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Abstract Unconventional reservoirs are generally char-
acterized by low matrix porosity and permeability, in
which natural fractures are important factors for gas
production. In this study, we analyzed characteristics of
natural fractures, and their influencing factors based on
observations from outcrops, cores and image logs. The
orientations of natural fractures were mainly in the ~N-S,
WNW-ESE and NE-SW directions with relatively high
fracture dip angles. Fracture densities were calculated
based on fracture measurements within cores, indicating
that natural fractures were not well-developed in the
Benxi-Upper Shihezi Formations of Linxing Block. The
majority of natural fractures were open fractures and
unfilled. According to the characteristics of fracture sets
and tectonic evolution of the study area, natural fractures in
the Linxing Block were mainly formed in the Yanshanian
and Himalayan periods. The lithology and layer thickness
influenced the development of natural fractures, and more
natural fractures were generated in carbonate rocks and
thin layers in the study area. In addition, in the Linxing
Block, natural fractures with ~N-S-trending strikes con-
tributed little to the overall subsurface fluid flow under the
present-day stress state. These study results provide a
geological basis for gas exploration and development in
the Linxing unconventional reservoirs of Ordos Basin.
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1 Introduction

Typically, natural gas produced from shales, tight sand-
stones and carbonates, coal seams, etc., has been classed
under unconventional gas, whose production process
usually requires stimulation by horizontal drilling coupled
with hydraulic fracturing due to the relatively low matrix
porosity and permeability in the gas-bearing formations
(Olson et al., 2009; Speight, 2019; Bhandakkar et al.,
2020). Recently, studies on unconventional gas develop-
ment have focused on effective fracturing methods;
however, in fact, the presence of natural fractures at
different scales (micro-, meso-, or macro-scale) and in
different types of reservoirs (shale, tight sandstone/
carbonate, or coal reservoir) may also greatly influence
the exploration and development of unconventional gas
(Aydin, 2000; Zeng and Li, 2009; Gale et al., 2014; Ju and
Sun, 2016; McGinnis et al., 2017). In addition, natural
fractures can also play a critical role during the gas
production process through their interactions with hydrau-
lically induced fractures (Dahi-Taleghani and Olson, 2011;
Wu and Olson, 2016; Siddhamshetty et al., 2020).
Hydraulic fracturing can create new fractures, and increase
the size, connectivity, and conducitivity of natural fractures
(Bhandakkar et al., 2020). Overall, natural fractures can
not only serve as important spaces for storage of
hydrocarbons and fluid-flow pathways and enhance the
reservoir permeability, but also largely influence hydraulic
fracturing. Therefore, understanding where natural frac-
tures are open and capable of transmitting fluid, and
knowledge of controlling factors for natural fracture
development and distribution are important for unconven-
tional gas exploration and development.

In geology, a fracture is once defined as any disconti-
nuity within rocks where there is no cohesion due to brittle
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deformation (Hancock, 1985; Fossen, 2010); however, if
minerals deposit within it, a fracture will have cohesion.
The variable cohesion of natural fractures is one of the
principal ways they interact with hydraulic fractures (e.g.,
Dahi-Taleghani and Olson, 2011). Many studies have been
carried out on natural fractures from geological and
reservoir engineering perspectives, e.g., curvature analysis
method (Hennings et al., 2000), seismic-based techniques
(Hall et al., 2002), geomechanical modeling (Ju et al.,
2019), etc. Factors that influence natural fracture develop-
ment and distribution include tectonic stress field, bed
thickness, lithology, mineral composition, mechanical
properties, presence of folds and faults, dissolution
differences, thermal shrinkage, etc. (e.g., Narr, 1991;
Harstad et al., 1995; Hennings et al., 2000; Nelson, 2001;
Gale et al., 2007, 2014; Laubach et al., 2009; Olson et al.,
2009; Zeng and Li, 2009; Weniger et al., 2016; McGinnis
et al., 2017; Ju et al, 2018 and 2019). Even a tiny
extensional strain (10~ order) could result in substantial
fracture growth (Olson et al., 2009). Hence, understanding
those controlling factors for natural fractures well will help
guide the prediction of fracture distribution and further
hydrocarbon production.

