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Abstract Previous studies on typhoon disaster risk
zoning in China have focused on individual provinces or
small-scale areas and lack county-level results. In this
study, typhoon disaster risk zoning is conducted for
China’s coastal area, based on data at the county level.
Using precipitation and wind data for China and typhoon
disaster and social data at the county level for China’s
coastal area from 2004 to 2013, first we analyze the
characteristics of typhoon disasters in China’s coastal area
and then develop an intensity index of factors causing
typhoon disasters and a comprehensive social vulnerability
index. Finally, by combining the two indices, we obtain a
comprehensive risk index for typhoon disasters and
conduct risk zoning. The results show that the maximum
intensity areas are mainly the most coastal areas of both
Zhejiang and Guangdong, and parts of Hainan Island,
which is similar to the distribution of typhoon disasters.
The maximum values of vulnerability in the northwest of
Guangxi, parts of Fujian coastal areas and parts of the
Shandong Peninsula. The comprehensive risk index
generally decreases from coastal areas to inland areas.
The high-risk areas are mainly distributed over Hainan
Island, south-western Guangdong, most coastal Zhejiang,
the coastal areas between Zhejiang and Fujian and parts of
the Shandong Peninsula.

Keywords typhoon disaster, risk zoning, comprehensive
social vulnerability index, China’s coastal area

1 Introduction

Typhoons, also known as tropical cyclones, may make
landfall on China from Hainan in the south to Liaodong in
the north. Throughout history, severe and super typhoons
have caused extreme disasters in China, resulting in serious

damage to infrastructure, property and the agricultural
industry, and loss of life (Wang et al., 2006; Zhang et al.,
2009). According to statistics from 1949 to 2010, on
average, 27.1 typhoons generate each year in the North-
west Pacific and South China Sea, of which 6.9 typhoons
land on China. From 2005 to 2015, typhoons in China have
caused annual average direct economic losses of 44.78
billion CNY (converted to 2005 values), accounting for
17.4% of the total direct economic losses of meteorological
disasters (Zhao et al., 2015). Therefore, it is of significance
to build a system for assessing the risk of typhoon disasters
in China’s coastal area.
As the basis for typhoon disaster impact assessment, a

series of studies were conducted, including the activity
characteristics of the impacting and landfalling typhoons,
typhoon disaster characteristics and formation regularity
(Liang et al., 1995; Xu and Gao, 2005; Xue et al., 2006;
Yang et al., 2007; Chen et al., 2009). Following this, some
studies assessed the risk of typhoon disasters in China,
with more emphasis on semiquantitative research based on
disaster data (Cheng and Wang, 2004; Lou et al., 2009;
Rezapour and Baldock, 2014). In addition, Lin and Luo
(1995) and Kim et al. (2018) assessed the regional typhoon
disaster risk and developed forecast models.
The arrival of a typhoon is accompanied by heavy rain

and strong winds, which are the factors causing severe
disasters. Using the advanced Doppler weather radar, Liu
et al. (2011) determined the dynamic and static factors of
typhoons to establish a typhoon disaster assessment model.
Niu et al. (2011) selected representative indices of typhoon
precipitation and typhoon winds to establish a loss
assessment model. Vickery et al. (2009), Fang and Shi
(2012), and Fang and Lin (2013) reviewed the factors
causing tropical cyclone disasters. Huang and Wang
(2015) built a quantitative disaster assessment model by
analyzing the indicators of the two factors (rainfall and
intensity) and typhoon disasters, while some studies only
consider the factor causing disasters to determine the risk
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of typhoon disasters (Li et al., 2006; Su et al., 2008; Yang
et al., 2010).
Considering the vulnerability component of risk, many

