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Abstract Rock geochemical information is important for
mineral exploration and provides a theoretical basis for the
rapid delineation of hidden minerals. Remote sensing
technology provides the possibility of rapid and large-scale
extraction of geochemical information from the earth’s
surface. This study analyzed the relationship between
copper concentration and rock spectra by first collecting
222 rock samples, and then measuring the copper
concentration of rock samples in the laboratory and
reflectance spectra using an ASD FieldSpec3 portable
spectrometer. It finally established quantitative relation-
ships between the original spectra, first-order derivative
spectra and second-order derivative spectra and copper
concentration, respectively, using the partial least squares
support vector machine method (PLS-SVM). The results
show that 1) The estimation accuracy of using second-
order derivatives spectra as input parameters to establish a
model for estimating copper concentration is the highest,
and the determined coefficient (R2) between the predicted
value and real value reaches 0.54. 2) When the copper
concentration is less than 80 mg/kg, the inversion model of
copper concentration established using PLS-SVM obtains
a good result. The R2 between the predicted copper
concentration and the real copper concentration reached
0.70248. When the copper concentration is greater than
80 mg/kg, the inversion model of copper concentration
established using partial least squares (PLS) obtains a good
result. The R2 between the predicted copper concentration
and the real copper concentration reached 0.49. The R2

between real copper concentration and copper predicted by
the method of piecewise separate modeling reaches 0.816.

Therefore, the method of segmental modeling has great
potential to improve the accuracy of copper concentration
inversion.

Keywords copper concentration, rock, geochemical
information, PLS-SVM, remote sensing

1 Introduction

In recent decades, remote sensing technology has been
rapidly developing and maturing due to the launch of
various new sensor satellites. The use of remote sensing
technology has important theoretical significance and
applications for mining prospecting information, narrow-
ing the prospecting area, improving the prospecting
efficiency and accelerating the progress of geological
exploration due to advantages such as a wide range of
vision, fast speed, and high efficiency. Therefore, an
increasing number of scholars have tried using remote
sensing technology for mineral exploration. There has
been extensive research conducted on alteration informa-
tion extraction and methods including the ratio method
(Ranjbar et al., 2004; Salem et al., 2013; Son et al., 2014),
principal component analysis (Qaid et al., 2009; Tanges-
tani and Moore, 2011; Honarmand et al., 2012; Ibrahim
et al., 2016), spectral angle classification (Wen et al., 2007;
Shafaroudi et al., 2009; Azizi et al., 2010; Khaleghi et al.,
2014) and extraction method based on machine learning
(Xue et al., 2007; Yang et al., 2008; Yan et al., 2013; Zhou
and Zhang, 2017), which were proposed to extract
alteration information related to mineralization.
However, because of the limitations of spatial resolu-