The Linxing Block of eastern Ordos Basin is an
important region with large volumes of unconventional
gas in China. The geochemical characteristics, physical
properties, pore pressure, sequence framework, paleo-
tectonic stress field and present-day in-situ stress state of
the gas-bearing formations in the Linxing Block have been
investigated for a better understanding of the geological
conditions and gas production (Li et al., 2016; Ju et al,,
2017; Shen et al., 2017; Gao et al., 2018). However, until
now, no studies have been focused and carried out on
natural fractures within those gas-bearing formations in the
Linxing Block, though they are extremely important for
unconventional gas production.

Therefore, in this study, characteristics and controlling
factors for natural fractures in the Linxing unconventional
gas reservoirs were systematically described and analyzed
based on analogous outcrop, cores, and borehole image
logs. Moreover, the genesis for natural fractures and
coupling effects of present-day in-situ stress state and pore
pressure on natural fractures were also discussed. This
study provides an example of natural fracture character-
ization and indicates the contributions of natural fractures
to unconventional gas productions in the Linxing Block of
eastern Ordos Basin.

2 Geologic setting

The Ordos Basin, situated in the western part of the North
China Craton (Zhao et al., 2005; Fig.1), is a typical
intracontinental basin with a complex tectonic-sedimentary
history (Zhao et al., 1996; Liu et al., 2009; Ju et al., 2020).
The bottom of the basin is a unified crystalline basement
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Fig. 1 Generalized tectonic map of the North China Craton (after
Zhao et al. (2005)).

formed during the Early Proterozoic, and the sediment
cover of the basin started from the Middle to Late
Proterozoic. The entire basin began a transitional period
from marine to continental sedimentation during the Late
Carboniferous, and since then, it experienced the Late
Paleozoic littoral plain stage, Mesozoic continental basin
stage, and Cenozoic peripheral faulted basin stage (Yang
et al., 2005). Influenced by the Yanshanian and Himalayan
movements, the basin has been uplifted and subjected to
erosion since the Late Cretaceous. Currently, the present-
day geomorphology indicates that the central part of the
Ordos Basin is tectonically stable; whereas the margins
have undergone strong deformations, resulting in structural
complexity (Liu et al., 2009; Ju et al., 2015; Fig.2).

The Linxing Block is located in the eastern Ordos Basin
(Fig.2). The main gas-bearing layers within this block are
the Benxi, Taiyuan, Shanxi, Lower Shihezi, and Upper
Shihezi Formations (Fig.3), which are deposited in a tidal
flat-lagoon, tidal flat-delta, shallow water delta-lagoon,
fluvial, and shallow water delta sedimentary environment,
respectively (Shen et al., 2017 and 2018; Xie et al., 2017).
The Benxi-Shanxi Formations are coal-bearing layers with
significant volumes of coalbed methane, tight sandstone
gas, and shale gas. The Lower and Upper Shihezi
Formations are important layers for tight sandstone gas
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Fig. 2 Simplified regional geologic map of the Ordos Basin in central China.

production. Structures in the Linxing Block are relatively
simple, and the stratigraphic strike is approximately NE-
SW-trending and dips westward at 5°-10° (Ju et al., 2017;
Gao et al., 2018).

3 Materials and methods

In this study, observations of natural fractures are mainly
carried out based on outcrops, cores, and borehole image
logs. The outcrops of gas-bearing formations are well
exposed along the roads S248 and S218 in the study area,
and the total length for natural fracture observations is
approximately 3000 m long. Cores and borehole image
logs are precise and quick methods for collecting subsur-
face fracture data. In this study, fracture descriptions from
cores are performed in 13 vertical wells (~386.6 m). The

borehole image logs contained Electrical Resistance
Micro-Imaging (ERMI) from 8 wells, X-tended Range
Micro-Imager (XRMI) from 3 wells and Electrical Micro-
Imaging (EMI) from 1 well.

