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Abstract The Universal Soil Loss Equation model is
often used to improve soil resource conservation by
monitoring and forecasting soil erosion. This study tested a
novel method to determine the cover and management
factor (C) of this model by coupling the leaf area index
(LAI) and soil basal respiration (SBR) to more accurately
estimate a soil erosion map for a typical region with red
soil in Hetian, Fujian Province, China. The spatial
distribution of the LAI was obtained using the normalized
difference vegetation index and was consistent with the
LAI observed in the field (R2 = 0.66). The spatial
distribution of the SBR was obtained using the Carnegie–
Ames–Stanford Approach model and verified by soil
respiration field observations (R2 = 0.51). Correlation
analyses and regression models suggested that the LAI and
SBR could reasonably reflect the structure of the forest
canopy and understory vegetation, respectively. Finally,
the C-factor was reconstructed using the proposed forest
vegetation structure factor (Cs), which considers the effect
of the forest canopy and shrub and litter layers on reducing
rainfall erosion. The feasibility of this new method was
thoroughly verified using runoff plots (R2 = 0.55). The
results demonstrated that Cs may help local governments
understand the vital role of the structure of the vegetation
layer in limiting soil erosion and provide a more accurate
large-scale quantification of the C-factor for soil erosion.

Keywords leaf area index, remote sensing, soil basal
respiration, forest vegetation structure factor, vegetation
layer structure

1 Introduction

Applications of soil erosion models have greatly improved
soil erosion monitoring and forecasting (Montgomery,
2007; Devatha et al., 2015). However, the accuracy of soil
erosion simulation is still hindered by the input parameters
of ecohydrological models. The Universal Soil Loss
Equation (USLE) is the most widely used model for
estimating regional soil erosion (Devatha et al., 2015; Feng
et al., 2018). This model considers five factors (Renard,
1997) (Eq. (1)):

A ¼ R� K � LS � C � P, (1)

where A is average annual soil loss rate (t$ha–1$y–1), R is
the rainfall erosivity factor (MJ$mm$ha–1$h–1$y–1), K is the
soil erodibility factor (t$ha$h$ha–1$MJ–1$mm–1), LS is the
topography factor (unitless), P is the support practice
factor (unitless), and C is the cover and management factor
(unitless). The last of these (henceforth referred to as the C-
factor) is defined as the ratio between soil loss from a given
land surface under specific cover conditions and the
corresponding loss from farmlands (Wischmeier and
Smith, 1978). This index is an effective and sensitive
indicator for assessing soil erosion (Risse et al., 1993;
Benkobi et al., 1994). The application of the USLE in the
forest rather than agricultural systems is limited because it
does not accurately capture the complex forest landscape
(Elliot, 2004; Zhang et al., 2011). Moreover, it may not be
reliable because it reflects the effects of forest cover and
management on erosion rates, which is related to forest
structure.
The calculation of C-factor values based on runoff is

only applied at small scales, but remote sensing methods
enable a larger-scale application. Vegetation coverage has
been used as an input variable to extract C-factor values
over long time periods (Feng et al., 2018). However, this

Received March 24, 2020; accepted July 26, 2020

E-mail: yuyky@fafu.edu.cn
*The authors contributed equally to this work.

Front. Earth Sci. 2020, 14(3): 660–672
https://doi.org/10.1007/s11707-020-0828-y



method has the following limitations that must be
considered. First, vegetation indices are inconsistent with
forest coverage as they tend to overestimate the latter
during the growing season and underestimate it during the
senescence period (Cyr et al., 1995). Second, the spatial
resolution of remote sensing images affects the interpreta-
tion of understory vegetation cover because vegetation
indices cannot fully reflect vertical forest structures such as
shrub and litter layers (Gelagay and Minale, 2016). For
instance, Figs. 1(a) and 1(b) depict the same vegetation
coverage; nevertheless, Fig. 1(b) illustrates a plot with no
understory vegetation, which is conducive to soil erosion.
In such cases, soil erosion can be identified at close range.
However, it is difficult to determine soil erosion from a
distance due to extensive disturbance from the forest
canopy. In other words, greater vegetation coverage does
not always represent a greater capacity for soil and water
conservation. As such, remote sensing-derived vegetation
coverage data rarely represent the entire vegetation layer
structure (i.e., trees, shrubs, and litter) and are therefore not
appropriate for C-factor calculation (Mohamadi and
Kavian, 2015; Anache et al., 2017).
Vertical layers of forest vegetation reduce surface runoff