tion, other objects easily interfere with remote sensing
data, resulting in the uncertainty of extracting useful
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prospecting information, and the process of remote sensing
inversion itself has multiple solutions. Therefore, using
mineral alteration information extracted from remote
sensing data alone has not obtained satisfactory results in
mineral exploration. In contrast, if remote sensing image
data can be combined with geochemical data with a clear
significance of ore indication, and with additional useful
information, it can alleviate the uncertainty caused by
single remote sensing data information and multiple
solutions during the inversion process, using remote
sensing image data can also enhance the reliability of
mineral exploration. At present, some scholars have
successfully estimated the metal concentration in plants
by establishing the relationship between remote sensing
and plant geochemical information. For instance, Hede,
Zhang, Schuerge, and Sridhar have more accurately
estimated the concentration of Cu and Zn in plants through
constructing several vegetation indexes that can represent
the degree of heavy metal stress (Schuerger et al., 2003;
Sridhar et al., 2007; Hede et al., 2015; Zhang et al., 2017).
Some scholars have used single variable regression,
stepwise regression analysis, partial least square, support
vector machine and random forest to establish the
relationship between the reflectance spectra or the first-
order derivative spectrum of soil and metal concentration
of soil, and successfully estimate the Au, Cu, Pb, Zn, and
As concentration of soil (Malley and Williams, 1997;
Kooistra et al., 2001; Kemper and Sommer, 2002;
Siebielec et al., 2004; Wu et al., 2007; Choe et al., 2009;
Moros et al., 2009; Gannouni et al., 2012; Song et al.,
2012; Shi et al., 2016). However, there are few academic
studies on extracting geochemical information from rocks
using remote sensing data. In fact, the geochemical
anomalies of ore deposits are most fully preserved by the
anomalies of rock and earth in various types of ore
deposits, and the geochemical anomaly of rock is a
component of the source of various types of secondary
geochemical anomalies, and all kinds of secondary
geochemical anomalies are derived from the abnormality
of the primary antibody with its geochemical anomalies.
Therefore, it is essential to rapidly extract rock geochem-
ical information during mineral exploration. Related
studies have shown that factors affecting spectral char-
acteristics of rocks include the chemical composition of the
rock, and the crystal structure, size, structure, and weath-
ering degree of the rock surface (Yang et al., 2015). Among
these, the influence of the rock’s chemical composition on
its spectral characteristics is the most important factor
(Tang et al., 2006). This indicates that remote sensing
technology can be used to rapidly extract geochemical
information from rocks.
This study first collected the reflectance spectra and the

concentration of copper of 222 rock samples in Ketebieteti,
Fuyun County, Xinjiang, and then determined whether
there is a quantitative relationship between the rock
spectrum and copper concentration. If this relationship

exists, the rock geochemical information can be rapidly
and nondestructively extracted over a large area. This
relationship is also significant for increasing prospecting
efficiency and expanding prospecting space.

2 Methods and materials

2.1 Research area generalization and sample collection

The Ketebieteti mining area is located 60 km south of
Fuyun County, in Xinjiang Uygur Autonomous Region,
China. The geological structure of the study area is
complex, magmatic activity is frequent, and mineral
resources are rich, which makes it a favorable metallogenic
zone. Many mineralized bodies have been found in the
Ketebieteti rock mass. This rock mass is mineralized and
altered strongly, and has good mineralization potential. On
10–15 September 2017, there were 222 rock samples
collected along 5 sampling lines (as shown in Fig. 1),
including 65 slate, 3 diorite-porphyrite, 7 mudstone, 11
granite, 12 granite diorite, 13 hornblende pyroxenite, 24
hornblende gabbro, 9 diorite, and 78 gabbro. The sampling
interval of each sampling line is 20 m. Sampling lines 1, 2,
3, 4, and 5 contain 61, 24, 50, 44, and 43 sampling points,
respectively. The length of sampling lines 1, 2, 3, 4, and 5
is 1204, 473, 992, 889, and 879 m, respectively.

2.2 Measurement of the rock spectra

The ASD FieldSpec3 portable spectrometer produced in
2010 was used to collect the spectra of rock samples. The
selected spectral sampling interval was 1 nm, the
wavelength range was 350 to 2500 nm, and there were
2151 bands in total. During the measurement process, we
first spread all the small pieces of rock samples on the
ground, and then used a 25-degree field-of-view probe to
vertically observe the rock surface. The distance between
the probe and the rock is about 30–35 cm. Finally, an in-
circle average reflection spectrum with a radius of 0.075 m
is obtained as the reflection spectrum of the sample. To
reduce the noise that was caused by the external
environment and uncorrected operation, the spectral
average obtained by five measurements was used as the
spectrum of the sample. To reduce the interference of
external factors and obtain stable data, clear and wind-free
weather should be selected and measured between 10:30–
14:00 local time because the sun’s height angle is more
stable during this period.

