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Abstract Rice production in China’s coastal areas is
frequently affected by typhoons, since the associated
severe storms, with heavy rain and the strong winds, lead
directly to the rice plants becoming flooded or lodged.
Long-term flooding and lodging can cause a substantial
reduction in rice yield or even destroy the harvest
completely. It is therefore urgent to obtain accurate
information about paddy rice flooding and lodging as
soon as possible after the passing of the storm. This paper
proposes a workflow in Google Earth Engine (GEE) for
mapping the flooding and lodging area of paddy rice in
Wenzhou City, Zhejiang, following super typhoon Maria
(Typhoon No.8 in 2018). First, paddy rice in the study area
was detected by multi-temporal Sentinel-1 backscatter data
combined with Sentinel-2-derived Normalized Difference
Vegetation Index (NDVI) using the Random Forests (RFs)
algorithm. High classification accuracies were achieved,
whereby rice detection accuracy was calculated at 95%
(VH+ NDVI-based) and 87% (VV+ NDVI-based).
Secondly, Change Detection (CD) based Rice Normalized
Difference Flooded Index (RNDFI) and Rice Normalized
Difference Lodged Index (RNDLI) were proposed to detect
flooding and lodged paddy rice. Both RNDFI and RNDLI
were tested based on four different remote sensing data
sets, including the Sentinel-1-derived VV and VH back-
scattering coefficient, Sentinel-2-derived NDVI and
Enhanced Vegetation Index (EVI). Overall agreement
regarding detected area between the each two different
data sets was obtained, with values of 79% to 93% in flood
detection and 64% to 88% in lodging detection. The
resulting flooded and lodged paddy rice maps have
potential to reinforce disaster emergency assessment

systems and provide an important resource for disaster
reduction and emergency departments.

Keywords typhoons, paddy rice, flooding, lodging,
Sentinel-1, Sentinel-2, Google Earth Engine

1 Introduction

As a major natural hazard affecting coastal areas, typhoons
have serious impacts on agriculture. The heavy rains and
wind brought by typhoons have a direct impact on
agricultural production in the affected areas. For example,
there are on average 6.25 typhoons that make landfall on
the coast of China every year and annual economic losses
due to typhoon landfall amount to RMB 200 million (Liu
et al., 2009). Hence, accurate emergency disaster monitor-
ing is of key importance to ensure food security.
Over the past three decades, remote sensing technology

has developed rapidly, with an increase in availability of
remote sensing data such as Landsat-5, MODIS, Landsat-
7, Landsat-8, Sentinel-1 and Sentinel-2 data sets which are
accessible free of charge. Furthermore, cloud-based
computing platforms, such as Google Earth Engine
(GEE), can complete the integration and analysis of huge
geospatial and remote sensing data sets related to the object
of study within a very short period of time (Mateo-García
et al., 2018). As a remote sensing cloud computing
platform, GEE can easily realize the integrated processing
of remote sensing data and geospatial information
acquisition, analysis and mapping under large spatial and
long temporal scale. For example, high-resolution map-
ping of global surface water and forest cover products
based on GEE have been produced in recent years (Pekel
et al., 2016; Hansen et al., 2013). In addition, a global and
consistent evaluation of coastal erosion and accretion over
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32 years, based on GEE, has been proposed (Mentaschi
et al., 2018). Given the enormous computational load
required in using these products, they would not be feasible
without GEE. Pixel-based processing is facilitated in GEE,
resolving the problem of cloud removal in complex
weather conditions, and thereby greatly improving the
use efficiency of remote sensing images.
Accordingly, remote sensing has been broadly used in