erosion through two main mechanisms: 1) reducing kinetic
energy and direct rainfall-induced erosion by slowing
rainfall through the canopy and from tree trunks (Wang
et al., 2016) and 2) buffering rainfall with the shrub and
litter layers (Arar and Chenchouni, 2014; Liu et al., 2016).
Many studies have focused on the effect of vegetation layer
structure on C-factor value variations. For instance, Wen
et al. (2010) proposed a stratified vegetation cover index to
better represent the vegetation layer structure, and Feng
et al. (2018) used remote sensing images from different
seasons to extract vegetation indices (e.g., the normalized
difference tillage index or normalized difference senescent
vegetation index). These indices reflect the structure of the
vegetation layer according to vegetation growth in
different periods and enable C-factor estimation using the
relationship between vegetation indices and runoff data.
The C-factor values vary according to the vegetation layer
structure, which changes with season and precipitation
(Alexandridis et al., 2015). Moreover, evergreen plants in
subtropical zones do not defoliate in winter, creating
difficulties in the extraction of yellow wavelengths (e.g.,
for the normalized difference senescent vegetation index),

and this limits the large-scale application of C-factor
values. Therefore, this study hypothesized that coupling
the leaf area index (LAI) and soil basal respiration (SBR)
may lead to reasonably accurate C-factor value estimations
with potential widespread applicability. The LAI is an
important indicator of plant canopy structure and is highly
correlated with soil erosion (Zhang et al., 2014a). It can
reflect the structure, distribution density, and biomass of
vegetation (Lin et al., 2013). On the other hand, soil
respiration is an important indicator of soil microbial
quantity and activity (Yu et al., 2014) and can, therefore, be
used as an indicator of shrub and litter layer occurrence
(Rey et al., 2002; Zhang et al., 2016; Park et al., 2018).
The aim of this study was to explore indices that could

adequately identify forest canopy characteristics and
alternative indicators that may influence the identifiable
attributes of lower forest layers to estimate C-factor values
and provide basic data for accurate estimates of large-scale
soil erosion. Hetian Town (China) was used as a case study
as it is a unique hilly region with red soil and serious soil
erosion (Xu et al., 2019; Yao et al., 2019). The objectives
of this study were to 1) describe the applicability and
model construction of an LAI-based remote sensing
inversion of the forest canopy, 2) use remote sensing to
estimate SBR and its applicability as an understory
vegetation indicator, and 3) calculate an applicable C-
factor based on the LAI and SBR.

2 Materials and methods

2.1 Study area

Hetian Town (25°33′–26°48′ N, 116°18′–116°31′ E) is
located in Changting County, Fujian Province, southern
China (Fig. 2). It covers a total area of approximately
296.7 km2 and has a subtropical monsoon climate
characterized by an average annual temperature of
17.5°C–18.8°C. Annual rainfall data from 1952 to 1982
(obtained from the Fujian Meteorological Bureau) ranged
from 1074 to 2522 mm, with an average of 1750.8 mm.
Elevation is 300–500 m above sea level. The dominant
vegetation layers include Masson pine (Pinus massoniana;
tree layer), Adinandra millettii and Lespedeza bicolor
(shrub layer), and Dicranopteris dichotoma (herb layer).

Fig. 1 Schematic of a vegetation plot (a) with understory vegetation and (b) without understory vegetation.
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The study area is a typical region with red soil subject to
severe erosion caused by historical forest right disputes,
large-scale deforestation, arson, and other anthropogenic
factors (Lin et al., 2012; Chen et al., 2019). As reported by
Lan (2012), as much as 96 km2 of land was affected by
soil erosion by the end of 2009. Consequently, Masson
pine plantations exhibit poor growth rates of less than
20 cm/year in some areas, and no growth has been reported
under some extreme local soil erosion conditions (Yuan
et al., 2018; Yu et al., 2019).

