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Abstract This paper presents the compact polarized (CP)
pseudo quad-pol parameters for the detection of marine oil
spills and segregation of lookalikes using simulated CP
SAR data from full-polarized (FP) SAR imagery. Accord-
ing to the CP theory, 11 polarized parameters generally
used for the detection of oil spills were derived from
reconstructed pseudo quad-pol data for both C and L
bands. In addition, the reconstruction performance
between C and L bands was also compared by evaluating
the reconstruction accuracy of retrieved polarized para-
meters. The results show that apart from �HV and RH ,
other polarized parameters of �HH, �VV, H , α, φH –V, r,
�H –V, and γ can be reconstructed with satisfactory
accuracy for both C and L bands. Furthermore, C band
has a higher reconstruction accuracy than L band,
especially for φH –V. Moreover, the effect of reconstruction
of polarized parameters on oil spill classification was also
evaluated using the maximum likelihood classification
(MLC) method. According to the evaluation of kappa
coefficients and mapping accuracy, it is recommended to
use �HH, �VV, H , �H –V, and γ of the C band CP SAR for
marine oil spill classification.

Keywords compact polarized, reconstruction, oil spill,
classification

1 Introduction

In the past decades, oil leaked from off-shore oil platforms
or crude tankers significantly affected the marine ecosys-
tem and coastal environment. Oil spill accidents such as
Penglai 19-3 and Dalian 716 that happened in our coastal

zone even threatened human health and life safety. As the
time of oil spill diffusion and drifting increases, the
detrimental effect also increases (Brekke and Solberg,
2005; Solberg, 2012; Fingas and Brown, 2014). Therefore,
it is important to detect the occurrence zone of oil spill
accidents precisely and as soon as the oil is spilled.
Synthetic aperture radar (SAR), an efficient remote sensing
tool, has been widely used for marine oil spill detection
because of the characteristics of its all-time and all-weather
operation mode (Migliaccio et al., 2007; Solberg et al.,
2007).
Although the use of SAR is a significant advancement in

marine oil spill detection, some problems still need to be
solved. Single- or dual-polarized SAR has limited
polarized ability for distinguishing oil spill signals from
complex sea surface random scattering. Quad-polarized
SAR provides abundant polarized information that can
significantly improve the detection performance of marine
oil spills. However, the main disadvantage of quad-
polarized SAR is the narrow swath width. This restricts
the application of routine mapping of marine oil spills,
causing more difficulty in large-scale sea surface monitor-
ing (Wang et al., 2010; Velotto et al., 2011; Zhang et al.,
2015; Zheng et al., 2015).
Compact polarized (CP) SAR, a new type of coherent

dual-polarized radar, has been gradually developed as an
efficient tool for diverse ocean applications, especially in
oil spills and weak-damping lookalike detection (Souyris
et al., 2005; Buono et al., 2016). Compared with
conventional single- and dual-polarized SAR, CP SAR
provides abundant polarized architecture of marine oil
spills due to the satellite transmitted power and swath
width. In the past decades, CP SAR has been successfully
loaded by orbiting satellites. C-band Indian space research
organization, Risat-1, equipped with hybrid-polarized
(HP) mode CP SAR was launched in 2012. The L-band
Japanese aerospace exploration agency, (JAXA) ALOS-
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PALSAR2, equipped with HP and π/4 mode CP SAR was
launched in 2014 (Zhang et al., 2016). CP SAR can be
interpreted as a coherent dual-polarized SAR with a larger
swath width and higher noise equivalent sigma zero
(NESZ). The swath width is guaranteed to be 350 km (the
largest swath width for RADASAT-2 standard quad-pol
data is 50 km). The NESZ of high-resolution mode RCM is
– 19 dB. The NESZ of medium-resolution mode RCM is
– 25 dB (the NESZ of RADARSAT-2 standard quad-pol
data is – 32 dB), i.e., it is appropriate for large-scale
monitoring of oceans. However, because of the absence of
calibrated CP SAR data, only simulated CP SAR data can
be used in data processing and analysis.
More recently, the significant potential of CP SAR in