near-real time assessment of natural hazards that affect
crops, including flooding and lodging. Flooding in rice
fields means excess of water inhibiting rice growth or even
completely submerged, which occur because of unex-
pected rainfall, excessive river flow, cyclonic storms and
tidal surge (Sakagami and Kawano, 2011). While lodging
here refers to the rice plants are permanent displacement of
the stems from their upright position, when lodging occurs,
the canopy structure would be destroyed, and the capacity
of photosynthetic rate and dry matter production sharply
reduced (Setter et al., 1997). Specifically, optical remote
sensing data are now widely used in crop disaster research.
For example, Landsat TM reflectance before and after
flooding has been used to assess the change in the
distribution of surface water and to obtain accurate
information about the extent of flooded areas (Wang
et al., 2002). Furthermore, by incorporating the Digital
Elevation Model (DEM), Wang et al. (2002) were able to
greatly improve estimation accuracy by also identifying
flooded areas under the forest canopy. Rice fields damaged
by flooding were also detected using MODIS-derived
indices, including Modified Land Surface Water Index
(Kwak et al., 2015) and Global Land Cover data sets by
National Mapping Organizations (GLCNMO 2008). By
doing so, they were able to produce a map indicating the
distribution of flooded rice fields across the entire country
of Bangladesh for July–August 2007 (Kwak et al., 2015).
Unmanned aerial vehicle (UAV) technology is increasingly
being applied to natural hazard research. For example, the
UAV-obtained imagery with a digital surface model (DSM)
was deployed to propose a spectral hybrid image
classification and decision tree method that was able to
detect rice lodging in Taiwan, China (Yang et al., 2017).
However, optical remote sensing data rely on cloud-free

(or largely cloud-free) imagery, so it is unsuited to
conditions associated with natural hazards such as intense
storms. Synthetic Aperture Radar (SAR) sensors, on the
other hand, can be applied in almost any weather
conditions, or during the night (Mutanga and Kumar,
2019). SAR is therefore invaluable for disaster assessment
under the kind of extreme meteorological conditions that
characterize typhoons. In addition, Sentinel-1 has a shorter
return period (6–12 days) and high spatial resolution (10
m), which better meets the needs of disaster research. For
instance, Lee and Lee (2003) collected temporal Radarsat
SAR images before, during, and after a flood event to
evaluate post-flooding conditions in paddy rice fields, and

they also classified the rice fields in flooding and post-
flooding recovery conditions. Meanwhile, several studies
on crop lodging have been based on microwave data.
Bouman and Hoekman (1993), for example, designed a
backscatter change detection experiment for lodging in
winter wheat across six different spectral bands which
revealed that lodging increased backscatter in all cases.
Previous studies have mainly used the CD detection

method to obtain only a single type of crop damage, such
as flooding or lodging. However, given that rice flooding
and lodging occur simultaneously in a typhoon, a method
of assessing the extent of both types of damage at the same
time is needed. Previous studies have been restricted to
small-scale field trials for the extraction of rice lodging,
and a method for assessing the problem of rice lodging at a
larger spatial scale has not been developed until now. The
main purpose of this study, therefore, is to propose a
method based on Earth Observation (EO) big data, using
the GEE cloud computing platform, to extract simulta-
neous rice lodging and flooding distribution following the
passage of a typhoon.

2 Materials and methods

2.1 Study area

In this study, Typhoon Maria (number eight in 2018)
was chosen as a research case; the typhoon made landfall
on the coast of Fujian, on 11 July 2018 (Tian and Zou,
2018). Based on the track of typhoon Maria and its area of
impact, we selected the coastal city of Wenzhou in
Zhejiang as the study area. The maximum cumulative
rainfall during the typhoon period was 300 mm, and the
maximum recorded wind speed reached 42 m/s. Maria had
a very serious impact on agricultural production in
Wenzhou, causing a large number of early-season rice
paddies to be flooded and lodged, affecting an area of
15220 ha and resulting in a direct economic loss of RMB
10924.9 million. The location of the study area is shown in
Fig. 1. Wenzhou covers an area of 1206100 ha, of which
27446.67 ha is utilized for early-season rice (Xia and Wu,
2017).

2.2 Data sets

2.2.1 Radar imagery

Sentinel-1 provides data from a dual-polarization C-band
SAR sensor, which are available from October 2014 with a
revisit interval of six days at a spatial resolution of 10 m. In
this paper, we used multi-temporal Sentinel-1 data to
estimate both paddy rice distribution and flooding extent.
Detailed information regarding Sentinel-1 data used in this
study is presented in Table 1.
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2.2.2 Optical imagery

