
also avoids the time-consuming process in numerical
simulation and the complexity of Green function methods

(Brown et al., 2009; Stalgorova and Matter, 2012; Tao et
al., 2018; Zeng et al., 2018; Zeng et al., 2017).
In this study, we investigate an acid fracturing vertical

well in a rectangular fractured-vuggy carbonate reservoir,
and the acidized region is also rectangular. Besides, the
artificial fracture can be either fully or partially penetrated.
The Pedrosa’s perturbation (Pedrosa, 1986) is utilized to
linearize the non-linear equations caused by stress-
sensitive permeability. The physical model and relevant
assumptions would be elaborated in Section 2. In Section
3, the mathematical model is established and the
corresponding solution is given by Laplace transformation
and Stehfest inversion technology (Stehfest, 1970). The
model verification and parameters sensitivity analysis are
presented in Section 4. Finally, some remarkable conclu-
sions are drawn in Section 5.

2 Physical model

As shown in Fig. 1, a single fractured vertical well is
located in the center of a tight multi-medium oil reservoir.
The reservoir is modeled as triple-porosity medium while
the main artificial fracture is modeled as single-porosity
medium. As for the triple-porosity medium, natural
fractures act as the main pathways, while vug and matrix
provide the storage space. The inter-porosity flow is
assumed to be in pseudo-steady state, and the process is
shown in Fig. 2. The main artificial fracture formed by acid
fracturing is symmetric and it partially penetrates the
formation in both vertical and horizontal directions. There
is an acidized region with lots of wormholes near the main
artificial fracture. Slightly compressible fluid with constant
viscosity is produced at a fixed rate through the well. For
the sake of simplification, some of other tenable assump-
tions are elaborated as following:

1) The reservoir is horizontal with uniform thickness of
h, and the reservoir pressure is pi at the begining time of
production and the gadient is uniformly distributed;

Fig. 1 Schematic of an acid fracturing well in a fractured-vuggy
carbonate reservoir.
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2) The upper and bottom boundaries of reservoir are
impermeable, and external boundary is also closed;
3) Main artificial fracture and natural fractures in

regions 1 to 6 possess stress-sensitive permeability and it
can be described as the following formula:

kf ¼ kfie
– αðpi – pf Þ, (1)

where kf denotes fracture permeability at current pressure;
kfi denotes fracture permeability at initial pressure; α refers
to permeability modulus; pi and pf refer to initial pressure
and fracture pressure.
4) The continuity conditions of pressure and flux at the

interfaces are used to connect the adjacent flow regions.
5) Isothermal and Darcy flow process is assumed while

the gravity and capillary pressure are ignored.

3 Mathematical model and solution

Based on the aforementioned assumption that the hydraulic
fracture is symmetrical both in horizontal and vertical
direction, one-quarter of the rectangular carbonate reser-
voir is implemented to simplify the problem. The system is
divided into seven regions as shown in Fig. 3, and the
shape of each region presents approximately rectangular.

3.1 Flow in regions without acidification (Region 2+
Region 3+ Region 4+ Region 5+ Region 6)

Region 6
In Region 6, considering the effect of stress sensitivity,

the governing equations in dimensionless form can be
written as

e – αDp6fD
∂2p6fD
∂z2D

– αD
∂p6fD
∂zD

� �2
" #

¼ 1

η6D
ω6f

∂p6fD
∂tD

þ ω6m
∂p6mD
∂tD

þ ω6v
∂p6vD
∂tD

� �
, (2)

ω6m
1

η6D

∂p6mD
∂tD

þ l6fmðp6mD – p6fDÞ – l6vmðp6vD – p6mDÞ ¼ 0,

(3)

ω6v
1

η6D

∂p6mD
∂tD

þ l6fvðp6vD – p6fDÞ – l6vmðp6vD – p6mDÞ ¼ 0,

(4)

where, α is permeability modulus, MPa–1; ω is storativity
ratio, dimensionless; η is diffusivity coefficient, MPa–1; l is
interporosity flow coefficient, dimensionless; f is natural
fracture property; m is matrix property; v is vug property; p
is reservoir pressure, MPa; t is time; e is Euler number; D is
dimensionless.
Dimensionless parameters in Eqs. (2)–(4) are defined in

Appendix A.
The initial condition is

p6fD ¼ p6mD ¼ p6vD ¼ 0: (5)

The outer boundary condition (no-flow) is

∂p6D
∂zD

  �����
zD¼z2D

¼ 0, (6)

where z is distance.
Based on pressure continuity, the inner boundary

condition is given as

p6DjzD¼z1D ¼ p2DjzD¼z1D ¼ p4DjzD¼z1D : (7)

With Pedrosa-substitution (Pedrosa, 1986), perturbation
and Laplace transformation methods (detailed derivations
are in Appendix B), we can obtain

∂~ξ6D
∂zD

  �����
z1D

¼ ~ξ2Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #

¼ ~ξ4Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #
:

(8)

Fig. 2 Physical modelling sketch map of tight multi-medium.