Detectable borehole fractures can be either natural in
origin or induced by the drilling process. Hence,
distinguishing natural from induced fractures should be
first conducted during observations in cores and borehole
image logs (Aadnoy and Bell, 1998; Rajabi et al., 2010; Qu
et al.,, 2016; Ju et al., 2017). Within cores, induced
fractures are easily determined by visually examining
fracture surface morphology and the geometric relation-
ships between the core and the fracture shape and
propagation path (Nelson, 2001). Natural fracture surfaces
are commonly regular and straight (Figs. 4(a) and 4(b)),
and sometimes slickensides are present on natural fractures
(Fig. 4(c)), whereas the surfaces of induced fractures are
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Fig. 3 Generalized stratigraphy (a) and well locations (b) in the Linxing Block of eastern Ordos Basin. The key unconventional gas-
bearing layers in the Linxing Block consist of the Upper Shihezi, Lower Shihezi, Shanxi, Taiyuan and Benxi Formations (yellow in Fig. 3
(a)). The contours in Fig. 3(b) indicate coal thickness of the Shanxi Formation. The stratigraphic and petrographic data are after Gao et al.

(2018) and Shu et al. (2019).

irregular with various shapes (Fig. 4(d)).

In electrical borehole image logs, conductive and
resistive materials are coded in dark and bright colors,
respectively (Canady and Market, 2008; Folkestad et al.,
2012). Fractures can be identified when they are filled with
electrically contrasting fluids or solids. Generally, on
unrolled images, open natural fractures have conductive
appearances with sinusoidal traces (Fig. 5(a)), partially
filled fractures exhibit dark traces with bright traces. As to
induced fractures, they appear in two different manners
(Aadnoy and Bell, 1998; Zoback et al., 2003; Tingay et al.,
2008; Ju et al.,, 2017), namely, 1) type I, they are
symmetrically aligned two vertical/sub-vertical fractures
parallel to the borehole axis on the opposite sides of the

borehole wall (Fig. 5(b)), and 2) type II, they are en-
echelon fractures around the borehole, exhibiting traces
180° apart at the borehole surface and inclined relative to
the borehole axis (Fig.5(c)).

Parameters, commonly used for characterizing natural
fractures, include the fracture aperture, filling, type,
orientation, and density, etc (Nelson, 2001; Ju and Sun,
2016). The fracture aperture (or the fracture width), which
is defined as the average distance between two subparallel
fracture walls (van Golf-Racht, 1982; Marrett et al., 1999).
According to the fracture aperture and filling, natural
fractures are divided into four types: open fracture,
partially open fracture without fillings, partially open
fracture with fillings, and closed fracture. The fracture
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Fig. 4 Natural and induced fractures detected from cores in the Linxing Block of eastern Ordos Basin. (a) Well L-18, 1688.61 m, the
Taiyuan Formation, (b) Well L-19, 1892.63 m, the Taiyuan Formation, (c) Well L-6, 1608.82 m, the Upper Shihezi Formation, and
(d) Well L-18, 1355.13 m, the Lower Shihezi Formation.

orientation is determined by the strike and dip angle of a
fracture plane. Based on dip angles of natural fractures,
natural fractures have types of bedding fracture (0-15°),
low-angle oblique fracture (15°—45°), high-angle oblique
fracture (45°-75°), and vertical fracture (75°-90°) (Wang,
1992). The fracture density, including the linear fracture
density, areal fracture density, and volumetric fracture
density, represents the development degree of natural
fractures (van Golf-Racht, 1982). In this study, the
weighted areal fracture density is calculated based on
Egs. (1) and (2) to characterize natural fracture develop-
ment.

L
dy == (1)
Emz (daf' X h)
I @

where d, is the areal fracture density in a single core rock,
m™'; L is the circumference of a single fracture in core
rocks, m; S is the surface area of a single core rock, m?; n is

the total number of fractures in a single core rock, unitless;
m is the total number of core rocks in a given formation,
unitless; Dy, is the weighted areal fracture density, m™'; &
is the length of a single core rock, m; and 7 is the thickness
of a given formation, m.

