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Abstract Climate change, a recognized critical environ-
mental issue, plays an important role in regulating the
structure and function of forest ecosystems by altering
forest disturbance and recovery regimes. This research
focused on exploring the statistical relationships between
meteorological and topographic variables and the recovery
characteristics following disturbance of plantation forests
in southern China. We used long-term Landsat images and
the vegetation change tracker algorithm to map forest
disturbance and recovery events in the study area from
1988 to 2016. Stepwise multiple linear regression (MLR),
random forest (RF) regression, and support vector machine
(SVM) regression were used in conjunction with climate
variables and topographic factors to model short-term
forest recovery using the normalized difference vegetation
index (NDVI). The results demonstrated that the regene-
rating forests were sensitive to the variation in temperature.
The fitted results suggested that the relationship between
the NDVI values of the forest areas and the post-
disturbance climatic and topographic factors differed in
regression algorithms. The RF regression yielded the best
performance with an R2 value of 0.7348 for the validation
accuracy. This indicated that slope and temperature,
especially high temperatures, had substantial effects on
post-disturbance vegetation recovery in southern China.
For other mid-subtropical monsoon regions with intense
light and heat and abundant rainfall, the information will
also contribute to appropriate decisions for forest managers
on forest recovery measures. Additionally, it is essential to
explore the relationships between forest recovery and
climate change of different vegetation types or species for
more accurate and targeted forest recovery strategies.

Keywords climate change, forest disturbance, forest
recovery, vegetation change tracker

1 Introduction

Climate change studies have enhanced our understanding
of the climate system (Parmesan and Yohe, 2003). The
temperature on the surface of the Earth between 1880 and
2012 has increased by 0.85°C, and according to the report
by the Intergovernmental Panel on Climate Change, the
years 2003 to 2012 were the warmest (IPCC, 2014).
Greenhouse gas emissions are increasing due to the impact
of human activities (Li et al., 2014). It has been suggested
that forests are sensitive to climate change (Upgupta et al.,
2015; Wang et al., 2016) and the disturbance of natural or
human-induced events – such as clearcutting, thinning, and
droughts (Chrysopolitou et al., 2013; Xin et al., 2013) –
alters the ecological patterns of forests. Forest recovery
from these disturbances equates to a strong carbon sink and
plays a vital role in the global carbon cycle (Pan et al.,
2011). Forest recovery influences the climate through
biophysical mechanisms (Pan et al., 2011; O’Halloran
et al., 2012). Theoretically, post-disturbance forest recov-
ery is restricted by many on-site factors, including the type
and magnitude of the disturbance, regeneration strategies,
topography, and local climate (Meng et al., 2015;
Roopsind et al., 2017).
To better understand the relationship between climate

and post-disturbance forest recovery will benefit the
sustainable management of the forests. It is a fundamental
work to collect data on forest cover changes and remote
sensing provides an efficient, viable, and reliable means to
receive the up-to-date information. Huang et al. (2010)
developed an algorithm called the vegetation change
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tracker (VCT) for detecting forest change and mapping the
changes in forest cover using Landsat time series stacks.
The algorithm is based on the spectral-temporal characte-
ristics of land cover and forest change processes. The
mapping performance and good accuracy of the VCT have
been documented in many regions, including Alabama,
USA (Li et al., 2009), the Ning-zhen mountains, China
(Li et al., 2016), and other locations where Landsat time-
series stacks have been collected through the North
American Forest Dynamics (NAFD) project (Goward
et al., 2008; Huang et al., 2009). The VCT algorithm is a
highly automatic and high-precision algorithm that enables
the detection and tracking of forest change. Thus, the VCT
substantially simplifies the task of obtaining information
on forest disturbance and recovery in areas of frequent
forest management practices, such as in the plantations of
Southern China (Li et al., 2011; Shen et al., 2018; Shen
et al., 2019).
Although empirical models have been used to simulate

the status of post-disturbance forest recovery, relevant
studies were primarily conducted in temperate continental
climates, Mediterranean climates, and plateau climates
(Meng et al., 2015; Liu, 2016; Pang et al., 2017). Some
studies were performed on the impact of climate change on
forest recovery. For example, Savage (1991) illustrated that
adverse climatic conditions shortened the recovery time of
pine forests. In a study of post-fire recovery of a pine-oak
mixed forest in New York State, Meng et al. (2018) found
that very high temperatures were highly correlated with the
normalized difference vegetation index (NDVI). In con-
trast, it was concluded that higher temperatures and less
precipitation might lead to a decline in carbon storage
during the forest recovery process (Mccauley et al., 2019).
This research currently focuses on southern China,

which has a mid-subtropical monsoon climate and
plantation forests are dominant. The objective of this
study is to investigate the trends of forest disturbance and
the effects of climate change on forest recovery after
disturbance in the plantation-dominated forests of southern
China. The results are expected to provide insights for
forest management in subtropical climates.