Fig. 3 Physical modeling sketch map of tight multi-medium.
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where s is dimensionless time variable in Laplace domain,
dimensionless; � is a variable after Pedrosa’s substitution;
~ is laplace transform; h is formation height, m.
Region 5
Analogously, the governing equations of Region 5 in

dimensionless form can be written as

e – αDp5fD
∂2p5fD
∂z2D

– αD
∂p5fD
∂zD

� �2
" #

¼ 1

η5D
ω5f

∂p5fD
∂tD

þ ω5m
∂p5mD
∂tD

þ ω5v
∂p5vD
∂tD

� �
, (9)

ω5m
1

η5D

∂p5mD
∂tD

þ l5fmðp5mD – p5fDÞ – l5vmðp5vD – p5mDÞ ¼ 0,

(10)

ω5v
1

η5D

∂p5mD
∂tD

þ l5fvðp5vD – p5fDÞ – l5vmðp5vD – p5mDÞ ¼ 0:

(11)

The initial condition is

p5fD ¼ p5mD ¼ p5vD ¼ 0: (12)

The outer boundary condition (no-flow) is

∂p5fD
∂zD

  �����
zD¼z2D

¼ 0: (13)

Based on pressure continuity, the inner boundary
condition is given as

p5fD  ��zD¼z1D
¼ p1fD  ��zD¼z1D

¼ p3fD  ��zD¼z1D
: (14)

After eliminating the nonlinearity by applying the
Pedrosa substitution, the solution of Region 5 can be
obtained as following:

∂~ξ5D
∂zD

  �����
z1D

¼ ~ξ1Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
ðz1D – z2DÞ

" #

¼ ~ξ3Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
ðz1D – z2DÞ

" #
:

(15)

Region 4
In Region 4, the flow is in x and z directions, and the

governing equations considering the effect of stress
sensitivity in dimensionless form can be written as

e – αDp4fD
∂2p4fD
∂x2D

þ ∂2p4fD
∂z2D

– αD
∂p4fD
∂xD

� �2

– αD
∂p4fD
∂zD

� �2
" #

¼ 1

η4D
ω4f

∂p4fD
∂tD

þ ω4m
∂p4mD
∂tD

þ ω4v
∂p4vD
∂tD

� �
, (16)

ω4m
1

η4D

∂p4mD
∂tD

þ l4fmðp4mD – p4fDÞ – l4vmðp4vD – p4mDÞ ¼ 0,

(17)

ω4v
1

η4D

∂p4mD
∂tD

þ l4fvðp4vD – p4fDÞ – l4vmðp4vD – p4mDÞ ¼ 0:

(18)

The no-flow outer boundary in x direction is

∂p4fD
∂xD

  �����
x2D

¼ 0: (19)

The pressure continuity condition between Region 4 and
Region 2 on the interface is

p4fD  ��xD¼x1D
¼ p2fD  ��xD¼x1D

: (20)

Based on the definite conditions, the solution of Region
4 can be written as

∂~ξ4D
∂xD

  �����
x1D

¼ ~ξ2Dðx1DÞ
ffiffiffiffiffi
α4

p
tanh½ ffiffiffiffiffi

α4
p ðx1D – x2DÞ�: (21)

Region 3
In Region 3, the flow is in x and z directions, and the

governing equations considering the effect of stress
sensitivity in dimensionless form can be written as

e – αDp3fD
∂2p3fD
∂x2D

þ ∂2p3fD
∂z2D

– αD
∂p3fD
∂xD

� �2

– αD
∂p3fD
∂zD

� �2
" #

¼ 1

η3D
ω3f

∂p3fD
∂tD

þ ω3m
∂p3mD
∂tD

þ ω3v
∂p3vD
∂tD

� �
, (22)

ω3m
1

η3D

∂p3mD
∂tD

þ l3fmðp3mD – p3fDÞ – l3vmðp3vD – p3mDÞ ¼ 0,

(23)

ω3v
1

η3D

∂p3mD
∂tD

þ l3fvðp3vD – p3fDÞ – l3vmðp3vD – p3mDÞ ¼ 0:

(24)

The no-flow outer boundary in x direction is

∂p3fD
∂xD

  �����
x2D

¼ 0: (25)

The pressure continuity condition between Region 3 and
Region 1 on the interface is

722 Front. Earth Sci. 2021, 15(4): 719–736



p3fD  ��xD¼x1D
¼ p1fD  ��xD¼x1D

: (26)

Based on the definite conditions, the solution of Region
3 can be written as

∂~ξ3D
∂xD

  �����
x1D

¼ ~ξ1Dðx1DÞ
ffiffiffiffiffi
α3

p
tanh½ ffiffiffiffiffi

α3
p ðx1D – x2DÞ�: (27)

Region 2
In Region 2, the flow is in x, y and z directions, and the

governing equations considering the effect of stress
sensitivity in dimensionless form can be written as

e – αDp2fD
∂2p2fD
∂y2D

þ ∂2p2fD
∂x2D

þ ∂2p2fD
∂z2D

– αD
∂p2fD
∂yD

� �2
" #

– αD
∂p2fD
∂xD

� �2

– αD
∂p2fD
∂zD

� �2� �

¼ 1

η2D
ω2f

∂p2fD
∂tD

þ ω2m
∂p2mD
∂tD

þ ω2v
∂p2vD
∂tD

� �
, (28)

ω2m
1

η2D

∂p2mD
∂tD

þ l2fmðp2mD – p2fDÞ – l2vmðp2vD – p2mDÞ ¼ 0,

(29)

ω2v
1

η2D

∂p2mD
∂tD

þ l2fvðp2vD – p2fDÞ – l2vmðp2vD – p2mDÞ ¼ 0:

(30)

The no-flow outer boundary in y direction is

∂p2fD
∂yD

  �����
y2D

¼ 0: (31)

The pressure continuity condition between Region 2 and
Region 1 on the interface is

p2fDðy1DÞ ¼ p1fDðy1DÞ, (32)

∂~ξ2fD
∂yD

  �����
y1D

¼ ~ξ1fDðy1DÞ
ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�: (33)

3.2 Flow in acidized region (Region 1)

In Region 1, the flow is also in x, y and z directions, and the
governing equations considering the effect of stress
sensitivity in dimensionless form can be written as

e – αDp6fD
∂2p6fD
∂y2D

þ ∂2p6fD
∂x2D

þ ∂2p6fD
∂z2D

– αD
∂p6fD
∂yD

� �2
" #

þ – αD
∂p6fD
∂xD

� �2

– αD
∂p6fD
∂zD

� �2� �

¼ 1

η6D
ω6f

∂p6fD
∂tD

þ ω6m
∂p6mD
∂tD

þ ω6v
∂p6vD
∂tD

� �
: (34)