In the outcrops, some fractures are generally developed
due to unloading, stress relaxation, and erosion; therefore,
data from analogous outcrops are not used for characteriz-
ing fracture density and aperture. In the cores, the apparent
apertures, dip angles, fillings and circumferences of natural
fractures are observed and systematically measured, and
hence, the weighted fracture densities in different gas-
bearing formations are calculated. Characteristics of
fracture orientation are mainly analyzed based on borehole
imaging logs.

4 Characteristics of natural fractures

4.1 Fracture orientation

In the Linxing Block, based on the observations of natural
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Fig. 5 Natural and induced fractures detected from borehole image logs in the Linxing Block of eastern Ordos Basin. (a) natural fracture,

(b) induced fracture type I, and (c) induced fracture type II.

fractures from cores, 368 natural fractures are determined
within the Benxi-Upper Shihezi Formations, among
which, approximately 45.87% of them are high-angle
oblique fractures. In addition, the following phenomena
can also be observed: high-angle oblique fractures and
vertical fractures are the dominant types in the Benxi-
Shanxi coal-bearing formations; whereas the majority of
natural fractures are high-angle and low-angle oblique
fractures in the Lower and Upper Shihezi Formations
(Fig.6).

Based on observations from outcrops and borehole
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Fig. 6 Dip angles of natural fractures in the Linxing Block of
eastern Ordos Basin.

image logs, the strikes of natural fractures in the Linxing
Block are measured and plotted with rose diagrams (Fig.7),
from which three sets of natural fractures can be detected,
namely, the dominant ~N-S-trending (set 1), WNW-ESE-
trending (set 1I), and NE-SW-trending (set I1I).

4.2  Fracture aperture and fillings

Fracture aperture is defined as the distance between
fracture walls, which mainly depends on rock lithologi-
cal-petrographic characteristics and local stress state (van
Golf-Racht, 1982; Wang, 1992; Gale et al., 2014).
Furthermore, the real fracture aperture is difficult to obtain
underground. The measured data from cores are generally
larger, hence, a correction is required, which can be
expressed as follows:

b = bycosa, 3)

where b and b, are real and apparent fracture aperture, mm;
o is the angle between the measuring plane and fracture
plane, degree.

In the Linxing Block, based on measurements and
correction from cores, the majority of natural fracture in
the Benxi-Upper Shihezi Formations indicate relatively
small apertures, generally less than 2.0 mm. Especially in
the Lower and Upper Shihezi Formations, all the
investigated natural fractures have apertures less than
1.0 mm (Fig.8).
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Fig. 7 Strike rose diagrams of natural fractures in the Linxing Block of eastern Ordos Basin (some data are from Gao et al. (2018)).

4.3 Fracture fillings

In this study, natural fractures are divided into open
fracture, partially open fracture without fillings, partially
open fractures with fillings, and closed fracture based on
the filling condition of fractures. Among the investigated
368 natural fractures from cores in the Linxing Block,
64.36% of them belong to the type of open fracture,
especially for those in the Lower and Upper Shihezi
Formations (Fig. 9), which suggests that natural fractures
may have favorable contributions to gas production. The
minerals for those closed fractures are mainly calcite.

4.4 Fracture density

In the Linxing Block, measurements of natural fractures
from cores and image logs indicate that natural fractures

develop in all the Benxi-Upper Shihezi gas-bearing
formations (Table 1). However, due to different factors,
the weighted fracture densities vary in a broad scale,
ranging between 0.002 m™' (the Upper Shihezi Formation
in Well L-23) and 0.565 m™' (the Taiyuan Formation in
Well L-19), which demonstrates the strong anisotropy of
natural fractures within the gas-bearing formations of
Linxing Block.

5 Discussions
5.1 Genesis analysis for natural fractures
During the Mesozoic and Cenozoic periods, structural

features and characteristics of natural fractures in the
eastern Ordos Basin are mainly influenced by the
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Indosinian, Yanshanian, and Himalayan movements.
Among them, the Yanshanian tectonic stress field is
critical for the Linxing Block because the dominant
structural styles were basically formed and determined
during that period (Wang et al., 2010).