2 Materials and methods

2.1 Study site

The study area is located at the junction of Guangdong,
Fujian, and Jiangxi provinces of China and includes the
administrative cities of Ganzhou, Heyuan, Meizhou, and
Longyan. The area is covered by the Landsat World
Reference system-2 path/row 121/043 tile, with undulating
topography of elevation ranges from 37 m to 1541 m. The
area has a mid-subtropical monsoon climate, with an
average annual precipitation of 1030 mm to 2000 mm and

an average annual temperature of 19°C to 21°C. The rainy
season ranges from March to September and about 50% of
rainfall occurs between March and early July. The major
forest types include the dominant subtropical evergreen
broad-leaved forest, coniferous forest, and coniferous and
broad-leaved mixed forest, and the tree main species are
Pinus massoniana, Cunninghamia lanceolata, Pinus
elliottii Engelm, Eucalyptus, Pinus kwangtungensis, Cas-
tanopsis fissa, Acacia mangium, and Phyllostachys edulis.
The most common meteorological disturbances in the
region are chilling injury of the plants, storms, flooding,
and drought.

2.2 Data sets

Landsat time-series stacks consisting of approximately
yearly Landsat Thematic Mapper (TM)/Enhanced The-
matic Mapper (ETM+)/Operational Land Imager (OLI)
images from 1988 to 2016 were assembled to enable the
establishment of a historical record of forest disturbance
and recovery in the plantations. The images were down-
loaded from the United States Geological Survey Earth
Resources Observation and Science (USGS EROS) Center
(available at USGS website). The following rules of the
choice of images are to ensure the accuracy in the detection
of forest changes: 1) the image acquisition dates had to fall
in the growing season (mid-June to mid-September in the
subtropical region), and 2) the images had to have minimal
or no cloud contamination. No ETM+ images acquired
after May 2003 were used, as there was a data gap caused
by the scan line corrector (SLC) failure (Pringle et al.,
2009). For images with relatively high cloud contamina-
tion, we obtained two or three of them in the same growing
season with lower levels of cloud cover and different cloud
locations to composite a new image with less cloud cover.
A summary of the 27 Landsat scenes used in this study is
provided in Table 1.
Climate data were obtained from the Ground Station

database of the China Meteorological Administration,
which provides annual data. We used annual precipitation,
maximum and minimum temperatures, mean maximum
and minimum temperatures, and mean temperature from
1988 to 2016 for the Shanghang, Wuhua, Meixian,
Lianping, Xunwu, and Heyuan stations in the study
area. We used co-kriging, a special case of ordinary
kriging (Liu et al., 2006), to interpolate the climate
variables in the study area. Geostatistical analyses and
co-kriging interpolation were implemented in the GS+
and ArcGIS 10.3 packages.

2.3 Data processing

2.3.1 Landsat data processing

The implementation of the VCT algorithm requires
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Landsat surface reflectance images in standard format and
the band combinations of Blue, Green, Red, NIR (Near
Infrared), SWIR1 (Short Wave Infrared 1), SWIR2 (Short
Wave Infrared 2), and the thermal bands. The Landsat TM/
ETM+ images were orthorectified with subpixel accuracy.
The data were radiometrically and atmospherically cor-
rected to surface reflectance by applying the Landsat
Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm, which is a high-level automatic
pre-processing algorithm for TM/ETM+ images (Masek
et al., 2006). The Landsat 8 OLI image products include
surface reflectance products generated by the Landsat
Surface Reflectance Code (LaSRC) from the USGS EROS
Data Center. This method uses three sources of informa-
tion: 1) the coastal aerosol band (to perform aerosol
inversion tests), 2) auxiliary climate data from MODIS,
and 3) a radiative transfer model (Landsat Surface
Reflectance Level-2 Science Data Products, available at
USGS website (Vermote et al., 2016)).