factors have been chosen for study, such as population,
economic currency, indoor property, gross domestic
product and road network (Ding and Shi, 2002; Jiang
et al., 2014; Xu et al., 2015; Cao et al., 2016; Mo et al.,
2017). Pielke and Landsea (1998) pointed out that
increasing population and increasing wealth are the major
vulnerability factors contributing to increasing disaster
losses. A number of population and economic indices
have been established, among which the most widely used is
the social vulnerability index of Cutter and collaborators
(Cutter et al., 2003; Chen et al., 2011). Chen et al. (2013)
selected 29 socioeconomic indicators to design a typhoon
disaster vulnerability index method for China.
In recent years, some researchers have conducted studies

on risk zoning. For local areas, Yu et al. (2011) divided
Hangzhou city into five typhoon rainstorm flooding
disaster risk zones. In addition, Lou et al. (2012) divided
the risk of typhoon disasters in Zhejiang Province into four
parts. For larger ranges, Chen et al. (2011) found that 16
cities could be classified into three grades of hazard in the
Yangtze River Delta region. Furthermore, Yin et al. (2013)
zoned typhoon disasters in China into nine regions. Most
previous studies on typhoon disaster risk assessment have
focused on a single province or on smaller areas and do not
utilize disaster data at the level of individual counties.
Recently, Lu et al. (2018) developed a method for risk
zoning of typhoon disasters at the county level for
Zhejiang Province. This makes it possible to conduct
typhoon disaster risk zoning at the county level for China’s
coastal areas, which is the main topic of this study. The
method can be used to determine a suitable study area
according to the disaster data and select the best technical
methodology for conducting the study.
To conduct typhoon disaster risk zoning at the county

level for China’s coastal areas, the remainder of this paper
is organized as follows. Section 2 introduces the data and
methods. Section 3 discusses the characteristics of typhoon
disasters and typhoon precipitation and winds in China’s
coastal areas. Section 4 builds an intensity index of factors
causing typhoon disasters and a comprehensive social
vulnerability index. The two indices are combined to
obtain a comprehensive risk index and risk zoning is
conducted. Section 5 provides a conclusion and discusses
the applicability of the method.

2 Data and methods

2.1 Data

2.1.1 Precipitation and wind data

This study uses the daily precipitation data of 2479 stations

and the daily wind data of 2419 stations which are
distributed throughout China from 1 January, 2004 to 31
December, 2013, provided by the National Meteorological
Information Center. The maximum wind speed is the
maximum 10 min mean wind speed on the day.

2.1.2 Typhoon disaster and social data

Coastal typhoon disaster data for China were provided by
the National Climate Center with county-level resolution
recorded for each typhoon. The data include four
indicators: direct economic loss, affected population,
death toll and affected crop area. The typhoon disaster
data of provinces from Meteorological Disaster Yearbooks
are used as a quality-control check of the damage data at
county level. Table 1 shows typhoon disaster records
during 2004–2013 for the 12 coastal provinces and cities in
China. There are only three years of records for Liaoning
and no records in Hebei, Tianjin and Taiwan. Therefore,
the other eight coastal provinces and cities with at least
seven years of records — Shandong, Jiangsu, Shanghai,
Zhejiang, Fujian, Guangdong, Guangxi and Hainan —
were selected as the study area (Fig. 1). Figure 2 shows the
distribution of the number of typhoon disaster records in
the eight coastal provinces and cities. It can be seen that the
junction coastal areas between Fujian and Zhejiang, and
between Guangdong and Guangxi have the highest
frequency of records.
The social data were obtained from the sixth national

population census of China in 2010, including the resident
population, household registration population and so on.
The socioeconomic data are from the statistical yearbooks
of provinces, cities and counties in 2011 provided by the
China Economic and Social Development Statistics
Database.