ocean oil spill detection and identification was revealed
with simulated CP SAR data, instead of actual CP SAR
data. The capability of HP mode in oil spills and weak-
damping lookalike detection were investigated using
Risat-1 off the coast of Norway. Besides Stokes para-
meters, the relative phase, orientation, ellipticity, and
polarization angle, four compact decomposition methods
derived from CP Stokes parameters, were also applied in
the identification of oil spill regions (Kumar et al., 2014).
The performance of HP mode, simulated by RADARSAT-
2 quad-polarized SAR data covering oil spill experiments
outside Norway and the Deepwater Horizon incident in the
Gulf of Mexico, was successfully evaluated to detect the
oil spill features (Salberg et al., 2014). A new method for
distinguishing oil spills from two types of important
lookalikes based on the X-Bragg model was proposed and
verified using the simulated HP and π/4 CP mode data
derived from the SIR-C/X-SAR and RADARSAT-2 quad-
polarized data (Yin et al., 2015). The CTLR mode
exhibited different sensitivities for slick-free, weakly
damped slick-covered, and oil-covered sea surfaces for
low-to-moderate wind speeds (Nunziata et al., 2015). Two
CP reconstruction algorithms were performed to evaluate
the applications of CP SAR in the detection of oil slicks
and oil platforms, and an unsupervised classification
method using the relative phase was used for oil spill
mapping (Zhang et al., 2017). The sensitivity of polari-
metric parameters extracted from the CP SAR data was

analyzed in terms of both oil spill detection and
discrimination from weak-damping lookalikes. The per-
formance of polarimetric properties of the electric field
scattered off the observed scene and received at the SAR
antenna was considered and interpreted in terms of sea
surface scattering with and without oil slicks (Buono et al.,
2015). The potential of CP for four RCM SAR modes was
investigated for the discrimination between oil spills and
lookalikes (Dabboor et al., 2017). The simulated CP image
data obtained from UAVSAR L-Band quad-polarized
images were explored to calculate an oil–water mixing
index, indicating negligible differences between the
pseudo-quad and quad-pol data (Collins et al., 2015).
Because of the abovementioned issues, in this study, a
series of C-band RADADSAT-2 and L-band ALOS-2
quad-polarized SAR images were used to simulate the CP
SAR data and further assess their respective ability for oil
spill classification based on the derived polarized para-
meters. The dataset used in this paper is described in
Section 2. In Section 3, 11 polarized parameters were
retrieved from the reconstructed pseudo quad-pol data for
both C- and L-band and further used for unsupervised
classification for the optimum oil spill identification.
Conclusions are given in Section 4.

2 Methodology and datasets

2.1 Methodology

According to the CP theory, only Ctlr and π/4 modes are
discussed in this paper, because of a linear transform
relationship between DCP and Ctlr mode causing a similar
polarized performance (Shirvany et al., 2012; Touzi and
Charbonneau, 2014).

The scattering vector k
↕ ↓

Ctlr and relevant Hermitian
covariance matrix CCtlr are as follows:

k
↕ ↓

Ctlr ¼
½SHH – iSHV – iSVV þ SHV�T

2
, (1)

CCtlr½ � ¼ hk
↕ ↓

Ctlr k
↕ ↓

*T
Ctlri ¼

1

2

hjSHHj2i hiðSHHS*VVÞi
h – iðSVVS*HHÞi hjSVVj2i

" #
þ 1

2
hjSHVj2i

1 – i

i 1

" #

¼ 1

2

– 2FðhSHHS*HViÞ hSHHS*HVi þ hSHVS*VVi
hS*HHSHVi þ hSVVS*HVi 2FðhSVVS*HViÞ

" #
, (2)

where T represents matrix transpose operations;
* represents matrix conjugate operations; h i represents
average operations;R is the real part of a complex number,
F is the imaginary part of a complex number; SHH, SVV,
SHV are the polarization scattering matrix; H, V are the
horizontal or vertical polarized channel, respectively.

The scattering vector k
↕ ↓

π=4 and relevant Hermitian
covariance matrix Cπ=4 are as follows:

k
↕ ↓

π=4 ¼
½SHH þ SHVSVV þ SHV�Tffiffiffi

2
p , (3)
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Cπ=4

� � ¼ hk
↕ ↓

π=4 k
↕ ↓

*T
π=4i ¼

1

2

hjSHHj2i hSHHS*VVi
hSVVS*HHi hjSVVj2i

" #
þ 1

2
hjSHVj2i

1 1

1 1

" #

¼ 1

2

2RðhSHHS*HViÞ hSHHS*HVi þ hSHVS*VVi
hS*HHSHVi þ hSVVS*HVi 2RðhSVVS*HViÞ

" #
: (4)