2.2 Modeling

The USLE model, which is commonly used in China to
estimate the C-factor values, is based on slope sediment
yield data under natural and artificial rainfall, and can be
described as follows (Cai et al., 2000):

C ¼ 1 f c ¼ 0,

C ¼ 0:6508 – 0:3436lgf c 0 < f c < 78:3%,

C ¼ 0 f c³78:3%,

8><
>: (2)

where fc is the vegetation coverage and the C-factor is
unitless and ranges from 0 to 1. This method cannot reflect
the contributions of different vegetation layers and ignores
the impact of understory vegetation and surface plant
residues (litter layer) on runoff and sediment from hill
slopes (Feng et al., 2018). Therefore, we propose the forest
vegetation structure factor (Cs) (Lei and Wen, 2008) as an
alternative to fc to account for the vegetation layer structure

as shown below:

Cs ¼ aC1 þ ð1 – aÞV s, (3)

where C1 is the canopy structure factor determined from
the LAI (see Section 2.2.1), Vs is the shrub and litter layer
factor related to SBR (see Section 2.2.2), a is the weighting
coefficient of soil and water conservation, C1 and Vs reflect
the coverage of trees and shrub and litter layers,
respectively. Thus, the improved formula framework can
be described as follows:

C ¼ 1 Cs£X 1,

C ¼ d þ eCs X 1 < Cs < X 2,

C ¼ 0 Cs³X 2,

8><
>: (4)

where X1 and X2 are the threshold values for Cs, and d and
e are parameters. A flowchart of the overall method is
shown in Fig. 3.

2.2.1 Construction of the canopy structure factor

The LAI is considered an important indicator for
characterizing the forest canopy structure, and describing
the ability of the canopy to intercept rainfall (Arora, 2002;
Wang et al., 2014; Chen et al., 2019). Lin et al. (2013)
proposed that the LAI replace vegetation coverage to
estimate the C-factor via remote sensing. This index can
more accurately represent the vegetation distribution
(Wang et al., 2014; Ma et al., 2016) and thus resolve the
limitations of two-dimensional remote sensing images.
The most common inversion model for the LAI using

remote sensing was established from linear or nonlinear
estimation models between the LAI and vegetation indices
(Xie et al., 2018). Vegetation indices constitute a simple
and effective way to express information pertaining to
different vegetation states (Kang et al., 2016; Xie et al.,
2018). Therefore, several vegetation indices (e.g., the
atmospheric resistant vegetation index (ARVI), difference
vegetation index (DVI), green normalized differential
vegetation (GNDVI), modified soil-adjusted vegetation
index (MSAVI), normalized differential vegetation index
(NDVI), plant senescence reflectance index (PSRI),
perpendicular vegetation index (PVI), re-normalized
differential vegetation index (RDVI), ratio vegetation
index (RVI), and soil-adjusted vegetation index (SAVI))
were selected based on their ability to express vegetation
growth characteristics. These were compared with the LAI
to construct correlation models as indicators of the forest
canopy structure.

2.2.2 Construction of the shrub and litter layer factor

Shrub and litter layers are significantly correlated with the
soil organic carbon content, soil temperature, and soil
cover type (Jewell et al., 2017). Soil respiration is also

Fig. 2 Study area and location of the sampling plots.
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affected by the soil organic carbon content, moisture, and
land cover type (Vose and Bolstad, 2007; Hursh et al.,
2017; Yu et al., 2019). Therefore, understory vegetation
and soil respiration are expected to be correlated (Rey
et al., 2002; Park et al., 2018). A shrub and litter layer (Vs)
factor was thus constructed via the following steps: 1) soil
respiration inversion, 2) application of soil respiration to
understory vegetation, and 3) construction of the Vs factor
based on SBR.
Soil respiration is affected by soil temperature and

moisture content (Qi et al., 2002; Rey et al., 2002; Wang
et al., 2017); the relationship between soil respiration and
understory vegetation may, therefore, depend on environ-
mental factors. SBR is defined as the soil respiration value
at 0°C under no water stress (Luo et al., 2001). The SBR
inversion was obtained to eliminate the effect of soil
temperature and soil moisture on soil respiration.
Net primary productivity (NPP) is largely influenced by

the microbial characteristics of the soil (Raza and
Mahmood, 2018) and indicates the removal of carbon
dioxide from the air. SBR inversion is conducted using the
NPP, which is estimated by the widely used Carnegie–
Ames–Stanford approach (CASA) (Zhang et al., 2014b;
Tripathi et al., 2018). This model is based on photosyn-
thesis and considers vegetation characteristics and many
aspects of vegetation under natural environmental condi-
tions (Tripathi et al., 2018). Organic carbon is formed
when litter enters the soil and is released when soil
respiration occurs during vegetation growth, whereby
carbon gradually reaches a dynamic equilibrium state.
Therefore, the NPP carbon cycle model was used to
estimate the monthly SBR, and the relationship between the
estimated SBR and the understory was analyzed. A flow
chart of the NPP estimation method based on the CASA is
illustrated in Fig. 4.