Sentinel-2 is a wide-swath, high-resolution, multispectral
imaging mission supporting Copernicus Land Monitoring
studies, including the monitoring of vegetation, soil and
water cover, as well as observations of inland waterways
and coastal areas (Drusch et al., 2012). Sentinel-2 samples
13 spectral bands: four bands at 10 m, six bands at 20 m
and three bands at 60 m spatial resolution, with data
available free of charge since 23 June 2015 on a return
interval of five days. In this paper, Sentinel-2 annual data
from 01 May to 01 July were used for each of the years
2015, 2016, 2017 and processed by cloud removal and

median fusion to obtain cloud-clear data. Open water,
urban and vegetated land covers were then identified
using the supervised classification method. Finally, Multi-
temporal Sentinel-2-derived NDVI and EVI series data
were used to calculate RNDFI and RNDLI to detect flooded
and lodged paddy rice pixels. Detailed information for
the Sentinel-2 data used in this study is provided in
Table 2.

2.2.3 Rice crop calendar

The Chinese National Meteorological Information Center
produces a rice calendar data set which includes a range of

Fig. 1 Location of the study area with true color visualization of Sentinel-2 data, whereby the blue line represents the track of Typhoon Maria.

Table 1 Characteristics of Sentinel-1 GRD IW images used in this paper

Sensor Date Scenes Event Obit / Pol Application

Sentinel-1 (C)
GRDH 10 m

08-May-2016 4 Ascending
(VV VH)

Paddy rice mapping

19-July-2016 4

12-Aug-2016 4

13-July-2015 4 Reference Ascending
(VV VH)

Flooding and lodging paddy rice
detection

19-July-2016 4

14-July-2017 4

21-July-2017 4

16-July-2018 4 Disaster

21-July-2018 4
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crop growth information for several agricultural stations
from 1991 to present, such as crop name, growth stage and
observation date.

2.2.4 Training and validation samples

To evaluate the accuracy of paddy rice distribution,
randomly distributed sample points in the study area
were selected for each of the land cover types by
combining high-resolution Google Earth imagery, survey
information, and the NLCD-2000 land cover data set. All
sample points were randomly divided into two sets, one set
as a classification sample and the other as a precision
verification sample.

2.2.5 DEM

The digital elevation model (Shuttle Radar Topography
Mission, SRTM, derived from the GEE database) and the

DEM derived slope of each pixel were also calculated
because they influence rice growth conditions; for paddy
rice growth to be feasible, pixels need to satisfy the
conditions of slope angle< 2 degrees and elevation< 2000
m (Xiao et al., 2005).

2.3 Workflow

To achieve detection of flooded and lodged paddy rice in
GEE, the workflow as illustrated in Fig. 2 was designed,
consisting of two main parts, including paddy rice
mapping and paddy rice disaster mapping. First, based
on differences in the values of backscatter coefficient and
NDVI for paddy rice during different growth stages, we
combined the multi-temporal Sentinel-1 derived VVor VH
backscatter coefficient and Sentinel-2 derived NDVI to
detect paddy rice with the help of the RFs classification
algorithm. In addition, a DEM was used to improve the
detection accuracy through masking the pixels for areas
that would be impossible for rice cultivation. Selected land

Table 2 Characteristics of Sentinel-2 MSI images used in this paper

Sensor Date Scenes Used bands Application

Sentinel-2 (MSI)
10 m

From 1/May To 1/July,
2015, 2016, 2017

55 B3, B4, B8, B11 Paddy rice mapping

From 10/July to 25/July, 2016 19 B2, B4, B8 Flooding and lodging paddy
rice detection

From 10/July to 25/July, 2017

From 10/July to 25/July, 2018 24

Fig. 2 The extraction method of flooded and lodged paddy rice using GEE.
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cover samples were used for rice extraction and precision
verification (See Fig. 2(a) for details).
Secondly, two CD-based indices were designed based

on multi-temporal images, i.e. the RNDFI to highlight
flooded paddy rice areas, and the RNDLI to highlight
lodged paddy rice pixels. In this study, changes in both
RNDFI and RNDLI were detected in GEE using the multi-
temporal Sentinel-1 VV and VH backscatter coefficients
and Sentinel-2 derived spectral indices of NDVI and EVI.
Finally, flooded and lodged paddy rice areas based on
different data sets were estimated using the appropriate
thresholds of CD-based indices, and the results were
compared to evaluate wider application of the method in
typhoon prone regions (See Fig. 2(b) for details).