2.2 Method

This study develops risk zoning for China’s coastal areas
using county-level-resolution data following the methods
developed by Lu et al. (2018). Preliminary to the results
documented here, three technical paths were explored. The
first path treats each coastal province as an independent
individual for risk zoning and then unifies the zoning
results. On the basis of the different typhoon disasters,
different economic bases and social population gaps in
each province and city, the second path divides the coastal
provinces into three regions, South China, South-east
China and East China, for risk zoning and then unifies the
results. The third route considers the coastal provinces and
cities as a whole for risk zoning. Comparing the results of
the three paths, it is found that the comprehensive risk
zoning result of the third technical path corresponds to the
typhoon disaster distribution, and therefore can better
indicate the typhoon disaster risk level for each county in
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China’s coastal area. The advantage of the third technical
route is mainly the use of unified grading standards, which
can reduce the error between provinces on the results of

risk zoning. Therefore, this study chooses coastal pro-
vinces and cities as a whole to study typhoon disaster risks
and zoning.

2.2.1 Objective synoptic analysis technique

Ren et al. (2001, 2007) developed a numerical technique,
the objective synoptic analysis technique (OSAT), to
identify tropical cyclone precipitation. The OSAT uses the
distance from the typhoon center and the closeness and
continuity between neighboring stations with precipitation

Fig. 1 Study area.

Fig. 2 Number of typhoon disaster records in the study area.

Table 1 Typhoon disaster records during 2004–2013 for the 12 coastal
provinces and cities in China

Provinces Years Total years

Fujian 2004–2013 10

Guangdong 2004–2013 10

Zhejiang 2004–2012 9

Jiangxi 2005–2013 9

Jiangsu 2004–2009, 2011–2013 9

Shanghai 2004–2009, 2011–2013 9

Shandong 2005–2008, 2010–2013 7

Hainan 2005–2007, 2010–2013 7

Liaoning 2005, 2011, 2012 3

Hebei None

Tianjin None

Taiwan None
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to trace typhoon-influenced rainbelts, which may extend
from 500 km to 1100 km from a typhoon center. Lu et al.
(2016) developed the method of improved OSAT to
identify typhoon winds. Then, in this study we use the
OSAT method and the improved OSAT method (Lu et al.
2016) to identify typhoon precipitation and typhoon wind
corresponding to individual cases of typhoons using daily
station precipitation and wind data. The typhoon precipita-
tion data refers to the accumulated precipitation for a
typhoon case, while the typhoon wind data represents the
maximum 10-min mean wind speed during a typhoon case.
After identifying typhoon precipitation and winds through-
out China, 538 stations, which are in the study area, are
applied in the study.

2.2.2 Canonical correlation analysis

Canonical correlation analysis (CCA), which was first
proposed by Hotelling (1936) for multivariate statistical
analysis, is used in this study. The objective of CCA is to
relate a set of dependent or criterion variables to another set
of independent or predictor variables (Hardoon and
Shawe-Taylor, 2009). This study uses CCA to determine
the relationship between the affected population and
economic loss (first set of variables), and the typhoon
precipitation and winds (second set of variables).

2.2.3 Standardization methods

The study uses two standardization methods: Z-score
standardization and min–max standardization. The equa-
tion of them are as (1) and (2), respectively.

Z ¼ ðx –�Þ
�

, (1)

where Z is the standardized value, x is the original value,
while m and are the mean and the standard deviation of x,
respectively. Z-score standardization is mainly used in
calculating the intensity index of factors (the wind and
precipitation) causing typhoon disasters.
Min-max standardization converts the initial value to a

decimal between [0, 1]. The Equation is as follows:

x*i ¼
xi –mi

Mj –mj
, (2)

where x*i is the standardized value, xi is the original value,
Mj = max{xi} and mj =max{xi}. Min-max standardization
is mainly used in calculating the comprehensive risk index
“R” and its two factors “I” and “SoVI.”

2.2.4 Vulnerability assessment

On the basis of the SoVI designed to determine the disaster
social vulnerability in the United States, Chen et al. (2013)
selected 29 socioeconomic indicators to develop a typhoon

disaster vulnerability index method for China’s social and
economic environment. This study uses this method to
evaluate the vulnerability of the study area and analyzes
the spatial distribution of vulnerability in China’s coastal
areas.