2.3 Pretreatment of the rock spectra

Due to a low signal-to-noise ratio in a range of less than
400 nm and greater than 2400 nm, it is easily affected by
external interference factors, resulting in a greater volatility
of spectral data. Therefore, this paper deletes the data in
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these two ranges. The data in the range of 1300–1400 nm
and 1800–2000 nm are greatly influenced by atmospheric
water vapor, resulting in the reflectivity appearing as
abnormal, so the data of these two bands are also deleted.
The number of bands remaining at the end is 1700 and the
bandwidth is 1 nm. However, a narrow bandwidth will
result in redundant data, and the rock spectrum will
produce a “burr” phenomenon. Therefore, this paper
smoothed the rock spectrum using the average value of
the 10 adjacent bands, and the rock spectrum is finally left
with 170 bands. The spectra of different types of rock with
different concentration on copper are shown in Fig. 2.

2.4 Measurement of copper concentration in rock samples

After collecting the reflectance spectra of rocks, the
samples were sent to the laboratory to measure their

metal concentration. The copper concentration was
measured at the Central Laboratory of North China
Geological Exploration Bureau. The copper concentration
of rock samples was measured with inductively coupled
plasma mass spectrometry (ICP-MS). The histogram of
copper concentration of rock samples is shown in Fig. 3,
which shows that the range of copper concentration in rock
samples is 14.06 to 123.69 mg/kg, the average copper
concentration is 48.25 mg/kg and the standard derivation
of copper concentration reaches 25.66 mg/kg.

2.5 Derivative spectrum

Figure 2 shows that the reflectance spectra of rocks are
relatively flat, and the differences between the reflectance
spectra of rocks with different metal concentrations are
small. This makes it difficult to extract the characteristic
bands that contribute greatly to the prediction of metal
concentration, and may seriously affect the establishment
of the estimation model of metal concentration. Derivative
spectroscopy is a common means of change in hyperspec-
tral analysis. This method can reduce or eliminate the
influence of background noise, and also enhances the
subtle change of the spectral curve on the slope, and
improves the spectrum’s multiple collinearity to a certain
extent. The first and second derivatives can be used to
determine the bending point of the plant spectral curve, and
the wavelength position at the maximum and minimum
reflectivity. Therefore, this study will analyze the relation-
ships between the first-order derivatives, second-order
derivatives and copper concentration of the rock samples,
respectively. It will use the difference method to obtain the
derivative spectrum of the rock samples because the
reflection spectrum of rock is discrete data. The formulas
are shown in Eqs. (1) and (2):

R
0 ðliÞ ¼

Rðliþ1Þ –Rðli – 1Þ
liþ1 – li – 1

, (1)

R
00 ðliÞ ¼

R
0 ðliþ1Þ –R

0 ðli – 1Þ
liþ1 – li – 1

, (2)

where Rðliþ1Þ represents rock reflectance at wavelength
liþ1; Rðli – 1Þ represents rock reflectance at wavelength
li – 1; R

0 ðliÞ represents the first-order derivative value at
wavelength li; R

00 ðliÞ represents second-order derivatives
value at wavelength li.

2.6 Partial least squares support vector machine

Partial least squares support vector machine (PLS-SVM)
algorithm is a generalization of standard support vector
machine (SVM) (Cortes and Vapnik, 1995; Wold et al.,
2001). As with standard SVM, the starting point of PLS-
SVM algorithm is to find the optimal hyperplane or

Fig. 1 Study area and sampling location; (b) Distribution of
sampling points in Google Map; (a) field photographs of study
area.
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optimal regression hyperplane in the high dimensional
feature space based on structural risk minimization. Unlike
standard SVM, the loss function in PLS-SVM is no longer
related only to a small portion of the sample, but takes the
two terms of the learning error of all samples to control
experience risk. Therefore, PLS-SVM algorithm maintains
standard SVM for many advantages, such as a small
sample, nonlinear, high dimensional model and good
generalization ability. At the same time, the convex two
order programming problem of the inequality constraint
condition of the standard SVM solution is transformed into
a set of linear equations solving problem. The advantages
of PLS-SVM are that it can solve large-scale problems,
simplify the computation algorithm, increase the learning
speed considerably increase learning speed and signifi-
cantly reduce computation cost. Our study mainly attempts
to establish the relationship between 170 bands of rock
spectrum and copper concentration. However, the stability
of the established model will be degraded due to the large
number of spectral bands, data redundancy and high
correlation between adjacent bands. The PLS method can
simplify the structure of hyper-spectral data and effectively
reduce its information redundancy. It can also solve
the multi-correlation problem of spectral bands, which