2.3.2 Mapping and validation of forest disturbance and
recovery

The Landsat time series stacks were analyzed with the
VCT algorithm to obtain the disturbance parameters
(Huang et al., 2010). For example, the algorithm provides
several parameters, including disturbance maps, year of
disturbance, and disturbance magnitude; these parameters
are based on the spectral-temporal characteristics of land
cover and forest change. The VCT algorithm consists of
two main steps, including individual image analysis and
time series analysis. The VCT model tracks forest changes
using an integrated forest z-score (IFZ). The calculation
formula of the IFZ is as follows:

FZi ¼
bi – bi
SDi

, (1)

where bi and SDi represent the mean and standard

Table 1 Landsat TM/ETM+ /OLI scenes used in this analysis (WRS2 path/row = 121/043)

Image index Acquisition date Satellite Sensor Image quality

1 10/16/1988 Landsat 5 TM High

2 07/15/1989 Landsat 5 TM 10% cloud coverage

3 10/22/1990 Landsat 5 TM 17% cloud coverage

4 09/23/1991 Landsat 5 TM 5% cloud coverage

5 10/09/1991 Landsat 5 TM High

6 10/11/1992 Landsat 5 TM 16% cloud coverage

7 10/01/1994 Landsat 5 TM High

8 09/18/1995 Landsat 5 TM 5% cloud coverage

9 10/20/1995 Landsat 5 TM 14% cloud coverage

10 08/20/1999 Landsat 7 ETM+ 1% cloud coverage

11 10/17/2000 Landsat 5 TM 14% cloud coverage

12 05/13/2001 Landsat 5 TM High

13 08/28/2002 Landsat 7 ETM+ 24% cloud coverage

14 10/07/2002 Landsat 5 TM 41% cloud coverage

15 07/06/2003 Landsat 5 TM 27% cloud coverage

16 07/22/2003 Landsat 5 TM 2% cloud coverage

17 09/26/2004 Landsat 5 TM 1% cloud coverage

18 08/12/2005 Landsat 5 TM 1% cloud coverage

19 10/05/2007 Landsat 5 TM High

20 09/21/2008 Landsat 5 TM 6% cloud coverage

21 10/26/2009 Landsat 5 TM High

22 10/29/2010 Landsat 5 TM High

23 08/10/2010 Landsat 5 TM 23% cloud coverage

24 07/28/2011 Landsat 5 TM 5% cloud coverage

25 09/19/2013 Landsat 8 OLI 4% cloud coverage

26 10/08/2014 Landsat 8 OLI 3% cloud coverage

27 09/27/2016 Landsat 8 OLI High
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deviation of the spectral value of the forest pixel of each
band, respectively, and bi represents any pixel in the image.
For multi-spectral images, the IFZ value is defined by
integrating FZi over the spectral bands as follows:

IFZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NB

X

NB

i¼1

ðFZiÞ2
v

u

u

t , (2)

where NB represents the number of bands used. For the
Landsat TM/ETM+ images, bands 3, 5, and 7 were used to
calculate the IFZ values, and for the Landsat OLI images,
bands 4, 6, and 7 were used. The IFZ is an inverse measure
of the likelihood of each pixel being a forest pixel. If the
IFZ value is low (0.3 for dense forests and 0.2 for sparse
forests) and relatively stable throughout the monitoring
period, we determined that the pixel represented persisting
forest. A sharp increase in the IFZ value during a specific
year indicates the occurrence of a disturbance in that year.
Forest recovery was defined as the gradual decrease in the
IFZ from high values. To avoid false positives, VCT uses
the consecutive high integrated forest z-score values which
were recorded following an integrated forest z-score hike
to determine whether the increase was caused by a noisy
observation or a disturbance (Huang et al., 2010). In this
study, we focused on the disturbance maps because they
allowed us to determine where and when disturbances had
occurred. A detailed description of the disturbance maps is
listed in Table 2. We adopted the validation method
proposed by Li et al. (2016) that uses three randomly
identified 3 km � 3 km plots. The validation process is
shown in Fig. 1. The spatial agreement index was
calculated by comparing the VCT detection results with
the visual interpretations of the corresponding Google
Earth images or Landsat image pairs at an earlier date in
the period if Google images were not available. The spatial
agreement index is defined as follows:

SAI ¼ Scd

Sg
: (3)

In this method, the area of the disturbance region
identified by the VCT is defined as Sv. The area of the
disturbance region determined by the visual interpretations

of the Google Earth images is Sg. Scd is the overlap area of
the two detected regions.