The improved CENTURY model proposed by Zhou
et al. (2007) was used to estimate the monthly SBR of the
study site as follows:

SBR ¼ NPP

eβ�T � y
, (5)

y ¼ 1

1þ 30� e – 8:5x
, (6)

x ¼ PPT

PET
, (7)

Q10 ¼ e10β, (8)

where SBR is the total amount of soil basal respiration
derived from a monthly remote sensing-based NPP
estimation (gC$m–2$month–1), y is the limiting factor of
water on soil respiration, b is the temperature reaction
coefficient, T is the temperature (°C), PPT is the monthly
regional precipitation (mm), PET is the monthly potential
evapotranspiration (mm), b has a value of 0.0794
(determined from the relationship between temperature
and soil respiration measured in the field), Q10 has a value
of 1.0826 in this study according to Eq. (8).
Given that the units of soil respiration from the remote

sensing estimation (SBR) and field measurements differed,
these values were converted into the same unit as follows:

SBR ¼ R0 � 12� 3600� 24� 30� 10 – 6, (9)

Rs ¼ R0e
βT , (10)

where R0 is the soil respiration rate at a reference
temperature of 0°C (µmol$m–2$s–1), and Rs is the soil

Fig. 3 Flowchart of the method to determine the proposed C-factor.
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respiration rate (µmol$m–2$s–1). The constant 12 is the
molar mass of C (12 g$mol–1), and the constants 3600, 24,
and 30 represent the seconds in an hour, hours in a day, and
days in a month, respectively. The number 10–6 is the
micromole to mole conversion factor (1 µmol = 10–6 mol).

2.3 Preparation of data

Fieldwork was conducted in January 2015. A total of 59
plots (25.82 m � 25.82 m) were established in a Masson
pine forest (Fig. 2). The soil respiration, LAI, shrub layer
coverage, and litter layer thickness were measured in each.
A description of study data are given in Table 1.

2.3.1 Remote sensing images and topographic data

Two images from the Pleiades satellite (France) were
acquired on December 10, 2014 (view number: 0719-
04222 and 0519-03996) and processed using the software
ENVI 5.3 (Exelis VIS, USA). The processing included

radiation and geometric correction and image mosaicking
and clipping. The image was generated at a spatial
resolution of 2 m.
Meteorological data including the mean monthly

temperature and precipitation in, December 2014 and,
January 2015, and multi-year mean precipitation from
1980 to 2010 were acquired from the Changting County
Meteorological Bureau. All meteorological data were
processed using the spatial statistics module in ArcGIS.
The administrative boundary vector shape was also
obtained.

2.3.2 Field measurement of soil respiration

Three PVC rings (inside diameter: 20 cm; height: 10 cm)
were installed in each plot and were inserted 6 cm into the
soil. Once the PVC rings were deployed, surface
vegetation within the PVC rings was cut at least one day
prior to measurement to ensure that air inside the soil
within the rings stabilized.

Fig. 4 Flowchart of net primary productivity estimation.

Table 1 Description of study data

Data set Description Data source

Pleiades satellite images December 10, 2014; 2 m spatial resolution multispectral data and 0.5
m spatial resolution panchromatic data; view number 0719-04222 and

0519-03996

France (available at L3Harris Geospatial website)

Meteorological data Data were used to calculate net primary productivity, including mean
monthly temperature, precipitation, multi-year mean precipitation, and

solar radiation

Changting County Meteorological Bureau

Soil respiration Measured by Li-8100A Carbon Flux Automatic Measurement System
(LiCOR, USA) and used to verify the soil basl respiration inversion

Field survey

Leaf area index Measured by LAI-2200 plant canopy analyzer (PCA, USA) and used
to verify LAI inversion

Field survey

Runoff plot data Observation data from runoff plots in Weifang watershed Fujian Soil and Water Conservation Monitoring Station
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A Li-8100A carbon flux automatic measurement system
(LiCOR, USA) was used to measure soil respiration
through the soil rings. All soil respiration measurements
were taken between 09:00 and 16:00 LST. Each measure-
ment was taken three times, nine for each plot, and the
mean was taken as the soil respiration value. Soil
temperature and moisture were obtained simultaneously
with an internal Li-8100A soil temperature probe and a
10 cm soil moisture probe.