multiple stepwise regressions cannot solve. The hyper-
spectral model established using this method could contain
more spectral information and enhance the interpretation
ability of heavy metals. At the same time, the spectrum of
rocks is very complex, and there are many factors affecting
the spectrum of rocks; including the influence of weath-
ering, rock surface structure, rock surface color, and
atmospheric environment on the spectral reflectance of
rocks; which results in the relationship between the rock
spectra and the copper concentration not being a simple
linear relationship, but they may have a nonlinear
relationship. Support Vector Machine (SVM) has unique
advantages in solving small samples, nonlinearity and
high-dimensional pattern recognition. To maximize the
advantages of partial least squares and support vector
machines, we introduced partial least squares support
vector machines to construct the relationship between rock
spectra and copper concentration.

2.7 Establishing a model and its accuracy evaluation

In this study, first the spectra of original, first-order
derivative and second-order derivatives of the rock
samples are used as independent variables, respectively,

Fig. 2 Changes of the spectra of different types of rock with different concentration on copper. (a) Slate; (b) granite diorite; (c) granite;
(d) hornblende pyroxenite; (e) hornblende gabbro; (f) mudstone; (g) diorite-porphyrite; (h) diorite; (i) gabbro.
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and the copper concentration of rock is used as the
dependent variable input to PLS-SVM, and it is then
assessed whether there is a nonlinear relationship between
the rock spectrum and copper concentration. Using the
determination coefficient (R2) between the predicted value
and actual value of copper concentration as the evaluation
index of the inversion model’s accuracy, a larger R2 means
there is a higher inversion accuracy.
However, when using machine learning to establish the

model, fitting often occurs; that is to say, the precision of
the training set is high, but the fitting accuracy of the data
outside the training set is low, and the model generalization
ability is poor and does not have generalization. To
evaluate the reliability and stability of the model
established, we used cross validation to evaluate the
stability of the established model, using the determination
coefficient (R2) between the predicted value of copper
concentration and the measured value as the evaluation
index, where a higher R2 value indicates a higher stability
for the established model.
The basic idea of leave-out cross validation is to assume

that the original data has N samples, and then each sample
is used as a validation set alone, after which the rest of the
N–1 samples are used as the training set, so the N model
will be obtained. The final model evaluation precision of
the prediction accuracy of the validation set of the Nmodel
is used. Compared with the previous cross validation
method, leave-out cross validation is used for training
models for almost all the samples in each round, as it is the
closest to the distribution of the original samples so the
evaluation results are more reliable.

3 Results and discussion

3.1 Correlation analysis of different spectral transforma-
tions and copper concentration of rock samples

The correlations of the copper concentration of rock

samples with its original spectrum, first-order derivative
and second-order derivatives spectrum were analyzed,
respectively. The variation curve of the correlation
coefficient with the wavelength is shown in Fig. 4,
indicating that correlation between the original spectrum
and the copper concentration is relatively low and smooth,
and the correlation coefficient between all bands in the
range of 400–2400 nm and copper concentration is not
more than 0.45. In contrast, the volatility of changes of the
correlation coefficients between rock derivative spectra
and copper concentration of rock with the wavelength
obviously increased. The correlation coefficients between
several bands and copper concentration have been greatly
improved, even up to 0.6. These bands include the first-
order derivatives of 2243, 2293, and 2303 nm, as well as
the second-order derivatives of 2223, 2233, and 2283 nm.
These bands can be used as the characteristic bands for
retrieving copper concentration in rocks, due to the strong
correlation between these bands and copper. These
findings are consistent with previous studies (Liu et al.,
2010). They also found that the bands with strong
correlation with copper content are mainly concentrated
at 2275 to 2295 nm. In contrast, the correlation between
some bands and copper concentration is reduced. How-
ever, in general, derivative spectroscopy is more helpful in
extracting characteristic bands that can characterize copper
in rocks. The correlation analysis between copper
concentration and reflectance spectrum and derivative
spectra lays the theoretical foundation for the establish-
ment of the copper concentration estimation model based
on hyperspectral technology. At the same time, Figure 4
also shows that the correlation coefficient between rock
spectra and copper concentration varies greatly under
different spectral transformations. Therefore, it is essential
to choose the appropriate spectral transformation before we
use the rock spectrum. A good spectral transformation can

Fig. 4 Correlations between three types of transformed spectra
and the copper concentration of rock samples.