2.3.3 Forest recovery analysis based on NDVI time series

We focused on the disturbances that occurred between
1989 and 2010 due to the time limitation of the available
Landsat observations. Previous studies have indicated the
NDVI value was efficient in characterizing vegetation
recovery status (Díaz-Delgado et al., 2002; van Leeuwen
et al., 2010). It has been hypothesized that an increase in
the NDVI value following disturbance results in an
increase in the cover of trees, shrubs, and herbaceous
vegetation (Meng et al., 2015). However, the disadvantage
of using the NDVI to estimate vegetation conditions is the
saturation of the NDVI in dense vegetation canopies or
areas with a high leaf area index (Carlson et al., 1990). This
study focused on the early stages of vegetation recovery to
minimize the saturation effect, i.e., we used the NDVI
values from the first 5 years (excluding the first-year post-
disturbance) to represent the recovery status of the
disturbed forest patches and investigate the effects of
short-term forest recovery. Specifically, we used the
recovery trend index (RTI) in the initial stages of rapid
regrowth. The index is a measure of the recovery trend that
uses the slope of a line fitted by the Theil-Sen estimator
(João et al., 2018). Here, we used the post-disturbance
NDVI trend. Since the Theil-Sen estimator is a rank-based
test, it is insensitive to a non-normal distribution and
missing values (Theil, 1992). We used the mblm package
in R. 3.4.2. for statistical analyses (Wang, 2018).

2.3.4 Modeling forest recovery following disturbance

Based on previous studies (Meng et al., 2015; Zhao et al.,
2016; Luo et al., 2017), different environmental variables
were used to assess the effects of disturbance (post-
disturbance NDVI values and the disturbance magnitude),
topography (elevation, slope, and aspect), and climatic
factors on forest recovery (see Table S1 for more details on
the variables). The disturbance magnitude in this study was
calculated using the IFZ. We chose 70–150 points in

Table 2 Definition and aggregation of forest disturbance maps developed from VCT

Value Class description in VCT model Aggregated class

0 Background area Abandoned

1 Persisting nonforest Nonforest

2 Persisting forest Forest

4 Persisting water Nonforest

5 Previously disturbed but spectrally restored to forest this year Forest

6 Disturbed in this year Nonforest

7 Post-disturbance nonforest Nonforest
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disturbed patches and extracted the pixel values (see Table
S1); 70% of the data were used as training data, and the rest
was used to test the reliability of the models. The
relationships between the climate variables, topography,
disturbance, and forest recovery were assessed using three
types of regression models, i.e., stepwise multiple linear
regression (MLR), random forest (RF), and support vector
machine (SVM) models. The results of the best model
were used for the analysis.
The stepwise MLR model was used to identify and

quantify the relationships between the NDVI for the fifth
year and the predictor variables. The stepping criteria for
the addition and removal of the variables were based on the
significance level (F-value equals to 0.05). Prior to
statistical modeling, min–max normalization was carried
out for root morphological parameters and tissue composi-
tions to prevent attributes with large numeric ranges from
dominating those with small numeric ranges. Min–max
normalization involved subtracting the minimum value of
an attribute from each value of the attribute and then
dividing the difference by the range of the attribute. The

normalized values ranged between 0 and 1. The advantage
of this normalization is that it preserves the relationships of
the data values and does not introduce potential bias into
the data. Stepwise multiple linear regression model
constructs a multivariate model based on a few deliberately
selected explanatory variables. The best model was
selected on the basis of the highest multiple correlation
coefficient (R2) (Zhan et al., 2013). Stepwise multiple
linear regression model was evaluated using the mblm
package in R.
RF is a non-parametric algorithm with the following

advantages over MLR models: 1) the variable importance
can be determined; 2) it is robust to data reduction; 3) there
is no risk of overfitting; 4) it generates unbiased accuracy
estimates and decision trees; 5) it has high accuracy and
low sensitivity to the adjustment of parameters (Breiman,
2001). The weaknesses of the RF modeling are that the
decision rules are unknown (black box) and the imple-
mentation is computationally expensive. We used the RF
model in the R-package and identified the important
predictors to determine the relationships between the