The solution of region 1 can be obtained as

∂~ξ1D
∂yD

  �����wD
2

¼ – β2~ξFD
wD

2

� 	
, (35)

where

β2 ¼
ffiffiffiffiffi
α1

p exp –
ffiffiffiffiffi
α1

p wD

2

h i
– β1exp

ffiffiffiffiffi
α1

p wD

2

h i

exp –
ffiffiffiffiffi
α1

p wD

2

h i
þ β1exp

ffiffiffiffiffi
α1

p wD

2

h i, (36)

β1 ¼ exp½ – ffiffiffiffiffi
α1

p
2y1D�

�
k1f ,h

ffiffiffiffiffi
α1

p þ k2f ,h
ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�

	
�
k1f ,h

ffiffiffiffiffi
α1

p
– k2f ,h

ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�

	 , (37)

where w is wellbore property; β is intermediate variable;
FD is dimensionless fracture conductivity.

3.3 Flow in artificial main fracture

In the main artificial fracture, the single-porosity model is
applied. Thus, the diffusivity equation can be written as

∂2pFD
∂x2D

þ ∂pFD
∂yD

¼ 1

ηFD

∂pFD
∂tD

: (38)

The boundary conditions in x direction are

∂pFD
∂xD

  �����
x1D

¼ 0, (39)

∂pFD
∂xD

  �����
x1D

¼ 0
∂pFD
∂xD

  �����
0

¼ π
FCD

, (40)

where FCD is dimensionless artificial fracture conductivity,
dimensionless.
Therefore, the pressure solution for fracture region is

~ξFD ¼ πcosh½ ffiffiffiffiffiffi
αF

p ðxD – x1DÞ�
sFCD

ffiffiffiffiffiffi
αF

p
sinh½ ffiffiffiffiffiffi

αF
p ðx1DÞ�

: (41)

Set xD= 0, we can obtain the final solution for well
bottom-hole pressure in Laplace domain as following

~ξwD ¼ π
sFCD

ffiffiffiffiffiffi
αF

p
tanh½ ffiffiffiffiffiffi

αF
p ðx1DÞ�

: (42)
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According to the Duhamel and superposition theory, the
dimensionless well bottomhole pressure responses incor-
porating wellbore storage and skin effect in Laplace
domain can be written as follows:

~ξwDðs,CD,ScÞ ¼
Sc þ s~ξwD

sþ CDs
2 s~ξwD þ Sc

 � , (43)

where CD denotes dimensionless wellbore storage coeffi-
cient; Sc denotes skin factor.
Finally, the well bottomhole pressure can be obtained by

the following equation:

pwD ¼ –
1

αD
lnð1 – αDξwDÞ: (44)

4 Results and discussion

4.1 Model verification

In order to verify the proposed model, the results obtained
by this model and by trilinear flow model in the reference
(Brown et al., 2009) are compared with. Let g(s) equal to 1,
y1D equal to y2D and z1D equal to z2D to make the two
models the same. In addition, skin factor is not considered
in this case. Some other relevant parameters are presented
in Table 1.
Figure 4 presents a log/log plot of dimensionless

pressure and pressure derivatives vs. dimensionless time
solved by the two model. As we can see, the results
obtained by this model shows good agreement with the
trilinear flow model, which demonstrates the accuracy of
this model.

4.2 Flow regimes recognition

In order to obtain the transient pressure type curves, a
series of parameters are set as listed in Table 2, and the
corresponding type curves are shown in Fig. 5. There are

Table 1 Basic dimensionless parameters for model validation

Parameters Value

Dimensionlessacidized main fracturehalf-length, x1D 1

Dimensionlessacidized main fracturehalf- width, wD 0.000001

Dimensionlessacidized main fracture conductivity, FCD 1.2

Dimensionlessacidized regionhalf-width, y1D 10

Dimensionlessacidized regionhalf-height, z1D 10

Dimensionless reservoir half-length, x2D 8

Dimensionless reservoir half-width, y2D 10

Dimensionless reservoir half-height, z2D 10

Dimensionless wellbore storage coefficient, CD 0.1

Fig. 4 Comparison of the results between this model and trilinear-flow method.

Table 2 Basic dimensionless parameters for flow regimes recognition

Parameters Value

Dimensionlessacidized main fracturehalf-length, x1D 1

Dimensionlessacidized main fracturehalf- width, wD 0.000001

Dimensionlessacidized main fracture conductivity, FCD 0.8

Dimensionlessacidized regionhalf-width, y1D 1

Dimensionlessacidized regionhalf-height, z1D 8

Dimensionless reservoir half-length, x2D 8

Dimensionless reservoir half-width, y2D 10

Dimensionless reservoir half-height, z2D 10

Dimensionless wellbore storage coefficient, CD 0.1
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eight flow regimes can be observed as following
respectively from Fig. 5.
Regime I: bilinear flow in artificial fracture and in the

acidized region (Region 1). The pressure derivative curve’s
slope is 1/4 in the regime;
Regime II: first linear flow in the acidized region. The

pressure derivative curve shows a straight line with a slope
of 1/2;
Regime III: interporosity flow from vug system to

natural fracture system in acidized region;
Regime IV: interporosity flow from matrix system to

natural fracture system and from vug system to matrix
system in acidized region;
Regime V: second linear flow from un-acidized region

to acidized region. The pressure derivative curve shows a
straight line with a slope of 1/2;
Regime VI: interporosity flow from vug system to

natural fracture system in un-acidized region;
Regime VII: interporosity flow from matrix system to

natural fracture system and from vug system to matrix
system in un-acidized region;
Region VIII: pseudo-steady flow (boundary-dominant

flow).