Fig. 3 Histogram of copper concentration of rock samples.
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more effectively remove the noise information in the
spectrum, and can maintain the information that is closely
related to copper concentration.

3.2 Comparison of inversion accuracy of copper concentra-
tion under different spectral transformations

R2 represents the determined coefficient between the
predicted value and real value. It is used to evaluate the
performance of the proposed inversion model. Table 1
compares R2 of three different types of spectra that are used
as input parameters to establish the inversion model, which
shows that the R2 of the inversion models for copper
concentration in rocks, whether they are original spectra or
first-order or second-order derivatives as input parameters,
are all above 0.5. The original spectrum that has undergone
the first and second derivations can slightly increase
copper concentration inversion accuracy. This is probably
due to the elimination of some noise from the original
spectrum using the derivative method. The model
established using the second-order derivatives as the
input parameter has the highest inversion precision, and
the determined coefficient between the predicted copper
concentration and the measured copper concentration
reaches 0.543. This indicates that using the rock spectrum
and partial least squares support vector machine to estimate
copper concentration in rocks is feasible. At the same time,
the model is established based on 9 different types of rocks.
This shows that the model established by this method is
robust and can be applied to different types of rocks, not
just a single type of rock. However, there are many types of
rocks in nature, far more than these 9 types. It is also
necessary to further discuss whether the model established
in this study also applies to other types of rock. At the same
time, Figure 5 also shows that when the copper
concentration of the rock is less than 80 mg/kg, the
inversion model constructed by the rock spectrum and
PLS-SVM often overestimates the copper concentration in
the rock. When the concentration of the rock is more than
80 mg/kg, the constructed inversion model often under-
estimates the copper concentration.
The transformation of spectral data are very useful for

data mining (Sawut et al., 2014; Abdel-Rahman et al.,
2014; Rady et al., 2014). Spectral data transformation is
important for eliminating background noise, abnormal
values, reducing the interference of internal and external
environmental factors, and amplifying the characteristics
of spectral absorption (Zhu et al., 2017). Appropriate
spectral transformation methods can reduce or even

eliminate irrelevant information of spectral data and
highlight subtle spectral characteristics, which can help
improve the prediction accuracy and robustness of the
inversion model (Seasholtz and Kowalski, 1993). How-
ever, in this study, we only use three forms of spectral
transformation as the input parameters to establish the
model. In fact, there are many other spectral transforma-
tions, such as logarithmic spectrum, reciprocal spectrum
and so on. Each of these has different advantages for the
mining of spectral information. For instance, the logarith-
mic spectrum can transform multiplicative noise into
additive noise (Zhou et al., 2009; Wang et al., 2012). It also
can reduce the effects of changes in illumination conditions
(Yoder and Pettigrewcrosby, 1995; Serrano et al., 2002).
Differential transformation of spectral data after logarith-
mic transformation can reduce the effects of additive
random noise (Gong and Yu, 2001). Scattering correction
of spectra can reduce physical phenomena and baseline
drift caused by scattering. Therefore, in future research, we
can try to establish the inversion model by using more
spectral transformations, and find the optimal spectral
transformation by comparison. We can even try making a
variety of spectral transformations on a spectral curve to
form a mixed spectrum.
In this study, we only use PLS-SVM to establish the

inversion model, but there have recently been some new
machine learning methods such as random forest, deep
learning and other methods. Therefore, in future studies,
we can analyze the advantages and disadvantages of
different machine learning methods for the inversion of the
metal concentration of rock, and find the best model for
this inversion.