3 Characteristics of typhoon disasters and
factors

3.1 Characteristics of factors causing typhoon disasters

The factors causing typhoon disasters are typhoon
precipitation, typhoon winds and storm surges (Liang
et al., 1995). In this study, two factors, typhoon
precipitation and winds, are considered.
According to the annual average typhoon precipitation

frequency based on daily precipitation ≥0.1 mm for the
study area from 2004 to 2013 (Fig. 3(a)), it is found that
Fujian and Guangdong are high-frequency regions. The
highest frequency appears in Jiuxian Mountains, Fujian
Province, with an annual average impact frequency of
more than nine events per year. Considering the annual
average typhoon precipitation (Fig. 3(b)), the magnitude
decreases inland from the coast. The annual average
precipitation along the coastline in Shanghai, Zhejiang,
Fujian, Guangdong, southern Guangxi and Hainan reaches
a maximum level of more than 250 mm. On the basis of
comparative analysis of the maximum daily precipitation
of typhoons and the maximum accumulated precipitation
of typhoons from 2004 to 2013 in the study area (Figs. 3(c)
and 3(d)), it is found that extreme precipitation in south
China is generally greater than that in southeast China
especially for the maximum accumulated precipitation and
in Fujian Province. In addition, maximum TC daily
precipitation along the coastal line of southeast China is
much bigger than that in the inland area. These are
consistent with Chen and Ding (1979) on that the Central
Mountain Range (CMR) of Taiwan Island generally
weakens the intensity of precipitation of a typhoon in
Fujian Province, and Qiu et al. (2019) on that the
coastal mountains can cause extreme daily precipitation of
landfalling typhoon along the coastal line of southeast
China.
The average number of days with typhoon wind grade 8

or above (wind speed≥17.2 m s–1) over the 10 years was
counted (Fig. 4(a)). It was found that the Yangtze River
Delta, the Pearl River Delta and Hainan Island are most
affected by typhoon winds grade 8 or above, with the
average exceeding one day. The average number of strong
winds days exceeded one day. Moreover, the average
number of strong wind days in Weihai City and Yantai City
in Shandong Peninsula are also greater than one day. The
influences of winds and precipitation are different, and the
strong winds in southern Jiangsu last longer than else-
where. Owing to the protective barrier function of Leizhou
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Fig. 3 Distribution of typhoon precipitation in the study area from 2004 to 2013. (a) Annual-mean precipitation frequency. (b) Annual-
mean precipitation. (c) Maximum daily precipitation. (d) Maximum accumulated precipitation for one typhoon case.

Fig. 4 Same as Fig. 3, but for typhoon winds. (a) Annual-mean typhoon wind days (with wind force equal to grade 8 or above).
(b) Maximum wind speed.
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Peninsula and Hainan Island, the number of days affected
by strong winds in Guangxi is relatively less. The annual-
mean typhoon wind days and the maximum daily wind
speed (Figs. 4(a) and 4(b)) show similar distributions
across the study area, with the high-values and low-values
coinciding in the two plots. The longer is the duration, the
higher is the probability of extreme wind speeds. The
maximum wind area is mainly distributed along the coast
area, with a decrease toward inland.

3.2 Characteristics of typhoon disasters

Taking into account missing years of disaster records in

some provinces, the annual average accumulative disaster
damage is selected as the indicator for disaster analysis.
Figure 5 shows the distribution of annual average
accumulative damage including direct economic losses,
affected population and affected crops caused by typhoons
in China’s coastal area during 2004–2013, and it is found
that the overall trend of the three accumulative disasters
decreases from the coast to inland areas. Figures 5(a), 5(b)
and 5(c) all display that during 2004‒2013, southern
Guangxi, south-western Guangdong, coastal areas of
Zhejiang, eastern Hainan, the coastal areas between
Zhejiang and Fujian and between Fujian and Guangdong,
and parts of the coastal Jiangsu were severely affected by

Fig. 5 Distribution of annual average accumulative damage in the study area. (a) Annual average accumulative direct economic loss
(unit: million yuan). (b) Annual average accumulative affected population (unit: ten thousand persons). (c) Annual average accumulative
affected area of crops (unit: thousand hectares).
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typhoons, with high values of annual average accumulative
direct economic loss, affected population, and affected
crops. In contrast, such as the Pearl River Delta and
Shanghai, which have high GDPs and large populations,
experienced slight typhoon disaster with low values of
annual average accumulative direct economic loss,
affected population, and affected crops during the period.