Based on the interpretation of conjugate fractures in the
outcrops, Gao et al. (2018) studied the paleo-tectonic stress
fields in the Linxing Block. During the Yanshanian period,
resulting from the far-field effects produced by subduction
of the Paleo-pacific plate beneath the Asian continent
(Wang et al., 2010), the study area was subjected to the
NW-SE-trending horizontal tectonic compression. Under
this stress condition, rocks were ruptured and natural
fractures with ~NNW-SSE-trending and WNW-ESE-
trending were generated. During the Himalayan period,
as a result of the far-field effects from the collision between

Formations (Table 1). The Lower and Upper Shihezi
Formations mainly consist of detrital rocks without coals
and limestones (Fig.3). In addition, for detrital rock series,
more natural fractures develop within siltstones and fine
sandstones, whereas the fracture density is relatively low in
coarse sandstones and mudstones.

The above phenomena may be possibly explained as
follows. More natural fractures are developed in carbonate
rocks than detrital rocks, which may result from the
difference in their mineral compositions. Commonly, an
increase in the proportion of brittle minerals will decrease
the tensile strength and facilitate the generation of natural
fractures under the same stress conditions (Bowker, 2007;
Buller et al., 2010; Gale et al., 2014; Ju and Sun, 2016). In
coals, cleats, a type of natural opening-mode fracture, are
well developed and widely distributed (Laubach et al.,
1998), causing relatively higher fracture densities. For the
sandstone group, the rocks may become tighter with the
decrease of particle size; hence, they will easily fail under
low strain conditions after the elastic deformation stage
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Table 1 The weighted natural fracture densities in different gas-bearing fromations of Linxing Block

Well
sziclt“re density L-1 LS L6 LI2 L-15 L8 L-19 L20 L-21 L22 L-23 L24 L-25 average
Formation
Upper Shihezi / / 0.019 0.046 / / / 0.014 0.004 0.008 0.002 / / 0.016
Lower Shihezi 0.032 / 0.015 0.016 / 0.072  0.004 0.007 0.004 / 0.049 0.046 / 0.027
Shanxi 0.094 0.015 / / 0.017 0.040 0.075 / 0.012 / / 0.038 0.019 0.039
Taiyuan 0.281 / 0.075 / / 0.094 0.565 0.073 0.068 / 0.115 0.019 / 0.161
Benxi 0.160 / / 0.214 / / / 0.015 0.120 / / / / 0.127
weighted natural fracture density/m™" phenomzncs)n apph]e989tf- ‘[I}\l]e lmaj Ols(t)}(’) f.fzsedlm;r(l)?;y rocks
0 0.02 0.04 0.06 0.08 0.10 0.12 (Narr and suppe, > velson, > £eng, )
T T T T T 1
mudstone [T 5.3 Coupling effects of stress and pore pressure on natural
‘ i fractures
siltstone |
i tfine I Based on the interpretations from borehole breakouts
sandastone I . .
medium [ (BOs) and drilling-induced tensile fractures (DITFs), Ju
sandstone et al. (2017) analyzed the present-day in-situ stress state in
coarse | the Linxing Block, and the results indicated that the
sandstone | . g block, . . .
L horizontal maximum principal stress (Symax) Orientation
coal I was approximately E-W-trending.
Himest C In this study, no detailed production data were available,
rmestone. = and hence the productivity of natural fractures was unable

Fig. 10 The weighted natural fracture densities in different
lithologies of Linxing Block.

(Zeng, 2008).

Under the same lithology and tectonic condition,
observations in the outcrops of Linxing Block indicate
that the fracture density decreases in some fashion with the
thickness increase of a sedimentary layer (Fig. 11).
Compared to thick ones, thin layers generally develop
more natural fractures. It has been verified that this

Fig. 11

to be assessed. However, according to the stress and
fracture orientations, only set II may be genetically linked
to the present-day stress orientation, while the other two
sets (set I and III) are oriented at a relatively high angle to
the Stmax Orientation. Hence, those natural fractures within
set II belong to “stress-sensitive fractures” (Sibson, 1996;
Rajabi et al, 2010), and may tend to be open and
conductive under the present-day in-situ stress state.