2.3.3 Vegetation data

The LAI was measured with an LAI-2200 plant canopy
analyzer (PCA, USA), which automatically recorded the
LAI value after the measurements were completed. When
the LAI was determined, an initial value was measured in a
clearing as a blank/reference value, and subsequent values
were measured three times in the sample areas. The
measurements were then repeated three times for each
sample plot and the mean value was taken as the LAI value
for each plot.
The vegetation parameters measured were forest canopy

density, shrub layer coverage, and litter layer thickness.
The shrub layer coverage was measured in 2 m � 2 m
quadrats at a distance of 0.5 m from the center of the PVC
ring, and litter layer thickness was measured in 1 m � 1 m
quadrats at a 0.5 m distance from the center of the PVC
ring. The average of three surveys was taken as the litter
layer thickness. The litter layer coverage was considered to
be 100%when the average litter layer thickness exceeded 3
cm (Lei and Wen, 2008).

2.3.4 Model validation

The collected data were divided into 40 modeling sets and
19 testing sets. The coefficient of determination (R2) was
used to evaluate the precision of the estimation model;
higher R2 values indicated a stronger correlation with the
field measurements. Moreover, the root-mean-square error
(RMSE), mean relative accuracy (MRA), and mean
estimation accuracy (MEA) were calculated as follows, to
assess the model accuracy:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
yi – ŷið Þ2

r
, (11)

MRA ¼ 1

n

Xn

i¼1
1 –

jyi – ŷij
yi

� 100%

� �
, (12)

MEA ¼ 1 –
j
Xn

i¼1
yi –

Xn

i¼1
ŷijXn

i¼1
yi

� 100%, (13)

where ŷi is the measured value of sample i, yi is the
estimated value of sample i,, n is the total number of
samples.
The determination of the soil and water conservation

coefficient at different vertical layers is key to constructing
the Cs. In this study, the soil and water conservation
coefficient at different levels of the vertical structure were
determined via observations of 12 runoff plots in the
Weifang watershed, Hetian (Table 2). The average canopy
closure of the runoff plots was 0.6, the average shrub layer
coverage was 80%, and the litter layer thickness was 3 cm.
Runoff measurement data were used to verify the
estimation of the C-factor values; these were obtained
from the Fujian Soil and Water Conservation Monitoring
Station.
Furthermore, the soil erodibility factor (K) in the USLE

model is often set to 0.22 for a typical hilly area with red
soil (Liu, 2006), as follows:

C ¼ y=yst, (14)

yst ¼ 100K, (15)

where yst is the y value under standard conditions.
Based on slope sediment yield data under natural rainfall

in the study plots, the relationship between Cs and the
sediment yield on the slope was analyzed using the
following model:

y ¼ 76:939 – 17:8lnCs ðR2 ¼ 0:638, n ¼ 12Þ, (16)

where y is the sediment yield per unit area (g/m2).

3 Results

3.1 Leaf area index inversion results and accuracy analysis

To determine which of the linear, logarithmic, quadratic,
power, and exponential regression models achieved the
best fit, field LAI data from 59 samples were tested against
the ARVI, DVI, GNDVI, MSAVI, NDVI, PSRI, PVI, RDVI,
RVI, and SAVI. The power model with NDVI provided the
best LAI inversion model (R2 = 0.66; RMSE = 0.59;MRA =
82.99%; MEA = 98.14%) (Table 3). Therefore, the LAI
inversion for the study area was based on Eq. (17) (Fig. 5),
which indicated the distribution of the LAI, as follows:

Table 2 Runoff depth observations in Weifang using different models

Model
Tree, shrub,

and litter control model
Shrub and litter
control model

Litter clearance model
(shrub control model)

Farmland management
model

Runoff depth/mm 81.4 89.1 123.7 142.4
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LAI ¼ 7:895x1:791: (17)