Fig. 1 Forest disturbance patterns mapped by the VCTalgorithm, 1988–2016. The three black squares with a side length of 3 km are the
validation plots that were randomly identified on the disturbance map. The four images on the right show the validation process of the
eastern plot: (a) Google Earth image in 2008; (b) Google Earth image in 2009; (c) year of disturbance (showing the disturbance that
occurred in 2009); (d) Google Earth image in 2016. Spatial agreement = the area of agreement area between (b) and (c) divided by the area
of (b).
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predictors and NDVI for the fifth year. There were 500 trees
(ntree) for modeling, and each tree was created from four-
fifths of a random sampling of the training data. For the
parameter mtry, we used the default value of the square
root of the total number of predictor variables. The node
size was set to the default value of 1.
SVM regression model is a more advanced statistical

method compared to traditional linear and nonlinear
regressions. SVM regression model is a supervised and
non-parametric machine-learning algorithm for classifica-
tion and regression analyses. This method offers many
unique advantages in dealing with small-sized samples,
nonlinear and high dimensional pattern recognition, and is
highly correlated with predictor variables.
It is worth noting that the predictors used in the RF and

SVM regression models were selected using the impor-
tance function in the RF model. The importance of the
predictor was assessed using the mean square error (MSE)
(percent IncMSE) and the node purity (IncNode Purity).
The less important predictors were removed from the
model, and a small subset of predictors was selected to
create the optimum model.

3 Results

The spatiotemporal pattern of the forest disturbances
presented when and where, and the number of forest

disturbance events had occurred in the past 29 years
(Fig. 1). The forest disturbance rate ranged from 0.47%
(1995) to 3.15% (2009) and fluctuated between 0.7% and
2.0%. It was assumed that this range represented the
normal level of forest disturbance in the study area (Fig. 2).
There was an increase in the disturbance rate in 2008 and
2009 – the images indicated large-scale forest disturbance
– which was attributed to extreme winter weather that
affected the south-central region of China from 10 January
to 8 February 2009 (Zhou et al., 2011) (Fig. 2). Not any
particular trend did the forest recovery rates have but only a
fluctuation between 0.63% (2002) and 3.74% (1995)
(Fig. 2). Most of the recovery rates were between 0.8% and
2.0%, but there were two peaks (1995 and 2013), which
corresponded to the disturbances that had occurred several
years previously. The results of the spatial agreement
obtained from the three plots are listed in Table 3. The
values ranged from 59.89% to 92.35%, with most
measurements being between 70.0% and 86.0%.
The slope based on the Theil-Sen estimator represents

the RTI, is showing the trend of forest recovery. The NDVI
values tended to increase with increasing RTI values.
Forest recovery occurred faster after disturbances in 2009,
2010, and 2011 but slower after disturbances in 1990
(Fig. 3). We found that NDVI_1 (which was used as a
proxy for the condition of the post-disturbance vegetation),
extremely high temperatures, and the slope were the most
important variables; high temperature was the most reliable

Fig. 2 Changes in the forest disturbance/recovery area and rates obtained from the VCT algorithm.
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predictor (Fig. S1). Based on the analysis, we chose 25
variables to model post-disturbance forest recovery.
In this study, the fitting and verification accuracies were

used to evaluate the model results. The three models’
modeling contribution was evaluated by calculating R2,
Mean Relative Error (MRE), the Root Mean Square Error
(RMSE), and comparisons between maximum, minimum,
mean and observed values.
The RF model had the highest accuracy; the R2 value

was 0.9448 for the fitting accuracy and 0.7348 for the
validation accuracy. Although the SVM regression model
performed better than the RF model regarding fitting
accuracy, overfitting of the data occurred (Tables 4 and 5).