4 Risk assessment and zoning of typhoon-
induced disasters

4.1 Intensity index of factors causing typhoon disasters

The intensity of the factors causing typhoon disasters
indicates the extent of the impact of typhoon disasters. In
this study, we combine historical disaster data with the
corresponding typhoon winds and precipitation data to
develop an intensity index of factors causing typhoon
disasters. CCA was carried out for the accumulated
precipitation and the daily maximum wind speed (first
field) versus the direct economic loss and the affected
population for each typhoon in each county (second field),
as shown in Table 2. According to the size of typical
correlation coefficients, the degree of influence of typhoon
precipitation and winds on the affected population or
economic loss are determined. Although the typical
correlation coefficients are not large, they pass the
significance test for both typhoon precipitation and
winds, so they can be used as weight coefficients. Whether
the form of disaster is the affected population or the direct
economic loss, typhoon winds have a greater impact than
typhoon precipitation. By averaging the typical correlation
coefficients of the disaster-causing form, the weight
coefficients of typhoon winds and precipitation for the
intensity index are obtained. The typhoon precipitation
weight coefficient is 0.529, and the wind weight coefficient
is 0.726. Considering the complexities of impacts of
typhoon precipitation and winds on disaster, the precipita-
tion weight coefficient being less than the wind weight
coefficient doesn’t mean that the impact of wind is more
significant. It only means that in China’s Coastal Area and
on average, from the angle of linear relationships, the
contribution of winds to disaster is greater than precipita-
tion.
Consistent with the above statistics and weight calcula-

tion results, an intensity index of factors causing typhoon
disaster was defined as follows:

I ¼ Axþ By, (3)

where I is the intensity index of factors causing typhoon
disasters, A and B are the typhoon precipitation and wind
weight coefficients, x is the standardized accumulated
typhoon precipitation and y is the standardized maximum
wind speed.
The intensity index of factors causing typhoon disasters

in each county in the study area was calculated for 2004 to
2013, and the index was ranked by percentile (Fig. 6). The
index generally decreases from the coast to inland meaning
that the coastal areas are more affected by typhoon than the
inland areas. The high-value areas are mainly distributed in
counties locating on the coastline with the maximum
intensity values in most coastal areas of both Zhejiang and
Guangdong, and parts of Hainan Island.

4.2 Comprehensive social vulnerability index

The disaster-bearing body mainly refers to the population,
property, natural environment, and so on. A disaster
situation occurs when a typhoon causes human casualties,
economic losses and damage to the natural environment.
The SoVI designed by Chen et al. (2011, 2012) is used to
analyze the spatial distribution of social vulnerability in
China’s coastal area. From the national population
information, 29 indicators affecting social vulnerability
(Table 3) were selected to investigate the vulnerability
distribution in China’s coastal areas, for example, median
age, population density, family size, etc. By performing
PCA on 29 indicators followed by Kaiser-normalized
orthogonal rotation, seven principal components with an
eigenvalue greater than 1 are obtained (Table 4). Finally,
each principal component is classified by an explanatory
factor in the rotated component matrix.
The total variance of the first component is about 37.3%.