2.3.1 The GEE platform

As a cloud-based platform for planetary-scale geospatial
analysis, GEE plays an increasingly key role in research
related to a wide range of environmental issues, including
those that have significant impacts on human society.
These include deforestation, water management, climate
change, land degradation, biodiversity conservation, and
disaster risk management and mitigation (Hansen et al.,
2013; Pekel et al., 2016). GEE allows users to collect and
utilize multi-source remote sensing data, including
MODIS, Sentinel-1, Sentinel-2, Landsat 4-5, Landsat 7,
Landsat 8, etc. on a single analytical platform. In addition,
GEE can process, analyze, map and export results within a
very short time, typically from just seconds to a few
minutes (go to Earthengine Google website for further
details). In this paper, all remote sensing data were
compiled from the database in GEE, including the
Sentinel-1 backscatter coefficient data, composed cloud-
free Sentinel-2 multi-band data, as well as the global 30 m

DEM data set. To unify the resolution of the data, we
applied the Kriging interpolation method to unify the
resolution of all products used in this study to 10 m.

2.3.2 Paddy rice mapping

A phenology- and pixel-based algorithm was used for
paddy rice mapping applying the following two steps.
1) Rice detection method
In different growth stages, backscattering coefficients of

rice plants are significantly different (Nquyen et al., 2016).
As the crop develops from the transplanting phase, the
backscattering coefficient increases and reaches its max-
imum around the heading phase, then declines steadily
during the maturity phase, and reaches its lowest value
after harvesting (Fig. 3). Based on this feature and the
calendar for rice growth in the study area (Fig. 4), we
selected Sentinel-1 polarization data in three different rice
growth phases (transplanting, heading, harvesting) as rice
classification data. In addition, we used the cloud-free
Sentinel-2 derived NDVI in the rice heading phase to
improve the accuracy of paddy rice detection (Lasko et al.,
2018). NDVI can be calculated according to Eq. (1). Figure
5 illustrates the layer stack results under two polarization
modes in false color. In GEE, there are various classifiers
available for users, including decision tree, Random
Forests (RFs), Classification and Regression Tree
(CART), Support Vector Machine (SVM), etc. (Gorelick
et al., 2017). There are several studies that use RFs for
classifying SAR data (Balzter et al., 2015; Fu et al., 2017).
Furthermore, previous study also evaluated the perfor-
mance of SVM and RFs classifiers for rice crop mapping
using multi-temporal Sentinel-1 VH polarization data, and
their results showed that RFs were more accurate than
SVM (Son et al., 2017). Thus, we selected RFs to classify

Fig. 3 Temporal backscatter profiles at VH and VV polarizations of various rice growth stages acquired for the 2016 rice-growing
season for selected sites in Wenzhou, Zhejiang.
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the land cover in the study area, with the following
categories: paddy rice, water, urban, forest, and other land
use.
The specific formulas of NDVI and EVI are as follows:

NDVI ¼ ðNIR –RÞ=ðNIRþ RÞ; (1)

EVI ¼ 2:5ðNIR –RÞ=ðNIRþ 6R – 7:5Bþ 1Þ; (2)

where NIR is the near infrared band corresponding to
Sentinel-2 band 8 (Sentinel-2A: 835.1 nm/Sentinel-2B:
833 nm), R is the red band, corresponding to Sentinel-2
band 4 (Sentinel-2A: 664.5 nm/Sentinel-2B: 665 nm), and
B indicates blue band, corresponding to Sentinel-2 band 3
(Sentinel-2A: 496.6 nm/Sentinel-2B: 492.1 nm).
2) Post processing
The DEM and slope data sets were used to remove

pixels whose elevation and slope do not meet the
conditions for rice planting, which has the advantage of
reducing the effect of terrain, such as mountain shadow, on
Sentinel-1 data acquisition, thereby minimizing rice
misdetection resulting from poor data quality. For this
reason, the pixels with elevation above 2000 m or slope
angles greater than 2 degrees were removed from the rice
extraction results obtained (Xiao et al., 2005). After
reducing the terrain effect, the outputs were then filtered
using two steps aimed at accounting for two further
possible sources of error. First, the image was filtered by a
morphological procedure; opening the filter enlarges the
boundary of regions of the foreground pixels, and closing
filter which removes small holes while preserving
boundaries. Both filters use 5 � 5 pixel windows.
Secondly, clusters smaller than 5 pixels were excluded to
remove the areas that were likely not to be paddy fields.