4.3 Parameters analysis

4.3.1 Effect of fracture conductivity

Figure 6 shows the effect of fracture conductivity on
dimensionless pressure and pressure derivative. It can be
seen that fracture conductivity mainly influences the type
curves at the early stage. The greater the fracture

conductivity is, the smaller the dimensionless pressure is.
It means that lower flow resistance in the artificial main
fracture. It can also be seen that the bilinear flow stage
disappears when fracture conductivity equals to 10, and the
“concaves” in the third and fourth flow regimes have an
apparent “dip”, which indicates that fracture conductivity
has a significant influence on the pressure behavior of
acidized region.

4.3.2 Effect of permeability modulus

Figure 7 illustrates the effect of permeability modulus on
transient pressure behavior. As shown in the picture, stress
permeability has an apparent impact on the type curves in
the late time period. The greater the permeability modulus
is, the faster the permeability decreases and it leads to
larger pressure consumption at the same production. As the
permeability modulus increases from 0.00009 to 0.00019,
the boundary dominated flow shifts to an early time.

4.3.3 Effect of the coefficient of interporosity flow between
matrix and vug system

Figure 8 depicts the effect of coefficient of cross-flow from
vug to fracture on transient pressure behavior. As is
known, the coefficient of interporosity flow from vug to
fracture in acidized region represents permeability ratio of
the vug system in the fracture system. Therefore, a large
value of lfv1 denotes a high permeability of vug and leads
to an early occurrence of first interporosity flow stage. As
Fig. 8 shows, the first interporosity flow stage advances
with the increase of the parameter lfv1. It can also be seen

Fig. 5 Pressure type curves of an acid fracturing well in a tight multi-medium oil reservoir.
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that a bigger will pose a smaller pressure depletion because
dimensionless pressure curve descends as parameter lfv1
increases from 0.1 to 1.

4.3.4 Effect of storativity ratio of natural fracture in
acidized region

Figure 9 shows the effect of storage ratio of natural fracture
system in Region 1 on the flow regimes. The natural

fracture storativity ratio refers to the ratio of the fluid
storing volume in natural fracture system to the total
capacity of fluid storing in the reservoir. Furthermore, it
reflects the fracture growth level as well, so it can be called
fracture intensity as well. Similar to the coefficient of
interporosity flow from vug to fracture, storativity ratio of
natural fracture in acidized region mainly takes effect
during the first interporosity flow stage as well. The
smaller the parameter ωf1 is, the lower the first V-segment
becomes.

Fig. 6 The effect of fracture conductivity on transient pressure behavior.

Fig. 7 The effect of permeability modulus on transient pressure behavior.
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4.3.5 Effect of width of acidized region

To investigate the width of acidized region separately, the
length of acidized region is considered as a constant.
Figure 10 indicates the effect of the width of acidized
region on the transient pressure behavior. As shown in
Fig. 10, the interporosity flow in acidized region happens
later with the increasing of the width of acidized region,
while the interporosity flow in unacidized region happens
earlier. Meanwhile, the larger the size of acidized region is,

the lower the dimensionless pressure curve falls, and the
fact implies that engineer should try to enlarge the volume
of acidized region to reduce the flow obstacle and improve
well productivity.

4.3.6 Effect of reservoir size

Figure 11 displays the effect of the reservoir size on the
transient pressure behavior. As is shown in the figure, the
dimensionless pressure decreases especially in the late time

Fig. 8 The effect of interporosity flow coefficient on transient pressure behavior.

Fig. 9 The effect of storativity ratio on transient pressure behavior.
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with the increase of reservoir size. It is mainly because that
larger reservoir size can provide more fluid to slow down
the pressure depletion when well produces at the same rate.
Thus, a smaller reservoir size leads to an early boundary-
dominant flow.

4.4 Real case application

This section provides an application of the presented

model. Well A is located in Tarim oil field in northwest
China. The effective height of well A is 28m. Figure 12
presents the buildup data fitting with the proposed model
through an algorithm of auto history matching. As
presented in Fig. 12, the model is able to match the real
testing data perfectly. The interpretation parameters are
shown in Table 3. As we can see in Fig. 12, the
permeability of Region 1 is 325 mD, which demonstrates
that the acidized fracturing makes an effective work.

Fig. 10 The effect of acidized region width on transient pressure behavior.

Fig. 11 The effect of reservoir size on transient pressure behavior.
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5 Conclusions

In this paper, an efficient alternative for the analysis of acid
fracturing well in carbonate oil reservoir is developed.
Acidized regions in acid fracturing carbonate reservoir are

considered as the same as SRV concept in hydraulic
fracturing tight and shale reservoir. The fracture, matrix
and vug are conceptualized as multiple-continuum med-
ium and the composite linear model is used to solve the
problem. The stress-sensitive permeability and partially
penetrated fracture are both taken into consideration.
Based on the investigation of this paper, the following
conclusions can be drawn.
1) As for an acidized fracturing well in a carbonate oil

reservoir, the flow regimes can be subdivided into the
following stages, e.g., bilinear flow stage; linear flow
stage; cross flow in acidized region; second linear flow
from un-acidized region to acidized region; cross flow in
un-acidized region; boundary-dominant flow.
2) Parameters sensitivity analysis demonstrates that

fracture conductivity mainly influences the type curves in
the early stage while permeability modulus influences the
late stage; storativity ratio and interporosity flow mainly
influences the cross flow stage; large acidized region size
can reduce the pressure loss and enhance well productivity.
3) The presented solution combining with the algorithm

of auto history matching can be used to obtain reservoir
parameters and evaluate the effectiveness of acid fracturing
measures.

Acknowledgements This work was supported by the National Major
Research Program for Science and Technology of China (Grant No.
2017ZX05030-002).

Appendix A. Dimensionless definitions

To simplify the equations and the corresponding solutions,
some associated dimensionless variables are defined as

Fig. 12 The effect of reservoir size on transient pressure behavior.