The explanatory factors include per capita disposable
income, population density, and so on. For example, when
income (UBINCM) increases, the average number of
rooms for a family (PHROOM) decreases, the dependency
ratio (QDEPEND) decreases, the ability of society to resist
disasters becomes stronger and the vulnerability becomes
lower. Therefore, the first component has a negative effect
and the sign is negative. The total variance of the second
component is 13.1%. The explanatory factors include
education, medical conditions, and related parameters.
When education and medical conditions are good,
awareness of disaster prevention and mitigation is

Table 2 Results of the CCA for typhoon precipitation and winds

Disasters Canonical correlation coefficient
Canonical variable coefficient

Typhoon precipitation Typhoon wind

Affected population 0.29 0.556 0.704

Direct economic loss 0.355 0.502 0.748

Analysis result The typhoon precipitation weight coefficient A = 0.529
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enhanced, and social vulnerability is reduced. Therefore,
the second component is negative and the sign is negative.
The third component contributes 7.5% of the total
variance, which mainly represents housing conditions
and the agricultural situation. This component is negative.
The total variance of the fourth component is 6.1%, which
mainly includes the proportion of women and age. When
the proportion of women and the average age increases, the
social vulnerability increases; therefore, this component is
positive. The total variance of the fifth component is 5.5%.
The explanatory factors are ethnic minorities and low-
income populations. When the population of low-income
population increases, it indicates that the economy and
society are declining and the ability to resist disasters is
decreasing. Therefore, this component has positive effects.
The total variance of the sixth component is 4.1%, which
mainly includes illiteracy and no bathing facilities in
houses. When the proportion of illiterate residents
increases, housing condition is poorer and the vulnerability
increases. Therefore, this component has a positive effect.
The total variance of the seventh component is 3.4%. The
explanatory factor is the size of the household. As the size
of the household becomes larger, the capacity of houses to
withstand disasters is strengthened. Therefore, this com-
ponent is negative and the sign is negative.
In summary, the total variance explained by these seven

components is up to 77%, which can be used to represent
Fig. 6 Distribution of intensity index of the factors causing
typhoon disasters in the study area.

Table 3 The 29 socioeconomic indicators selected by the SoVI method (Lu et al., 2018)

Name Variables

1 UBINCM Per capita disposable income of urban residents (yuan)

2 QFEMALE Percentage of females (%)

3 QMINOR Percentage of minorities (%)

4 MEDAGE Median age

5 QUNEMP Unemployment rate (calculate-unemployed population/(unemployed+ total population)

6 POPDEN Population density

7 QUBRESD Percentage of urban population (%)

8 QNONAGRI Percentage of nonagricultural household population (%)

9 QRENT Percentage of households that live in rented houses (%)

10 QAGREMP Percentage of employees working in primary industries and mining (%)

11 QMANFEMP Percentage of employees working in secondary industries (%)

12 QSEVEMP Percentage of employees working in tertiary industries (%)

13 PPUNIT Household size (people per household)

14 QCOLLEGE Percentage of population with a college degree (25 years old and older)

15 QHISCH Percentage of population with a high school diploma (20 years old and older)

16 QILLIT Percentage of illiterate people (15 years old and older)

17 POPCH Population growth rate (2000–2010)

18 PHROOM Average number of rooms per household (rooms per household)

19 PPHAREA Per capita housing construction area (m2 per person)

20 QNOPIPWT Percentage of premises without tap water (%)

21 QNOKITCH Percentage of premises without a kitchen (%)
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the social vulnerability in the study area. The comprehen-
sive SoVI in the study area is defined as:

SoVI ¼ – component1 – component2 – component3

þ component4þ component5

þ component6 – component7: (4)

The comprehensive social vulnerability index (Fig. 7)
represents the potential for loss for different locations
when suffering the same typhoon. The lower the value, the
greater the disaster tolerance of the city. Figure 7 shows
that vulnerability generally increases from the coast to
inland. The maximum values of the vulnerability index are
mainly in the north-west of Guangxi, parts of Fujian
coastal areas and parts of the Shandong Peninsula. Further