Fig. 4 Rice phenology calendar in Zhejiang.

Fig. 5 Multi-temporal SAR composite in (a) VV and (b) VH polarization.
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These post-processing steps effectively reduce the effect of
data noise on rice extraction results.
3) Accuracy assessment
The various land cover type samples were assessed for

post-classification accuracy. A confusion matrix was
constructed, from which the producer’s accuracy (PA),
user’s accuracy (UA), overall classification accuracy (OA)
and Kappa (statistic) index of the paddy field mapping
were calculated.

2.3.3 Paddy field flooding and lodging area detection

1) RNDFI and RNDLI extraction
As in the algorithm produced by Cian et al. (2018), the

Normalized Difference Flood Index (NDFI) was proposed
to highlight decreased backscattering values in flooded
pixels, while the Normalized Difference Flood in short
Vegetation Index (NDFVI) was proposed to detect
increased backscattering values in pixels that are shallow
water flooded in short vegetation. Using the statistics
derived from the multi-temporal images, the NDFI and
NDFVI were computed:

NDFI ¼

mean  �0ð“reference”Þ –min  �0ð“referenceþ flood”Þ
mean  �0ð“reference”Þ þmin  �0ð“referenceþ flood”Þ;

(3)

NDFVI ¼

max  �0ð“referenceþ flood”Þ –mean  �0ð“reference”Þ
max  �0ð“referenceþ flood”Þ þmean  �0ð“reference”Þ

,

(4)

where “reference”means the image collection in unflooded
conditions and “reference+ flood” means the collection
contains the images both in flooded and unflooded
conditions.
The backscattering coefficient decreases sharply once

the rice is flooded (Wakabayashi et al., 2019). When rice
lodging occurs, the proportion of rice leaf area increases,
and the backscattering coefficient increases due to the
secondary scattering effect caused by shallow water in
short vegetation and additional scattering from rice that
appears to have greater leaf area (Cian et al., 2018). Thus,
lodging and flooding events can be effectively identified by
identifying the larger or smaller backscatter coefficient.
However, the NDFI and NDFVI were designed for short
vegetation, we improved these indices to better deal with
flooded and lodged detection in paddy rice fields designed
as follows. First, because of the rice planting system in the
study area, flooding occurs in the pre-transplanting period.

If the data acquisition time is not controlled, it is possible
to misclassify the pre-transplanting as a flooding event,
resulting in the overestimation of flooded areas. Secondly,
because of the obvious noise characteristics of SAR data
(Torres et al., 2012), the median value for pixels more
accurately represents the general value when multi-
temporal pixel values are counted, which effectively
eliminates the influence of outliers on the statistical results.
In view of the above problems, the following two
improvements have been made in the calculation of the
proposed indices:
i) To exclude the impact of rice transplanting and

harvesting events on the results of our indices calculation,
the rice growth time that corresponds to a near disaster-free
year was used as the reference data.
ii) The median value of the backscattering rate was used

instead of the original mean value in order to eliminate the
influence of noise and abnormal outlier values on the results.
As summarized in Fig. 2, two multi-temporal SAR and

Sentinel-2 series collections were created, whereby the
“normal” set represents the data set collection obtained in
non-typhoon effected period, while the “normal+ disas-
ter” set, that contains images of both the “normal” and
typhoon-effected-season data sets. Details of data sets used
in this study is shown in Table 1 and Table 2. Based on the
above two data sets, the time series in each set were
analyzed statistically through the calculation of the
maximum, minimum and median of each pixel for both
data sets. Accordingly, in order to distinguish our proposed
indices from those developed in previous studies (Cian et
al., 2018), we defined the Rice Normalized Flooding Index
(RNDFI) for flooded rice detection, and the Rice Normal-
ized Lodged Index (RNDLI) for lodged rice detection,
which were calculated as follows:

RNDFI ¼

median  �0ð“normal”Þ –min  �0ð“normalþ disaster”Þ
median  �0ð“normal”Þ þmin  �0ð“normalþ disaster”Þ;

(5)