3.3 Inversion model construction when the rock copper
concentration is less than 80 mg/kg

Figure 6(a) shows that the model established by PLS-SVM
cannot obtain a good result when the copper concentration
of rock is more than 80 mg/kg, as the copper concentration
predicted in this interval is seriously deviated from the 1:1
line. Therefore, we will try dividing the copper concentra-
tion of rock into two intervals larger than 80 mg/kg and
less than 80 mg/kg, and then construct the inversion model
in each interval. Figure 6(b) shows that when the copper
concentration of rock is less than 80 mg/kg, the inversion
model of copper concentration established using PLS-
SVM can obtain a good result. The coefficient of
determination between the predicted copper concentration
and the actual copper concentration reached 0.70248.

Table 1 Comparison of inversion accuracy of copper concentration using three different types spectral transformations

Spectral transformation Training set (R2) Leave-one-out cross validation (R2)

Original spectra (R) 0.698 0.525

First-order derivative spectra (R') 0.761 0.530

Second-order derivatives spectra (R'') 0.791 0.543
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When the copper concentration in the rock is more than 80
mg/kg, we found that using the PLS method to establish a
model can obtain a better result, and the predicted copper
concentration and the measured copper concentration are
shown in Fig. 6(b). From this, we can see that the
determinant coefficient between the predicted copper

concentration and the actual copper concentration also
reaches 0.49441. Figure 6(c) is a scatter plot between real
copper concentration and copper predicted with the
method of piecewise separate modeling. From this, we
can see that the determination coefficient reaches 0.816,

Fig. 5 Scatter plots between the predicted value of model
established using different spectral transformations and the true
value. (a) Original spectra; (b) first-order derivative spectra;
(c) second-order derivatives spectra.

Fig. 6 Comparison of inversion accuracy under different levels
of copper concentration. (a) Copper concentration of rock samples
is less than 80 mg/kg; (b) copper concentration of rock samples is
more than 80 mg/kg; (c) the scatter plot between real copper
concentration and copper predicted by the method of piecewise
separate modeling.

570 Front. Earth Sci. 2019, 13(3): 563–574



which greatly improves the inversion precision of the
copper concentration of rock. Therefore, we believe that
when the copper concentration of rock is less than
80 mg/kg, using the second-order derivatives and PLS-
SVM to establish an inversion model can achieve a better
result, and when the copper concentration of rock is more
than 80 mg/kg, the result is better when the second-order
derivatives and PLS method are used to build the model.
The method of segmental modeling can significantly
improve the accuracy of copper concentration inversion.

3.4 Uncertainty analysis of the model for estimating copper
concentration

In this study, we used the original and derivative spectra of
rocks to construct statistical models for estimating copper
concentration. Concretely speaking, the 170 bands of
spectra of rock samples are recorded as X1, X2, X3,…,
X170 respectively and copper concentration is recorded as
Y and input into the PLS-SVM method to establish the
model for estimating the copper concentration. The biggest
disadvantage of this model is that its accuracy depends
heavily on the accuracy of independent variables. That is to
say, small changes in rock spectra can easily affect the
accuracy of copper content estimation. There are many
factors affecting the spectrum of rocks, including weath-
ering, surface structure, rock surface color and atmospheric
environment, which results in the unusually complex
nature of rock spectra. These factors can be regarded as
interfering information for estimating the copper concen-
tration of rock. The influence of these interference factors
is why there is a low accuracy of model building.
Therefore, how to exclude the influence of these
interference factors from rock spectra and extract spectral
characteristics caused by copper elements to the greatest
extent is very important for improving the estimation
accuracy of the model and is the focus of future research.
In this paper, all of the bands in ranges of 400 to 2400