4 Discussion

4.1 Forest disturbance and recovery characteristics

Figure 2 shows an anomaly of the forest disturbance rate in
the study site in 2008 and 2009, and this peak was likely
related to an exceptionally cold period with freezing rain
and snow in 2008 (Zhou et al., 2011). The extreme cold
inhibited the growth of forests and produced a significant
amount of combustible materials (due to dead vegetation),
which increased the risk of forest fire (Dale et al., 2001).
Current forest disturbance monitoring in Jiangxi Province
is based on a time-series trajectory of a remote sensing

index. It has yielded results that are consistent with the data
from 2001 to 2011 describing a known burned forest area
in Jiangxi Province (Wu, 2014). The 1990 and 2009
Landsat images were acquired respectively on 22 and 26
October, i.e., during the late autumn or early winter for this
mid-latitude region. The deciduous forest was likely in a
leaf-off status during this time, which could have caused
the VCT algorithm to flag these sites erroneously as areas
of change. The disturbance area for the first year of the
Landsat time series (1988) was extensive. At the beginning
period of the study, there was no available spectral contrast
from which to derive information on change; therefore, we
used no disturbance data or forest recovery data from the
first year of the image stack.
The majority of the study area is located in northern

Guangdong, an under-developed mountainous area.
Improper forest management is an important factor leading
to the decline of forest quality (Sun et al., 2017), which in
this area has resulted in substantial destruction of forest
resources in the early 1980s (Xu, 1999). A ‘greening’
policy was put forward in Guangdong Province in 1985
and significantly reduced deforestation in this area. The
disturbance rate during our research period did not exceed
3.15%. The priority for forest development in northern
Guangdong Province since 2001 has been forestry and
non-commercial forest construction (Liu et al., 2004).
Many fast-growing and high-yield plantation forests have
been created, changing the balance between the distur-

Table 3 Spatial agreement measurements of the 9 km2 validation plots

Eastern plot Middle plot Western plot

Disturbance year Agreement measure/% Disturbance year Agreement measure/% Disturbance year Agreement measure/%

1989 74.54 1989 92.35 1989 78.15

1990 80.31 1990 91.50 1990 65.84

1991 59.89 1991 80.82 1991 69.31

1992 61.07 1992 71.10 1992 61.01

1995 84.03 1995 70.00 1995 72.54

2000 60.03 2000 60.48 2000 61.44

2001 67.20 2001 75.93 2001 77.89

2004 89.53 2004 60.57 2004 89.63

2005 81.27 2005 86.51 2005 72.32

2006 66.16 2006 74.24 2006 74.92

2007 86.83 2007 79.42 2007 70.08

2008 70.24 2008 73.91 2008 72.25

2009 66.82 2009 70.37 2009 62.31

2010 72.82 2010 73.40 2010 71.30

2011 76.61 2011 73.93 2011 71.65

2013 71.52 2012 78.34 2012 70.81

2014 69.36 2014 72.33 2014 80.12

2016 73.86 2016 74.25 2016 72.33
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Fig. 3 Forest recovery trend based on the Theil-Sen estimation.
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bance area and the recovery area between 2001 and 2016.
Harvesting and low-intensity human-induced fires have
long been the major causes of disturbance in the study area,
according to the China Forestry Yearbook (National
Forestry and Grassland Administration, 2018). The fast-
growing and the high-yield plantation forests have short
rotation cycles and have to be harvested regularly to allow
regeneration. Prescribed burning has been commonly used
in southern China for preparing the ground for seeding or
planting after harvesting, particularly for Chinese fir (Sun
et al., 2011).
There was a substantial increase in the forest recovery

area after 1989 as a result of the biogeographic conditions
in the study area. The mid-subtropical monsoon climate
and abundant solar illumination and precipitation are
conducive to vegetation growth and recovery in this
particular region. The major tree species that were chosen
for plantation establishment are fast-growing and have
short rotation cycles. Professional forest management
measures have ensured rapid forest recovery within several
years of a disturbance.
Forest recovery that refers to the reestablishment of key

forest biophysical variables following a disturbance event
is a process rather than a state (Frolking et al., 2015). The
recovery rate differs due to the magnitude and type of
disturbance, the biogeographic conditions, and the climate
(Bolton et al., 2013). Post-disturbance forest recovery
occurs via multiple pathways, including no recovery (land-
use change), artificial recovery, or natural recovery. Our
results showed a slight increase in forest coverage, and the
statistical analysis indicated that only about 1% of the
disturbed forests in the study area showed no signs of
recovery; nearly all remaining disturbed pixels changed to
recovery pixels within 6 years. The disturbance and
subsequent recovery events are key processes that shape
the type and the age structure of forests and represent

critical factors in the sustainable forest management of
plantations in southern China.