RNDLI ¼

max  �0ð“normalþ disaster”Þ –median  �0ð“normal”Þ
max  �0ð“normalþ disaster”Þ þmedian  �0ð“normal”Þ,

(6)

where median  �0ð“normal”Þ represents the median value
of multi-temporal backscatter of rice in non-typhoon-
effected season, min  �0ð“normalþ disaster”Þ represents
the lowest backscatter value under the typhoon-effected
condition, and max  �0ð“normalþ disaster”Þ represents the
highest backscatter value in the typhoon-effected condi-
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tion. High values of RNDFI indicate flooded paddy rice,
while high values of RNDLI indicate lodged paddy rice.
2) RNDLI and RNDFI change detection
Based on the generated paddy rice map and the two

indices, we next detected the flooded and lodged areas of
paddy fields using the CD method. Referring to the
threshold calculation method proposed by Long et al.
(2014), we extracted the flooding and lodged paddy rice
pixels using the criteria as in Eqs. (7) and (8) below.
Specifically, in the case of extracting the flooded pixels,

the threshold criterion in the CD method is simply that the
pixel value of RNDFI is greater than the mean pixel value
minus the standard deviation of the entire image multiplied
by a coefficient kF.The value of kF was set as 1.5 for this
case based on previous research (Long et al., 2014; Cian
et al. 2018).

PF>meanðRNDFIÞ – kFstdðRNDFIÞ: (7)

The identification of lodging in paddy pixels needs to
meet the following two conditions:
i) The pixel does not conform to Eq. (8), that is non-

flooding pixels.
ii) The pixel value of RNDLI is greater than the mean

pixel value plus the standard deviation of the entire image
multiplied by a coefficient kL. The optimal value of kL was
set to be 1.5 for this study based on the previous research
(Long et al., 2014; Cian et al., 2018).

PL>meanðRNDLIÞ þ kLstdðRNDLIÞ: (8)

3) NDVI and EVI change detection
For further comparison, multi-temporal Sentinel-2-

derived NDVI and EVI time series were also used to
calculate RNDFI and RNDLI, and also used to detect
flooded and lodged paddy rice pixels, respectively. NDVI
and EVI can be calculated according to Eqs. (1) and (2). All
the reference Sentinel-2 images were obtained from a year
close to the original and in the same paddy rice growth
period. All the Sentinel-2 data used in this study were
processed with cloud-masking, radiometric calibration and
atmospheric correction to produce clear-sky surface
reflectance data. Further extraction of flooded and lodged
rice pixels followed the threshold criterion technique in
Sentinel-1 backscatter-based flooding detection method.
4) Disaster area agreement evaluation
To compare the flooding and lodging area detection

results, we further conducted cross-comparison of differ-
ences among any two data set-based methods in nine
regions of Wenzhou City, the agreement can be calculated
using Eq. (9).

Agreement ¼ Sagree
Stotal

� 100%, (9)

where Sagree is the area of flooded or lodged region in both
compared maps, Stotal is the area of all compared pixels.

3 Results

3.1 Mapped paddy rice

The two paddy rice maps generated from VV+ NDVI-
based and VH+ NDVI-based are shown in Fig. 6. The
mapped areas for early paddy rice detection using two
methods are shown in Table 3. Government statistics for
2016 indicate that 27446.7 ha early paddy rice was planted
in the study region (Xia and Wu, 2017), while the VV+
NDVI derived paddy rice area is 29798 ha (8.6%more than
reported in government statistics), and the VH+ NDVI
derived paddy rice area yielded 23973.4 ha (12.7% less
than reported in government statistics).

3.2 Accuracy assessment of paddy rice mapping

In this section, confusion matrices are provided in order to
evaluate the accuracy of the two classification results.
Overall, producer and user accuracies were calculated
using the unbiased areal estimates. Further details about
the confusion matrices and calculated accuracies are
shown in Table 4, The classification results yield
accuracies of 93% (VH+ NDVI) and 85% (VV+
NDVI), and kappa statistical values are 0.9 (VH+ NDVI)
and 0.8 (VV+ NDVI). We further merged the classifica-
tion results into rice and non-rice, and found that the
accuracies of rice extraction based on data sets of VH+
NDVI and VV+ NDVI were 95% and 87%, respectively.
In general, accuracy of the VH+ NDVI-based paddy
detection exceeds that of the VV+ NDVI-based result.
This has been attributed to the fact that VV is more affected
by standing water in fields, and the signal is attenuated by
the vertical structure of rice plants (Bouvet et al., 2009),
while VH is less affected (Nguyen et al., 2016). These
results are also consistent with previous findings (Lasko
et al., 2018). Therefore, VH+ NDVI-derived paddy rice
maps were used in rice disaster assessment in this paper.