3.2 Soil basal respiration inversion results and accuracy
analysis

The NPP of the study area was spatially estimated using
CASA parameters. The average NPP distribution during
January 2015 was 18.43 gC$m–2$month–1 (Fig. 6(a)).
Based on this, the spatial distribution of SBR had an
average value of 10.17 gC$m–2$month–1 (Fig. 6(b)). The
accuracy of the SBR was verified using soil respiration
measurement values, with the units transformed according

to Eq. (9). The resulting model had an R2 value of 0.51,
MRA of 77.83%, and MEA of 97.27% (Fig. 7). The
soil respiration measurement rate varied between 0.37 and
1.76 µmol$m–2$s–1, with an average of 0.95 umol$m–2$s–1.
Additionally, the estimated soil respiration rate was 0.45–
1.82 µmol$m–2$s–1 with an average of 0.92 µmol$m–2$s–1

(Table 4).

3.3 Applicability analysis of soil basal respiration compared
to understory vegetation

The SBR was positively correlated with shrub layer
coverage and litter layer thickness (Table 5), suggesting
that SBR is a good indicator of these factors. Therefore, the
shrub layer coverage and litter layer thickness were taken
as independent variables and SBR was taken as the
dependent variable to construct the linear, logarithmic,
quadratic, power, and exponential function models. These
models were verified using the measured sample data. In
the fitted model of shrub layer coverage and SBR, SBR
increased with both shrub layer coverage and litter layer
thickness in all five regression models. According to the
test data from the measured plots, the linear regression
models of shrub layer coverage and SBR (R2 = 0.62; RMSE
= 1.67; MRA = 84.42%; MEA = 98.04%) and litter layer
thickness and SBR (R2 = 0.47; RMSE = 1.96; MRA =
84.39%; MEA = 97.31%) exhibited the best results
(Table 6).

3.4 Reconstruction and verification of the cover and
management factor

A farmland management model used as reference and the
runoff plot results summarized in Table 2 indicated that the
overall runoff reduction rates of the tree, shrub, and litter
control model, shrub and litter control model, and litter
clearance model (shrub control model) were 42.84, 37.43,
and 13.13%, respectively (Table 7). Thus, Cs and Vs were
expressed as follows:

Table 3 The best inversion results of leaf area index (LAI) in each model type

VI Model type Estimation model
Validation indicators

R2 RMSE MRA MEA

RVI Linear y = 0.983x – 0.594 0.63 0.51 78.83% 96.37%

RVI Logarithmic y = 3.289lnx – 1.255 0.62 0.57 81.35% 97.85%

RVI Quadratic y =-0.005x2+ 0.977x – 0.661 0.63 0.51 78.97% 96.37%

NDVI Power y = 7.895x1.791 0.66 0.59 82.99% 98.14%

NDVI Exponential y = 0.351e3.656x 0.65 0.52 82.48% 99.66%

Fig. 5 Distribution of leaf area index.

Table 4 Accuracy evaluation of soil respiration (Rs) model for Masson pine plantations

Forest type Sample (n)
Measured Rs /(μmol$m–2$s–1) Estimated Rs /(μmol$m–2$s–1)

MRA MEA
Min Mean Max Min Mean Max

Masson pine 59 0.37 0.95 1.76 0.45 0.92 1.82 77.83% 97.27%
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Cs ¼ 0:181C1 þ 0:819Vs: (18)

The relationship between Cs and the C-factor was
obtained by combining Cs and the sediment yield in the
slope (Eq. (16)). Considering that the C-factor value
ranged from 0 to 1, the C-factor in Hetian was summarized
as follows:

Fig. 6 (a) Net primary productivity (NPP) distribution and (b) soil basal respiration (SBR) distribution.

Fig. 7 Comparison of measured and estimated soil respiration
rates (µmol$m–2$s–1).

Table 5 Correlations between litter layer thickness (LLT), understory

vegetation coverage (UVC), and soil basal respiration (SBR)

Factor LLT UVC SBR

LLT 1 0.457** 0.527**

UVC – 1 0.729**

SBR – – 1

Note: ** P< 0.01.