nm were input into PLS-SVM to establish the model for
estimating the copper concentration in rock. However, the
whole band contains a large amount of spectral informa-
tion, which contains more invalid information. Using these
variables to build the model may reduce the accuracy and
reliability of the model. Therefore, using appropriate
spectral preprocessing and band selection methods can
simplify and extract characteristic spectral information and
improve the prediction ability of quantitative models. At
present, the commonly used feature band selection
methods include stepwise regression analysis, continuous
projection algorithm, non-information variable elimination
method, genetic algorithm, ant colony algorithm and so on.
Therefore, in future research, we can combine these
methods with PLS-SVM to judge whether they can
improve the accuracy and stability of the model.
In this experiment, we used an ASD spectrometer to

measure rock spectrum in outdoor environments. Owing to

the influence of water vapor content, the reflectance
anomalies occur in the range of 1300–1400 nm and 1800–
2000 nm, so these two parts of the spectrum are not
considered in the modeling process. The contribution of
these two parts to the estimation of copper content in rocks
needs further verification. Therefore, in the future, we can
measure spectrum indoors and then try to model it.

3.5 The difficulties and prospects of models applied to
aerospace platforms

The purpose of establishing the model is to apply it to the
sensors carried on an aeronautic or space platform, to
estimate the metal concentration in the rock quickly and in
a large area, and to solve the disadvantages of time-
intensive and laborious work using the conventional
method. However, the remote sensing method has its
own limitations such as the mixed pixel problem. In fact,
the spectrum in the remote sensing image is often mixed, in
which a large amount of soil and plant information is
combined, causing a great level of uncertainty in the rock
spectrum. We have built a statistical model, and its
precision has a significant impact on the input spectrum.
Even a small deviation in the spectrum often leads to a
large deviation in inversion accuracy. Therefore, when
using remote sensing technology to extract large amounts
of metal content in rocks, it is very important to effectively
reduce the influence of mixed pixels. Although some of the
current methods can somewhat reduce the impact of mixed
pixels, such as linear spectral mixed model (Quarmby
et al., 1992; Haertel and Shimabukuro, 2005; Freitas et al.,
2008; Fassoniandrade et al., 2017), and nonlinear spectral
mixed model (Borel and Gerstl, 1994; Ray and Murray,
1996; Altmann et al., 2012; Heylen and Scheunders,
2016). The simplest and most effective way is using
images with high spatial resolution. Therefore, we use the
power triangle wing and Hyspex hyperspectral sensor to
build the ultra low altitude detection platform (Fig. 7),
which can achieve the observation of the “submeter level”
and effectively solve the mixed pixel problem. Our next
goal was to solve the effective use of the model established
in this paper in the ultra low altitude detection platform
to achieve the rapid extraction of metal content in the
rock.
Our team plans to use the Ultra-Low Altitude Explora-

tion Platform (Fig. 7) to acquire hyper-spectral images of
the research area next year. When the flying altitude of the
dynamic delta wing reaches 200 m, the spatial resolution of
the image can reach 0.15 m. The reason for choosing this
height is to ensure that the size of image pixels is consistent
with the detection range of each sample in this experiment,
that is to say, to ensure that the spatial scale of the ground
experiment and aerial experiment is consistent. It then
judges whether the rules summarized in this paper are
applicable to hyper-spectral sensors mounted on aircraft
platforms. Finally, a set of rock metal content estimation
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methods based on ultra-low altitude detection platforms
are formed.

4 Conclusions

This study first measured the copper concentration and
reflectance spectra of 222 rock samples of 9 types of rocks,
and then tried to establish the relationships between the
original, first-order derivative, and second-order deriva-
tives spectra and copper concentration of rock, respec-
tively, using the PLS-SVM method. The results show that:
1) Compared to the original and first-order derivative

spectra, the correlation between the second-order deriva-
tives spectra and copper concentration is significantly
increased;
2) It is feasible to use rock spectra to retrieve copper

concentration of rocks, which provides a possibility for
rapid and large scale extraction of copper elements. The
next step is how to effectively solve the problem of spatial
and spectral scales, and how the model built by the ground
test field can be effectively applied to the hyperspectral
sensors on the aeronautics and space platforms;
3) The method of segmental modeling has great

potential to improve the accuracy of copper concentration
inversion.
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