3.3 Disaster mapping

In all, 16 scenes from Sentinel-1 data were used as
reference images, and eight scenes from Sentinel-1 data
were used to represent disaster conditions (Table 1).
Meanwhile, a total of 19 scenes from Sentinel-1 data were
used as reference images (Table 1), and 20-four scenes
from Sentinel-2 data were used to represent disaster
conditions (Table 2). Thereafter, employing CD-based
method in Section 2.3.3, RNDFI and RNDLI developed by
four types of data sets were used to identify the flooded and
lodged areas in paddy rice fields and to produce the rice
disaster maps, respectively. Figures 7(a) and 7(b) show the
results for VV-based and VH-based disaster detection,
while Figs. 7(c) and 7(d) show the results for NDVI-based
and EVI-based disaster detection.
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Additional statistics on flooded and lodged paddy rice
areas are provided in Figs. 8(a) and 8(b). Accordingly, the
flooded paddy rice areas using different data sets in
Wenzhou City were as follows: 6548.62 ha (VV-based),
6943.27 ha (VH-based), 6035.77 ha (NDVI-based) and
6136.99 ha (EVI-based). The calculated lodged paddy rice
areas using different data sets were: 1851.91 ha (VV-
based), 1787.22 ha (VH-based), 2120.32 ha (NDVI-based)
and 1898.61ha (EVI-based). Table 5 provides statistical
details about flooded and lodged rice areas in nine regions

of Wenzhou.
Cross-comparison of differences among any two data

set-based methods in nine regions of Wenzhou were
conducted, and the overall level of agreement of flooded
area lies between 79% to 93%, while the overall level of
agreement of lodged area lies between 64% to 88%. The
detailed cross-comparisons of flooded and lodged paddy
rice areas in the nine regions of Wenzhou are shown in Fig.
9.

4 Discussion

4.1 Detection of lodged and flooding paddy rice

In this study, we proposed a method to detect two main
kinds of typhoon-derived disasters of paddy rice: flooding
and lodging. Sentinel-1 backscattering images in both
typhoon and non-typhoon-effected seasons were used to
obtain RNDFI and RNDLI values which are designed to
identify and extract flooded and lodged rice after the
passage of typhoon. Meanwhile, vegetation indices (NDVI,
EVI) derived from Sentinel-2 data, were also used to verify
the proposed indices. The results show that both micro-
wave and optical remote sensing data can be successfully
employed to estimate the spatial extent of flooded and
lodged rice. CD and thresholding methods, operated within
the GEE platform resulted in a more efficient and objective
detection of rice damage. However, due to the limitations

Table 3 Paddy rice area of nine regions in the study region based on

two data sets

Region
Area ha

VV+ NDVI VH+ NDVI

Cangnan 5721.9 4367.91

Ouhai 1872.1 1712.27

Pingyang 5286.4 4162.51

Ruian 7478.7 6654.26

Taishun 795.98 414.51

Wencheng 671.88 424.55

Wenzhou 433.54 431.02

Yongjia 2520.8 1664.39

Yueqing 5016.8 4141.96

Sum VV+ NDVI-based 29798 VH+ NDVI-based 23973.4

Fig. 6 Results of paddy detection using (a) the VV+ NDVI based method, (b) the VH+ NDVI based method.
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Table 4 Confusion matrixes of land cover classification accuracy

VH+ NDVI-based

Classes paddy rice water urban forest others

paddy rice 106 0 0 1 4

water 2 40 0 0 0

urban 0 0 32 0 0

forest 0 1 2 38 1

others 3 1 2 0 13

UA (%) 95 95 100 90 68

PA (%) 95 95 89 97 72

Overall Accuracy:93% Kappa Statistic:0.9

VH+ NDVI-based

paddy rice water urban forest others

paddy rice 102 2 0 2 5

water 3 36 2 1 0

urban 0 0 32 0 0

forest 7 2 0 33 1

others 5 0 2 5 7

UA (%) 92 86 100 77 37

PA (%) 87 90 89 80 54

Overall Accuracy:85% Kappa Statistic:0.8

PA and UA are producer’s accuracy and user’s accuracy, respectively

Fig. 7 (a) VV-based, (b) VH-based, (c) NDVI-based, and (d) EVI-based flooding and lodging areas in paddy rice fields.
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of field observations, the parameters we used for thresh-
olding were based on previous research (Long et al., 2014;
Cian et al., 2018), which may affect computational
accuracy.