4.2 Forest recovery response to climate

The modeling result indicated that climatic conditions in
the first few post-disturbance years were the most
important factors contributing to forest recovery. The
relative importance of the predictor variables showed that
high temperature was the most significant predictor of
forest recovery (Fig. S1). Investigations of other forest
areas have also revealed that high temperatures or drought
stress affected vegetation growth (Sun et al., 2007;
Mildrexler et al., 2016). In our study, high temperatures
were correlated with the occurrence of fires, whose impact
on forests would have been immediate. Precipitation did
not explain the changes in the NDVI in this study because
the prevailing climatic conditions of southern China are
excellent for forest recovery. Thus, rainfall and sunshine
were not the limiting factors for forest recovery in this
particular region. Additionally, elevation was also not an
influential factor in forest recovery, but the slope had a
significant impact on forest recovery (Fig. S1). The reason
may be that the slope affects forest soil fertility, sunlight
and soil moisture, thus affecting tree growth and forest
stand recovery, especially in steep locations. However, the
temperature may be a critical factor for forest growth when
enough moisture is available (Minore and Laacke, 1992),
and temperature was an important factor in this study
(Fig. S1). A comparison of the predictive performance of
the three models indicated that the nonlinear model
showed the best fit, presumably because the process of
post-disturbance recovery is complex, and many of the site
parameters have nonlinear interactions. Climatic effects are
not temporary and interact with other processes since many
climatic factors are linked with human activities. Topo-

Table 4 Fitting accuracy

R2 MRE RMSE Maximum Minimum Mean

Stepwise LM 0.5475 0.0979 0.0028 0.9020 0.3348 0.6924

Random forest (RF) 0.9464 0.0345 0.0004 0.8430 0.1736 0.6920

SVM 0.9784 0.0196 0.0001 0.8719 0.1577 0.6911

Observed NDVI 0.883 0.1413 0.6924

Table 5 Validation accuracy

R2 MRE RMSE Maximum Minimum Mean

Stepwise LM 0.5814 0.1616 0.0044 0.8578 0.3798 0.6773

Random forest (RF) 0.7667 0.0714 0.0017 0.8170 0.2124 0.6783

SVM 0.6870 0.0803 0.0021 0.8200 0.2425 0.6758

Observed NDVI 0.8265 0.1615 0.6762
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graphy and the magnitude of disturbances were not
powerful predictors in the regression model; the reason
may be that the primary disturbance type (e.g., logging) in
this area is anthropogenic. Topography might not have had
a large impact on human management activities in this
particular region.
Our results indicated that the following ideas should be

considered in future studies: 1) The Landsat images and the
vegetation index-based analysis made it difficult to
distinguish the vegetation types and species. Different
types of vegetation, and even different species of the same
genus, respond differently to climate change (Meng et al.,
2015; Zhen et al., 2011). Additional research is, therefore,
required to explore the relationship between the recovery
of different vegetation types or species and climate change
using high-resolution remotely sensed data and forest
management data. 2) The VCT products only identify the
time and location that the disturbance or recovery events
have occurred, but provide no information on the
disturbance type. Climate is more closely related to natural
disturbances (such as hurricanes or drought) than human
activity. Subsequent investigations should focus on field-
work to distinguish different disturbance types. In previous
studies, it was demonstrated that the use of field data and
the SVM algorithm was well suited for the detection of,
and differentiation between, disturbances (Huang et al.,
2002; Zhao et al., 2015). 3) Focused on the correlation
between climate change and post-disturbance forest
recovery in this research, we did not quantify the impact
of climate change on forest recovery in the study area, and
that is the direction we will focus on in the future.

5 Conclusions

This paper reported on the potential impacts of climate
change on post-disturbance forest recovery. Climatic
factors, particularly very high temperatures and slope
were highly correlated with post-disturbance forest
recovery in southern China. The results showed that the
VCT algorithm provided insights into forest disturbances
and recovery histories that are informative for interdisci-
plinary scientific applications. The findings also provided a
solid basis for the strategic development of sustainable
forest management plans in response to climate change, as
well as a method for determining the carbon sequestration
capacity of forest plantations using long-term data.
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