(Continued)
Name Variables

22 QNOTOILET Percentage of premises without a toilet (%)

23 QNOBATH Percentage of premises without a bath (%)

24 HPBED Number of beds per 1000 people in health care institutions

25 MEDPROF Number of medical personnel per 1000 people

26 QPOPUD5 Percentage of people under 5 years old

27 QPOPAB65 Percentage of population over 65 years old

28 QDEPEND Population dependency ratio (%)

29 QSUBSIST Percentage of population covered by subsistence allowances (%)

Table 4 The seven principal components extracted by principal component analysis

Component Name Contribution rate/% Sign Number of drivers Drivers(coefficient)

1 Income、Average num-
ber of rooms per house-
hold and Population
dependency ratio

37.3% – 9 PHROOM(–0.75)
QDEPEND(–0.726)
QPOPUD5(–0.66)
UBINCM(0.632)
QRENT(0.625)
POPDEN(0.608)

QAGREMP(–0.562)
QMANFEMP(0.515)
QUBRESD(0.511)

2 Education and Medical
treatment

13.1% – 7 HPBED(0.858)
MEDPROF(0.801)
QHISCH(0.732)

QCOLLEGE(0.719)
QSEVEMP(0.574)
QNONAGRI(0.54)
QUBRESD(0.526)

3 Housing conditions and
Agriculture

7.5% – 5 QNOBATH(–0.765)
QUNEMP(0.676),

QAGREMP(–0.642),
QMANFEMP(0.622)
QNOPIPWT(–0.573)

4 Female proportion and
Age

6.1% + 4 QPOPAB65(0.878)
MEDAGE(0.848)
QFEMALE(0.677)
POPCH(–0.537)

5 Minority and Low-
income population

5.5% + 2 QMINOR(0.803)
QSUBSIST(0.719)

6 Illiteracy and Housing
conditions

4.1% + 3 QNOKITCH(0.704)
QILLIT(0.612)

QNOTOILET(0.582)

7 Household size 3.4% – 2 PPUNIT(0.829)
QNONAGRI(0.592)

Notes: 1) “Drivers” are part of 29 factors, which are absolute values of coefficients greater than 0.5. And 29 factors all contribute to every component. The value in a
bracket, which is a coefficient, indicates the contribution of a factor to the component. 2) “Sign” indicates the effect of the component on vulnerability.
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analyses reveal that, the gross domestic product of
Guangxi Zhuang Autonomous Region is lower than that
of the other seven provinces and the economic foundation
is weak. Relative to economically developed areas, the
educational and medical conditions are relatively poor, and
the disaster prevention and mitigation ability is weak, so
the vulnerability is high.

4.3 Comprehensive typhoon disaster risk index and zoning
for each county

The typhoon disaster risk assessment system is a complex
system consisting of the intensity index of factors causing
typhoon disasters, the vulnerability of the disaster-bearing
body and the environment. However, this study does not
consider the impact of the environment.
There are two steps to obtain the disaster risk index.

First, the min–max standardization has been applied for the
factor intensity index I and the comprehensive vulner-
ability SoVI to gain I* and SoVI*. Then the disaster risk
index is obtained as follows (Lu et al., 2018):

R ¼ I* � SoVI*, (5)

where the greater the comprehensive typhoon disaster risk

index, the higher the possibility of typhoon disasters.
The comprehensive typhoon disaster risk index is

divided into five levels by the natural discontinuity
classification method in Arcgis, including Low risk,
Medium-low risk, Medium risk, High-medium risk and
High risk (Table 5). China’s coastal typhoon disaster risk
zoning for the period 2004 to 2013 is presented in Fig. 8.
Figure 8 shows that the overall risk decreases from the