Table 6 Assessment of models for litter layer thickness (LLT) and understory vegetation coverage (UVC)

Factor Best-fit model RMSE MRA MEA

UVC y = 0.173x+ 7.440 1.67 84.42% 98.04%

LLT y = 1.294+ 6.925 1.96 84.39% 97.31%

Table 7 Weights of forest vertical structure

Item Tree Shrub and grass Litter

Reduction ratio/% 5.41 13.13 24.30

Reduction flow coefficient of unit coverage 0.090 0.164 0.243

Weight 0.181 0.330 0.489
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C ¼ 1 Cs£21:90%,

C ¼ 3:497 – 0:809 lnCs 21:90% < Cs < 75:39%,

C ¼ 0 Cs³75:39%:

8><
>:

(19)

In this study, Cs was determined using the LAI and SBR.
Thus, the correlation between the measured the LAI and
canopy closure of the plots was analyzed as follows:

C1 ¼ 16:36LAI þ 14:18 ðR2 ¼ 0:7584, n ¼ 54Þ: (20)

The value of Vs based on the linear relationship between
the SBR and shrub and litter layer coverage was determined
as follows:

V s ¼ 2:825SBR – 20:791: (21)

A Cs spatial distribution map was constructed based on
the inversion of the LAI and SBR (Fig. 8). Finally, the
accuracy of the reconstructed C-factor simulated data were
verified using the measured data from the runoff plots (R2 =
0.55) (Fig. 9). The calculation of the C-factor value in the
Masson pine forest was 0.18.

4 Discussion

4.1 C-factor estimation based on different factors

The C-factor estimations between the C-factor and
vegetation cover are widely applied in the world. Thus,

we used the most common vegetation index (NDVI) (Wen
et al., 2010) and LAI (Lin et al., 2013), as vegetation cover
respectively to calculate the C-factor in Hetian based on
the C-factor calculation method of Cai et al. (2000). The
relationship between vegetation cover and the C-factor was
determined via field observations of runoff subsidence
sediment yields on a slope affected by natural rainfall in the
Weifang watershed:

y ¼ 46:595 – 10:5lnf c ðR2 ¼ 0:6867,n ¼ 12Þ, (22)

where y is the slope sediment yield per unit area (g$m–2),
and fc is the vegetation coverage (%).
Figure 10 showed the C-factors was determined by

NDVI and LAI, respectively. Additionally, the data
measured from the runoff plots were used for verification.
The C-factor estimated by vegetation coverage in the study
area was similar to that determined in the previous studies
(Cai et al., 2000). Nevertheless, the C-factor model based
on NDVI extracted by the Pleiades satellite image only
reflected the projected vegetation cover and the results
were weak (R2 = 0.36). The C-factor based on the LAI
accounted for the characteristics of the vegetation structure
relatively well (R2 = 0.53) (Fig. 11), but did not consider
plant residue such as litter. The C-factor could potentially
bias some soil erosion assessment models and neglect the
role that different vegetation layers play in controlling soil
erosion (Mohamadi and Kavian, 2015; Anache et al.,
2017). Notably, the C-factor model based on the LAI and
SBR— and which considered the canopy, shrub and litter
layers— produced the highest R2 value. Moreover, com-
pared with the developing C-factor value based on
vegetation cover, the proposed C-factor estimated higher
soil erosion intensity. This was closely related to the low
soil fertility and minimal understory vegetation in Hetian.

4.2 Comparison with other validation studies

The results of this study were compared with those of other
studies. The R2 values show that developing the C-factor

Fig. 8 C-factor map determined from leaf area index (LAI) and
soil basal respiration (SBR).

Fig. 9 Relationship between C-factor and soil erosion in study
area.
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Fig. 10 C-factor map based on (a) Normalized difference vegetation index (NDVI) and (b) Leaf area index (LAI).

Fig. 11 Relationship between soil erosion and C-factor determined by (a) Normalized difference vegetation index (NDVI) and (b) Leaf
area index (LAI).

Table 8 Validation of the relationship equations between the C-factor and vegetation coverage

References Relationship equations Validation at Weifang watershed R2

Bu et al. (1993) C = 0.450 – 0.00786 fc 0.423

Jiang et al. (1996) C = exp[ – 0.0085(fc – 5)1.5]; fc> 5% C = 1; fc£5% 0.269

Cai et al. (2000)
C = 1; fc = 0

C = 0.6508 – 0.3436lgfc; 0< fc< 78.3% C = 0; fc≥78.3%
0.483

Jiang (2005)
C = 1; fc = 0 C = 0.6665 – 0.3436 lg fc; 0< fc< 87%

C = 0; fc> 87%
0.359
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using the LAI and SBR was better than using vegetation
cover (Table 8). Previous studies developed equations for
determining the C-factor that could be used to calculate the
C-factor in Hetian (Bu et al., 1993; Jiang et al., 1996; Cai
et al., 2000; Jiang, 2005); relationships between vegetation
coverage and C-factor in the Weifang watershed, Hetian,
were also established. The accuracy of these models was
validated using observed runoff soil erosion data.
The observed soil erosion in the Weifang watershed had