Table 3 The interpretation results of pressure-curve fitting

Parameters Interpretation
Results

Half artificial fracture length, x1 (m) 31

Artificialfracture permeability, kF (10
–3 μm2) 2928

Natural fracture permeability in acidized region,
kf1 (10

–3 μm2)
325

Matrix permeability in acidized region, km1 (10
–3 μm2) 7.3

Natural fracture permeability in un-acidized region,
kf2= kf3= kf4= kf5= kf6 (10

–3 μm2) 86

Matrix permeability in un-acidized region,
Km2= km3= km4= km5= km6 (10

–3 μm2) 7.3

Interporosity flow coefficient between vugand fracture
in acidized region, lfv1

0.1

Interporosity flow coefficient between matrix and
fracture in acidized region, lfm1

0.001

Interporosity flow coefficient between vug and matrix in
acidized region, lmv1

0.001

Storativity ratio of natural fracture, ωf1 0.001

Storativity ratio of matrix, ωm1 0.994

Storativity ratio of vugs, ωv1 0.005

Dimensionless wellbore storage coefficient, CD 0.0013

Skin factor, Sc 0
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follows:
Dimensionless pressure:

pD ¼ 2πkrefhðpi – pÞ
q�B

: (A1)

Dimensionless time:

tD ¼ ηref t

L2ref
, (A2)

where kref, ηref, and Lref are reference permeability,
diffusivity and length respectively. Besides, the expression
of ηref is given as

ηref ¼
kref

½ðφctÞf þ ðφctÞm þ ðφctÞv�ref�
, (A3)

where φ is porosity, fraction; ct is compressibility, MPa–1; μ
is fluid viscosity, 10–3 Pa$s.
Dimensionless distances:

x1D ¼ xf
Lref

,  x2D ¼ x2
Lref

,  y1D ¼ y1
Lref

,

y2D ¼ y2
Lref

,  z1D ¼ z1
Lref

,  z2D ¼ z2
Lref

: (A4)

Dimensionless permeability modulus:

αD ¼ α
q�B

2πkrefh
: (A5)

where r is wellbore radius, m; h isformation height, m.
Dimensionless diffusivity:

ηjD ¼ ηji
ηref

,  j ¼ F, 1, 2, 3, 4, 5, 6: (A6)

The storativity ratios of fracture, matrix and vug are
respectively listed as following:

ωf ¼
ðφctÞf

ðφctÞf þ ðφctÞm þ ðφctÞc
, (A7)

ωm ¼ ðφctÞm
ðφctÞf þ ðφctÞm þ ðφctÞc

, (A8)

ωc ¼
ðφctÞc

ðφctÞf þ ðφctÞm þ ðφctÞc
: (A9)

The interporosity coefficients of vug to fracture, matrix
to fracture and vug to matrix are defined as following
respectively:

lfv ¼ �fm
kv
kfi
L2ref , (A10)

lfm ¼ �fm
km
kfi
L2ref , (A11)

lvm ¼ �vm
kv
km

L2ref , (A12)

where σ is shape factor, m–2.
Dimensionless fracture conductivity:

FCD ¼ kFw

k1Lref
¼ kFwD

k1
: (A13)

Appendix B. Derivation of the Mathematical
Model

Region 6
Region 6 is the unstimulated region due to partial

penetration in vertical direction, and we assume that the
flow in this section is a 1D linear flow in z direction. Thus,
the diffusivity equations in natural fracture, matrix and vug
are respectively given as

e – αðpi – p6f Þ
∂2p6f
∂z2

þ α
∂p6f
∂z

� �2
" #

¼ ðφctÞ6f �
k6fi

∂p6f
∂t

þ ðφctÞ6m�
k6fi

∂p6m
∂t

þ ðφctÞ6v�
k6fi

∂p6v
∂t

,

(B1)

ðφctÞ6m
∂p6m
∂t

þ�6fm
k6m
�

ðp6m – p6f Þ–�6vm
k6v
�
ðp6v–p6mÞ ¼ 0,

(B2)

ðφctÞ6v
∂p6v
∂t

þ �6fv
k6v
�

ðp6v – p6f Þ þ �6vm
k6v
�
ðp6v – p6mÞ ¼ 0:

(B3)

Based on the dimensionless definitions in Appendix A,
Eqs. (B1) to (B3) can be converted into dimensionless
form as following:

e – αDp6fD
∂2p6fD
∂z2D

– αD
∂p6fD
∂zD

� �2
" #

¼ 1

η6D
ω6f

∂p6fD
∂tD

þ ω6m
∂p6mD
∂tD

þ ω6v
∂p6vD
∂tD

� �
, (B4)

ω6m
1

η6D

∂p6m
∂tD

þ l6fmðp6m – p6f Þ – l6vmðp6v – p6mÞ ¼ 0,

(B5)

ω6v
1

η6D

∂p6m
∂tD

þ l6fvðp6v – p6f Þ – l6vmðp6v – p6mÞ ¼ 0:

(B6)
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Since Eq. (B4) is strongly nonlinear due to the
consideration of pressure-dependent permeability, we
introduce Pedrosa’s substitution to eliminate the non-
linearity [] (Pedrosa, 1986):

p6D ¼ –
1

αD
lnð1 – αDξ6DÞ: (B7)

Thus, Eq. (B4) can be converted into

∂2ξ6fD
∂z2D

¼ ω6f

η6D

1

1 – αDξ6fD

∂ξ6fD
∂tD

þ ω6m

η6D

∂p6mD
∂tD

þ ω6v

η6D

∂p6vD
∂tD

: (B8)

A perturbation in αD is conducted:

1

1 – αDξ6fD
¼ 1þ αDξ6fD þ ðαDξ6fDÞ2 þ ðαDξ6fDÞ3 þ � � � ,

(B9)