coast to inland.The high-risk areas are mainly located in
most Hainan Island, southwestern Guangdong, most
coastal Zhejiang, the coastal areas between Zhejiang and
Fujian and parts of the Shandong Peninsula. The low-risk
areas are mainly distributed in the central and northern
parts of Guangxi and the inland areas of western
Shandong. Comparison with the historical distribution of
disasters shows that this index can comprehensively
indicate the distribution of risks when coastal areas are
under the influence of typhoon disasters. The direct
economic losses and casualties have a good correspon-
dence with high and low risk in the provinces of Zhejiang,
Fujian and Guangdong. The high-risk areas of Hainan
Province and Jiangsu Province correspond to the distribu-
tion of disasters impacting the agricultural sector. The
figure verifies that the factors causing typhoon disasters are
not the only determiners of typhoon disaster. By combin-
ing the intensity index of factors causing typhoon disasters
with social vulnerability, a comprehensive risk index can
accurately indicate the risk of typhoon disaster.

5 Summary and discussion

Typhoon disaster risk zoning is conducted at the county
level for China’s coastal area using precipitation and wind
data, and typhoon disaster and social data from 2004 to
2013. The main results can be drawn as follows:
First, typhoon precipitation and wind are considered as

the two main factors causing typhoon disasters in this
study. Based on the two factors, an intensity index (I) of
factors has been established. The index generally decreases
from the coast to inland, while the maximum intensity
areas are mainly the most coastal areas of both Zhejiang
and Guangdong, and parts of Hainan Island.
Second, based on 29 indicators affecting social vulner-

ability, the comprehensive social vulnerability index, SoVI
(Chen et al., 2011), is applied to analyze the disaster
tolerance for the study area affected by typhoons. The
vulnerability generally increases from the coast to inland,
with the maximum SoVI values in the north-west of
Guangxi, parts of Fujian coastal areas and parts of the
Shandong Peninsula.

Fig. 7 Distribution of comprehensive SoVI in the study area.

Table 5 Comprehensive risk index classification

Grade Low risk Medium-low risk Medium risk High-medium risk High risk

Risk index 0£R< 0.13 0.13£R< 0.22 0.22£R< 0.32 0.32£R< 0.45 R≥0.45
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Third, combining the intensity factor index and the
comprehensive social vulnerability index, a comprehen-
sive risk index R = I*SoVI (Lu et al., 2018) is applied to
assess the risk of typhoon disasters for China’s coastal
provinces. Results show that the overall risk decreases
from the coast to inland, with the high-risk areas being
Hainan Island, south-western Guangdong, coastal Zhe-
jiang, the coastal areas between Zhejiang and Fujian and
parts of the Shandong Peninsula.
As explored in this article, it is shown that the method

applied in this study is suitable for assessing the typhoon
disaster risk. We have compared the risk results of
Zhejiang Province in this study with Lu et al. (2018). In
general, the zoning levels of typhoon disaster risk
assessment are relatively consistent in Zhejiang Province.
The southeast coastal areas are at high risk, especially the
boundary regions between Zhejiang and Fujian, and
Taizhou and Wenzhou cities.
Despite this method shows a good applicability, there

are still some issues worth discussing. The first is that the
length of typhoon disaster data may mainly determine the
results. For example, the Pearl River Delt, which has a
large population and high GDP in the costal Guangdong,
belongs to low or medium-low risk area. Even though the
time period 10 years (2004–2013) is not an ideal length for
doing typhoon risk zoning analysis, the state of serious
lack of typhoon disaster data especially high resolution

data makes this study be the first work for typhoon disaster
risk zoning for China’s coastal area at the county level.
Considering the limited representativeness of the data
during the time period, the results in this study may have
some uncertainty, especially regarding to the frequent
occurrence of typhoon disasters in South China in recent
years. In addition, as storm surge data are unavailable in
this study, the results in this study doesn’t include the
impact of storm surge. If storm surge data are taken into
consideration, the risk results might change in the some
areas along the coastline. Moreover, the risk zoning results
in this study are completely based on observational data
without any manual intervention. For high-risk areas, if the
government takes corresponding disaster prevention and
reduction measures, the risk and the disaster loss are
believed to be reduced.
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