4.2 The influence of data quality on the experimental results

Because typhoons are often accompanied by strong winds
and rainstorms, the quality of optical data are greatly
affected by the weather conditions. In this case, the
affected area of rice extracted from Taishun, Wencheng,
Wenzhou, Yueqing and other areas is not completely
consistent with the results of microwave data extraction,
which is likely due to sub-optimal quality of the Sentinel-2
data (Yesou et al., 2016). On the other hand, Sentinel-1
data have higher spatial and temporal resolution and,
moreover, are not affected by clouds. Sentinel-1 therefore
has excellent potential in the evaluation of disasters during

bad weather conditions (Amitrano et al., 2018). We hope to
merge more optical and microwave data sourced from
different sensors to assess rice disasters in future research,
so as to solve the problem of lack of data in earlier years.

5 Conclusions

In this study we propose a new method of mapping flooded
and lodged area of paddy rice during the passage of a
typhoon based on multi-temporal Sentinel-1 and Sentinel-
2 data series with the aid of the GEE cloud computing
platform. Two indices are proposed for flooded and lodged
paddy rice detection, where RNDFI is used to map flooded
pixels, and RNDLI is used to map lodged pixels.
The proposed method has the following advantages: i)

indices and threshold-based detection methods facilitate
the accurate detection of both flooded and lodged paddy

Fig. 8 (a) Flooded and (b) lodged area statistics in nine regions of the study area compared for VV-based, VH-based, NDVI-based and
EVI-based methods. The red line in the figure show the standard deviation of four different results.

Table 5 Paddy rice flooding and lodging area of nine regions in the study area using VV-based, VH-based, NDVI-based and EVI-based methods

Region
Flooded area /ha Lodged area /ha

VV VH NDVI EVI VV VH NDVI EVI

Cangnan 1325.06 1345.27 1206.18 1173.07 388.75 338.2 187.37 212.36

Ouhai 368.5 377.2 365.59 379.98 103.14 86.37 104.69 94.38

Pingyang 1267.64 1304.9 1111.81 1055.06 396.2 437.81 471.43 382.83

Ruian 2096.22 2222.89 1484.34 1612.69 570.83 596.7 677.8 584.3

Taishun 100.87 108.74 146.1 112.49 25.45 30.8 0.959 8.64

Wencheng 73.96 82.37 127.47 73.65 21.869 24.53 8.759 10.18

Wenzhou 90.9 79.01 128.44 139.87 28.65 19.82 41.98 36.95

Yongjia 255.87 276.73 325.63 323.9 65.881 52.08 62.05 58.05

Yueqing 969.6 1146.16 1271.7 1367.51 251.11 200.91 565.25 510.92

Sum 6548.62 6943.27 6035.77 6136.99 1851.91 1787.22 2120.32 1898.61
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rice pixels in an automated way; ii) GEE makes it possible
to deal with the very large data sets involved and to retrieve
the results in a few minutes; this facilitates real-time
extraction of relevant information during or following a
disaster; iii) the data from the same growth stage of rice in
recent years are used for CD and enable the construction of
maps of flooded and lodged paddy rice areas which largely
eliminates errors of backscatter or reflectance changes
caused by the growth phases of the paddy rice itself.
There are, nevertheless, some limitations of the

proposed method. Changes in rice planting during the
year, such as abandoning or changing crop cultivation,
may lead to misrepresentation of extracted flooded and
lodged area results. Further refinements should include: i)
long-term monitoring of rice crop disasters to assess post-
disaster recovery, and ii) the effects of flooding and lodging
on rice yield should be analyzed so that the yield reduction
caused by extreme weather events can be more accurately
estimated.
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