–
1

αD
lnð1 – αDξ6fDÞ ¼ ξ6fD þ 1

2
αDξ

2
6fD þ 1

3
α2Dξ

3
6fD � � � :

(B10)

For small αD, the higher-order terms in the series
become smaller successively and the zero-order perturba-
tion solution cansatisfies the accuracy requirement. Thus,
Eqs. (B4)–(B6) can be rewritten as

∂2ξ6fD
∂z2D

¼ ω6f

η6D

∂ξ6fD
∂tD

þ ω6m

η6D

∂p6mD
∂tD

þ ω6v

η6D

∂p6vD
∂tD

, (B11)

ω6m
1

η6D

∂p6m
∂tD

þ l6fmðp6m – ξ6f Þ – l6vmðp6v – p6mÞ ¼ 0,

(B12)

ω6v
1

η6D

∂p6v
∂tD

þ l6fvðp6v – ξ6f Þ þ l6vmðp6v – p6mÞ ¼ 0:

(B13)

The initial and boundary conditions can be transformed
into

ξ6DjtD¼0 ¼ 0, (B14)

∂ξ6D
∂zD

  �����
zD¼z2D

¼ 0, (B15)

ξ6DjzD¼z1D ¼ ξ2DjzD¼z1D ¼ ξ4DjzD¼z1D : (B16)

Subsequently, we apply the Laplace transformation of tD
to convert Eqs. (B11)–(B13) into Laplace domain. The
Laplace transformation with respect to tD is defined as
following:

~ξ6DðzD, sÞ ¼ !
þ1

0

e – stDξ6DðzD,tDÞdtD: (B17)

Eqs. (B11)–(B13) can be written as

∂2~ξ6fD
∂z2D

¼ s
ω6f

η6D
~ξ6fD þ s

ω6m

η6D
~p6mD þ s

ω6v

η6D
~p6vD, (B18)

s
ω6m

η6D
~p6m þ l6fm ~p6m – ~ξ6f


 �
– l6vm ~p6v – ~p6mð Þ ¼ 0, (B19)

s
ω6v

η6D
~p6v þ l6fv ~p6v – ~ξ6f


 �þ l6vm ~p6v – ~p6mð Þ ¼ 0: (B20)

Substituting the matrix and vuginterporosity flow Eqs.
(B19) and (B20), we can obtain

∂2~ξ6fD
∂z2D

¼ s

η6D
g6ðsÞ~ξ6fD, (B21)

g6ðsÞ ¼ ω6f þ
l6fv þ l6fm

 � s

η6D
þ 1 –ω6f

ω6vω6m
½l6fvl6fm þ ðl6fv þ l6fmÞl6vm�

s

η6D

� �2

þ l6fv

ω6v
þ l6fm

ω6m
þ 1

ω6v
þ 1

ω6m

� �
l6vm

� �
s

η6D
þ l6fvl6fm þ ðl6fv þ l6fmÞl6vm

ω6vω6m

: (B22)

The boundary conditions in Laplace domain are

∂~ξ6D
∂zD

  �����
zD¼z2D

¼ 0, (B23)

~ξ6DjzD¼z1D ¼ ~ξ2DjzD¼z1D ¼ ~ξ4DjzD¼z1D : (B24)

Combining boundary conditions of Eqs. (B23) and
(B24), we can obtain the pressure solutions for Region 6 as

following:

~ξ6D ¼ ~ξ2Dðz1DÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðzD – z2DÞ

" #

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #, (B25)
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~ξ6D ¼ ~ξ4Dðz1DÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðzD – z2DÞ

" #

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #: (B26)

Therefore, the flux between Region 6 and 2, and Region
6 and 4 is proportional to

∂~ξ6D
∂zD

  �����
z1D

¼ ~ξ2Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #
,

(B27)

∂~ξ6D
∂zD

  �����
z1D

¼ ~ξ4Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #
:

(B28)

Region 5
Analogously, the diffusivity equation and boundary

conditions in Region 5 in Laplace domain are

∂2~ξ5fD
∂z2D

¼ s

η5D
g5ðsÞ~ξ5fD, (B29)

where

ξ5D ¼ 1

αD
ð1 – eαDp5DÞ, (B30)

g5ðsÞ ¼ ω5f þ
l5fv þ l5fm

 � s

η5D
þ 1 –ω5f

ω5vω5m
½l5fvl5fm þ ðl5fv þ l5fmÞl5vm�

s

η5D

� �2

þ l5fv

ω5v
þ l5fm

ω5m
þ 1

ω5v
þ 1

ω5m

� �
l5vm

� �
s

η5D
þ l5fvl5fm þ ðl5fv þ l5fmÞl5vm

ω5vω5m

: (B31)

The boundary conditions in Laplace domain are

∂~ξ5D
∂zD

  �����
zD¼z2D

¼ 0, (B32)

~ξ5DjzD¼z1D ¼ ~ξ1DjzD¼z1D ¼ ~ξ3DjzD¼z1D : (B33)

The flux between Region 5 and Region 1, and Region 5
and Region 3 is proportional to

∂~ξ5D
∂zD

  �����
z1D

¼ ~ξ1Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
ðz1D – z2DÞ

" #
,

(B34)

∂~ξ5D
∂zD

  �����
z1D

¼ ~ξ3Dðz1DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
ðz1D – z2DÞ

" #
:

(B35)