a lower R2 value when estimated using the equation in
Jiang et al. (1996), which indicated that this equation
should be revised when used for other regions. The
calculation of the C-factor values via the equation in Bu
et al. (1993) yielded some negative values, which were out
of range, despite the moderate R2 value. The C-factor
equation proposed by Jiang (2005) was applied to
Changting but did not yield satisfactory results for Hetian.
The C-factor estimated by Cai et al. (2000) had a better
relationship with soil erosion than others in Hetian. This
indicates that it is appropriate to couple the LAI and SBR to
develop the C-factor by adjusting the equation in Cai et al.
(2000). A lower R2 value indicated that the model was not
suitable for estimating the C-factor in Hetian. Overall, the
estimation of C-factor values from these equations was no
better than that using Cs.

4.3 Accuracy of the proposed C-factor parameters

In this study, remote sensing data with a high spatial
resolution were used to estimate the C-factor and obtain an
accurate value for it. The results showed that NDVI can
adequately represent the spatial distribution of LAI (R2 =
0.66), which is consistent with previous studies that
showed that vegetation indices obtained from remote
sensing images can effectively represent the LAI distribu-
tion (Jiao et al., 2014). Moreover, it revealed the relation-
ships between SBR and understory vegetation in a manner
that accounted for the role of SBR. The results can most
likely be explained by the mechanisms outlined in previous
studies, e.g., the interception of rainfall in the forest canopy
significantly reduces direct erosion (Mohamadi and
Kavian, 2015) and understory vegetation reduces surface
runoff (Anache et al., 2017).
The correlation analysis of SBR and measured soil

respiration indicated that the estimated SBR rate reflected
the field soil respiration rate in the study area and indirectly
supported the reliability of NPP and SBR results derived
from remote sensing data. Models driven by remote
sensing data are widely used and accepted for indirect NPP
estimation (Ricotta et al., 1999). Although the spatiotem-
poral variation of NPP is affected by a combination of
various factors, the NPP produced by the CASA model
and various meteorological parameters is fairly compre-
hensive because it considers vegetation growth conditions.
NPP values for the study area were consistent with Zheng
et al. (2008) for another hilly area with red soil and other

measured NPP ranges (Liu et al., 1998).
Uncertainties concerning the combination of remote

sensing images, the CASAmodel, and soil respiration field
measurements remain. They are related to inconsistent
spatial data scales (Turner et al., 2005) and zonal factors
such as soil parent material, which may influence soil
respiration (Trumbore et al., 2006). The temperature
sensitivity factor (Q10) is the most sensitive index when
estimating the SBR. It is important for simulating the
feedback intensity between global climate change and the
amount of carbon released from an ecosystem. The Q10

value has significant spatial heterogeneity resulting from
geographical location, seasonal conditions, and ecosystem
types (Qi et al., 2002; Wang et al., 2017). Zhou et al.
(2007) proposed that the average Q10 value is 1.80 in
China, and the range of Q10 for different soil types vary
between 1.09 and 2.38. In this study,Q10 was calculated by
measuring the response of soil respiration to temperature.
It is the most commonly used method for estimating Q10 in
the inversion of SBR (Larsen and MacDonald, 2007; Feng
et al., 2008). Compared with the results of Zhou et al.
(2007), the Q10 value was within a reasonable range.
Generally, the controller of the Q10 value improved the
simulation of SBR.

5 Conclusions

The accuracy of the C-factor is directly related to that of
soil erosion estimation results. In this study, Cs was used to
explain the effect of different vegetation layers on soil
erosion during rainfall, to better understand and ultimately
reduce rainfall-induced erosion. The combination of the
LAI and SBR enabled simultaneous analysis of three-
dimensional data above the ground and two-dimensional
data on the surface. The results showed that the
reconstructed C-factor coupled with the LAI and SBR is
feasible and accurate. Using this approach, the C-factor can
best reflect the vegetation layer structure and is useful to
comprehensively and accurately quantify large-scale soil
erosion.
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