To better understand the effects of present-day in-situ
stresses on natural fractures, the Coulomb failure mechan-
ism is introduced in this study. Natural fractures from the

thick layer

Interpretation of natural fractures from a sandstone geological section in the Linxing Block.
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Shanxi and Taiyuan Formations in Well L-1 are selected
for analysis, and their orientations are interpreted from
image logs and plotted in Fig. 12.

A standard frictional coefficient value of 0.6 is set to the
cohesionless natural fractures. The present-day in-situ
stress state is based on previous studies from Ju et al.
(2017). The results indicate that all natural fractures from
the Shanxi and Taiyuan Formations are obviously not
critically stressed under the present-day in-situ stress state
(Fig. 13). However, with pore pressure increases, ENE-
WSW-trending fractures initially become critically
stressed, and when the increased pore pressure is 4 SG,
all natural fractures from the Shanxi Formation are
critically stressed. During the whole process, natural
fractures from the Taiyuan Formation are less likely to
be critically stressed due to their ~N-S-trending orienta-
tions (Fig. 13).

Hence, though more fractures are developed in the
Taiyuan Formation (Fig. 12), they are unlikely to become
critically stressed. Because the production of unconven-
tional gas requires hydraulic fracturing, the effectiveness of
natural fractures under the present-day stress state may be
more important for high production.

779

6 Conclusions

Understanding the development and distribution of natural
fractures well in unconventional reservoirs is of great
importance for gas production. In this study, characteristics
and influencing factors for natural fractures in the Linxing
Block were analyzed. The main results are described
below.

1) Based on the calculated fracture density, the Benxi-
Upper Shihezi gas-bearing formations indicate differential
fracture development. Fracture orientation analysis shows
that three sets of natural fractures can be detected in the
Linxing Block, namely, ~N-S-trending, WNW-ESE-trend-
ing and NE-SW-trending. Approximately 45.87% of all
natural fractures in the Benxi-Upper Shihezi Formations
are high-angle oblique fractures. The majority of natural
fractures are unfilled and belong to the open fracture type.

2) According to the characteristics of fracture sets and
tectonic evolution of the study area, natural fractures are
mainly formed in the Yanshanian and Himalayan periods.
Fractures with ~NNW-SSE-trending and WNW-ESE-
trending, ~NNE-SSW-trending and ENE-WSW-trending
were generated during the Yanshanian period and
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Fig. 12 Natural fractures interpreted from borehole image logs in the Shanxi and Taiyuan Formations of Well L-1 in the Linxing Block.
(a) fracture dips from the Shanxi Formation, (b) fracture dip angles from the Shanxi Formation, (c¢) fracture dips from the Taiyuan

Formation and (d) fracture dip angles from the Taiyuan Formation.
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Fig. 13 Lower hemisphere stereonet plots and three-dimensional Mohr circles showing critically stressed natural fractures in the Shanxi
and Taiyuan Formations of Well L-1, Linxing Block of eastern Ordos Basin. In stereonet plots, black data are normal fractures, and white
ones are critically stressed fractures. In Mohr circles, black data are normal fractures, and red ones are critically stressed fractures. Dots and
squares are those fractures from the Shanxi Formation and Taiyuan Formation, respectively. SG is specific gravity, g/cm3. AP indicates the

pore pressure increase.

Himalayan period, respectively.

3) The lithology and layer thickness influence the
development of natural fractures. The calculated fracture
densities in different lithologies of Linxing Block follow
the order of carbonate rocks > coal > detrital rocks. More
natural fractures are developed in thin sedimentary layers.

4) In the Linxing Block, ~N-S-trending fractures are
difficult to critically stress, indicating that they contribute
little to the subsurface fluid flow and further gas
production.
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