Region 4
In Region 4, the diffusivity equation in Laplace domain is

∂2~ξ4D
∂x2D

þ ∂2~ξ4D
∂z2D

–
sg4ðsÞ
η4D

~ξ4D ¼ 0, (B36)

where

ξ4D ¼ 1

αD
ð1 – eαDp4DÞ, (B37)

g4ðsÞ ¼ ω4f þ
l4fv þ l4fm

 � s

η4D
þ 1 –ω4f

ω4vω4m
½l4fvl4fm þ ðl4fv þ l4fmÞl4vm�

s

η4D

� �2

þ l4fv

ω4v
þ l4fm

ω4m
þ 1

ω4v
þ 1

ω4m

� �
l4vm

� �
s

η4D
þ l4fvl4fm þ ðl4fv þ l4fmÞl4vm

ω4vω4m

: (B38)

To convert Eq. (B36) into a 1D form, we integrate each
of its term from 0 to z1D with respect to zD. Assuming that
the pressure in Region 4 does not depend on zD, and
combining the flux continuity condition between Region 6
and Region 4,Eq. (B36) can be rewritten as

∂2~ξ4D
∂x2D

þ k6f ,v
k4f ,vz1D

∂~ξ6D
∂zD

  �����
z1D

–
sg4ðsÞ
η4D

~ξ4D ¼ 0: (B39)

Substituting Eq. (B28) into (B39), we can obtain

∂2~ξ4D
∂x2D

– α4~ξ4D ¼ 0, (B40)

where

α4 ¼
sg4ðsÞ
η4D

–
k6f ,v

k4f ,vz1D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg6ðsÞ
η6D

s
ðz1D – z2DÞ

" #
:

(B41)

The boundary conditions in Laplace domain are
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∂~ξ4D
∂xD

  �����
x2D

¼ 0, (B42)

~ξ4DjxD¼x1D ¼ ~ξ2DjxD¼x1D : (B43)

The flux between Region 4 and 2 is proportional to

∂~ξ4D
∂xD

  �����
x1D

¼ ~ξ2Dðx1DÞ
ffiffiffiffiffi
α4

p
tanh½ ffiffiffiffiffi

α4
p ðx1D – x2DÞ�: (B44)

Region 3
Similarly, the governing equation in Region 3 in Laplace

domain is

∂2~ξ3D
∂x2D

þ ∂2~ξ3D
∂z2D

–
sg3ðsÞ
η3D

~ξ3D ¼ 0, (B45)

where

ξ4D ¼ 1

αD
ð1 – eαDp4DÞ, (B46)

g3ðsÞ ¼ ω3f þ
l3fv þ l3fm

 � s

η3D
þ 1 –ω3f

ω3vω3m
½l3fvl3fm þ ðl3fv þ l3fmÞl3vm�

s

η3D

� �2

þ l3fv

ω3v
þ l3fm

ω3m
þ 1

ω3v
þ 1

ω3m

� �
l3vm

� �
s

η3D
þ l3fvl3fm þ ðl3fv þ l3fmÞl3vm

ω3vω3m

: (B47)

To convert Eq. (B45) into a 1D form, we integrate each
of its term from 0 to z1D with respect to zD. Assuming that
pressure in Region 3 does not depend on zD, and using the
flux continuity condition between Region 5 and Region 3,
Eq. (B45) can be rewritten as

∂2~ξ3D
∂x2D

þ k5f ,v
k3f ,vz1D

∂~ξ5D
∂zD

jz1D –
sg3ðsÞ
η3D

~ξ3D ¼ 0: (B48)

Substituting Eq. (B35) into Eq. (B48), we can obtain

∂2~p3D
∂x2D

– α3~p3D ¼ 0: (B49)

where

α3 ¼
sg3ðsÞ
η3D

–
k5f ,v

k3f ,vz1D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η3D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η3D

s
ðz1D – z2DÞ

" #
:

(B50)

The boundary conditions in Laplace domain are

∂~ξ3D
∂xD

jx2D ¼ 0, (B51)

~ξ3DjxD¼x1D ¼ ~ξ1DjxD¼x1D : (B52)

Flux between Region 3 and Region 1 is proportional to

∂~p3D
∂xD

jx1D ¼ ~p1Dðx1DÞ
ffiffiffiffiffi
α3

p
tanh½ ffiffiffiffiffi

α3
p ðx1D – x2DÞ�: (B53)

Region 2
In Region 2, the diffusivity equation in Laplace domain

is

∂2~ξ2D
∂y2D

þ ∂2~ξ2D
∂x2D

þ ∂2~ξ2D
∂z2D

–
sg2ðsÞ
η2D

~ξ2D ¼ 0, (B54)

where

ξ4D ¼ 1

αD
ð1 – eαDp4DÞ, (B55)

g2ðsÞ ¼ ω2f þ
l2fv þ l2fm

 � s

η2D
þ 1 –ω2f

ω2vω2m
½l2fvl2fm þ ðl2fv þ l2fmÞl4vm�

s

η2D

� �2

þ l2fv

ω2v
þ l2fm

ω2m
þ 1

ω2v
þ 1

ω2m

� �
l2vm

� �
s

η2D
þ l2fvl2fm þ ðl2fv þ l2fmÞl2vm

ω2vω2m

: (B56)

To convert Eq. (B54) into a 1D form, we integrate each
of its term from 0 to z1D with respect to zD, and from 0 to
x1D with respect to xD. Assuming that the pressure in
Region 2 does not depend on xD and zD, and combining the
flux continuity condition between Region 2 and 4, and
Region 2 and 6, Eq. (B54) can be rewritten as

∂2~ξ2D
∂y2D

þ k4f ,v
k2f ,vx1D

∂~ξ4D
∂xD

  �����
x1D

þ k6f ,v
k2f ,vz1D

∂~ξ2D
∂zD

  �����
z1D

–
sg2ðsÞ
η2D

~p2D ¼ 0: (B57)

Substituting Eqs. (B27) and (B44) into (B57), we can
obtain

∂2~ξ2D
∂y2D

– α2~ξ2D ¼ 0, (B58)

where
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α2 ¼
s

η2D
–

k4
k2x1D

ffiffiffiffiffi
α4

p
tanh½ ffiffiffiffiffi

α4
p ðx1D – x2DÞ�

–
k6

k2z1D

ffiffiffiffiffiffiffiffi
s

η6D

r
tanh

ffiffiffiffiffiffiffiffi
s

η6D

r
ðz1D – z2DÞ

� �
: (B59)

The boundary conditions in Laplace domain are

∂~ξ2D
∂yD

  �����
y2D

¼ 0, (B60)

~ξ2Dðy1DÞ ¼ ~ξ1Dðy1DÞ: (B61)

The flux between Region 2 and 1 is proportional to

∂~ξ2D
∂yD

  �����
y1D

¼ ~ξ1Dðy1DÞ
ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�: (B62)

Region 1
In Region 1, the diffusivity equation in Laplace domain

is

∂2~ξ1D
∂y2D

þ ∂2~ξ1D
∂x2D

þ ∂2~ξ1D
∂z2D

–
sg1ðsÞ
η1D

~ξ1D ¼ 0, (B63)

where

ξ1D ¼ 1

αD
ð1 – eαDp1DÞ, (B64)

g1ðsÞ ¼ ω1f þ
l1fv þ l1fm

 � s

η1D
þ 1 –ω1f

ω1vω1m
½l1fvl1fm þ ðl1fv þ l1fmÞl1vm�

s

η1D

� �2

þ l1fv

ω1v
þ l1fm

ω1m
þ 1

ω1v
þ 1

ω1m

� �
l1vm

� �
s

η4D
þ l1fvl1fm þ ðl1fv þ l1fmÞl1vm

ω1vω1m

: (B65)

To convert Eq. (B63) into a 1D form, we integrate each
of its term from 0 to z1D with respect to zD, and from 0 to
x1D with respect to xD. Assuming that the pressure in
Region 1 does not depend on xD and zD, and combining the
flux continuity condition between Region 1 and 3, and
Region 1 and 5, Eq. (B54) can be rewritten as

∂2~ξ1D
∂y2D

þ k3
k1x1D

∂~ξ3D
∂xD

  �����
x1D

þ k5
k1z1D

∂~ξ5D
∂zD

  �����
z1D

–
sg1ðsÞ
η1D

~ξ1D

¼ 0,

(B66)

∂2~ξ1D
∂y2D

– α1~ξ1D ¼ 0, (B67)

where

α1 ¼
sg1ðsÞ
η1D

–
k3

k1x1D

ffiffiffiffiffi
α3

p
tanh½ ffiffiffiffiffi

α3
p ðx1D – x2DÞ�

–
k5

k1z1D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg5ðsÞ
η5D

s
ðz1D – z2DÞ

" #
: (B68)

Based on the flux continuity condition at the interface of
Regions 1 and 2, and the pressure continuity condition at
the interface of Region 1 and main artificial fracture, we
can obtain

∂~ξ1D
∂yD

  �����wD
2

¼ – β2~ξFD
wD

2

� 	
, (B69)

where

β2 ¼
ffiffiffiffiffi
α1

p exp –
ffiffiffiffiffi
α1

p wD

2

h i
– β1exp

ffiffiffiffiffi
α1

p wD

2

h i

exp –
ffiffiffiffiffi
α1

p wD

2

h i
þ β1exp

ffiffiffiffiffi
α1

p wD

2

h i, (B70)

β1 ¼ exp½ – ffiffiffiffiffi
α1

p
2y1D�

�
k1

ffiffiffiffiffi
α1

p þ k2
ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�

	
�
k1

ffiffiffiffiffi
α1

p
– k2

ffiffiffiffiffi
α2

p
tanh½ ffiffiffiffiffi

α2
p ðy1D – y2DÞ�

	 : (B71)

Fracture
The diffusivity equation for main artificial fracture in

Laplace domain is

∂2~ξFD
∂x2D

þ ∂2~ξFD
∂y2D

–
s

ηFD
~ξFD ¼ 0, (B72)

where

ξFD ¼ 1

αD
ð1 – eαDpFDÞ: (B73)

To convert Eq. (B63) into a 1D form, we integrate each
of its term from 0 to x1D with respect to xD. Assuming that
the pressure in Region 1 does not depend on xD, and
combining the flux continuity condition between fracture
and Region 1 Eq. (B54) can be rewritten as

∂2~ξFD
∂x2D

þ 2k1
wDkF

∂~ξ1D
∂yD

  �����wD
2

–
s

ηFD
~ξFD ¼ 0: (B74)

734 Front. Earth Sci. 2021, 15(4): 719–736



Based on the dimensionless fracture conductivity
defined in Eq (A13), we can obtain

∂2~ξFD
∂x2D

þ 2

FCD

∂~ξ1D
∂yD

  �����wD
2

–
s

ηFD
~ξFD ¼ 0: (B75)

Substituting Eq. (B69) into (B75), we can obtain

∂2~ξFD
∂x2D

– αF~ξFD ¼ 0, (B76)

where

αF ¼ 2β2
FCD

þ s

ηFD
: (B77)

The boundary conditions in x direction are

∂~ξFD
∂xD

  �����
x1D

¼ 0, (B78)

∂~ξFD
∂xD

  �����
0

¼ –
π

sFCD
: (B79)

Therefore, the pressure solution for fracture region is

~ξFD ¼ πcosh½ ffiffiffiffiffiffi
αF

p ðxD – x1DÞ�
sFCD

ffiffiffiffiffiffi
αF

p
sinh½ ffiffiffiffiffiffi

αF
p ðx1DÞ�

: (B80)

Set xD= 0, we can obtain the final solution for the well
bottom-hole pressure in Laplace domain as following:

~ξwD ¼ π
sFCD

ffiffiffiffiffiffi
αF

p
tanh½ ffiffiffiffiffiffi

αF
p ðx1DÞ�

: (B81)
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