The scattering vector k
↕ ↓

FP and relevant Hermitian
covariance matrix CFP are as follows:

k
↕ ↓

FP ¼ ½SHH
ffiffiffi
2

p
SHVSVV�T, (5)

½CFP� ¼ hk
↕ ↓

FP k
↕ ↓

*T
FPi

¼
hjSHHj2i

ffiffiffi
2

p hSHHS*HVi hSHHS*VViffiffiffi
2

p hS*HHSHVi 2hjSHVj2i
ffiffiffi
2

p hSHVS*VVi
hSVVS*HHi

ffiffiffi
2

p hSVVS*HVi hjSVVj2i

2
664

3
775:
(6)

Notably, both CCtlr and Cπ=4 have the same style of 2�2
matrix; CFP is a 3�3 matrix. In CFP, the unknown terms
jSHHj2, jSVVj2, and jSHVj2 are real; SHHS

*
HV, SHVS

*
VV, and

SHHS
*
VV are complex. When the CFP is reconstructed from

CCtlr or Cπ=4, three known measured values obtained from
the CP SAR covariance matrix are used to retrieve six
unknown terms in CFP. The ill-conditioned equation
cannot be solved until another restricted condition is
applied to reduce the number of unknown terms during the
reconstruction.
Two hypothesizes were applied to reduce the number of

unknown terms. The first hypothesis is reflection symme-
try, which applies to the complete decorrelation between
co-polarized and cross-polarized backscattering as follows:

hSHHS*HVi ¼ hSHVS*VVi ¼ 0: (7)

Under the reflection symmetry hypothesis, the number
of unknown terms in CFP is reduced from 6 to 4, and the
simplified style of CFP is:

½CFP� ¼
hjSHHj2i 0 hSHHS*VVi

0 2hjSHVj2i 0

hSHHS*VVi 0 hjSVVj2i

2
664

3
775: (8)

The second hypothesis can be expressed by the
relationship between co-polarized and cross-polarized
backscattering:

jSHVj2
jSHHj2 þ jSVVj2

� 1 – �H –V

N
, (9)

where SHH, SVV, SHV are the polarization scattering matrix;
H, V are the horizontal or vertical polarized channel,
respectively; �H –V is the co-polarized correlation coeffi-
cient; and N is the key undetermined parameter.
Two solutions are available to confirm parameters N.
1) Souyris’s algorithm
In Souyris’ algorithm (Souyris et al., 2005), the

undetermined parameter N is directly set as 4, and the
pseudo quad-pol data are derived from the CP Hermitian
covariance matrix by iterative calculation of the co-
polarized correlation coefficient �H –V and cross-polariza-
tion power jSHVj2. It is verified that the reconstruction
performance of Souyris’ algorithm is suitable for the areas
dominated by volume scattering. When applied in the area
dominated by surface scattering or double-bounce scatter-
ing, the reconstruction performance will be significantly
deteriorated.
2) Nord’s algorithm
Compared with Souyris, Nord et al. (2009) reset the

undetermined parameter N by:

N ¼ ðjSHH – SVVj2Þ
jSHVj2

: (10)

The expression of N can be regarded as the ratio of
double-bounce backscattering jSHH – SVVj2 to volume
backscattering jSHVj2, and it is also noted that the initial
input of the iteration process of Nord’s algorithm is
estimated from the Souyris’ results, i.e., the initial value of
N in the entire iteration process is still 4. By modifyingN, it
is verified that the convergence ability of Nord’s algorithm
is much better than Souyris’ in its iteration process.
In this paper, Nord’s algorithm was performed to

reconstruct the CP pseudo quad-pol data. A flowchart of
the reconstruction algorithm is shown in Fig. 1. Notably,
the two iteration processes are included in the entire
reconstruction and the denominator of N is the jSHVj2 of the
first iteration result. The selected stopping threshold of
iteration is 10 –6.

2.2 Dataset

Two scenes of quad-polarized SAR data were collected in
this study, including C-band RADADSAT-2 and L-band
ALOS-PALSAR. The specification of imagery parameters
is shown in Table 1, and the location of oil spills is also
shown in Fig. 1. Scene 1 was observed in the pollution area
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Fig. 1 Flowchart of pseudo quad-pol data reconstruction.

Table 1 Radar parameters of quad-polarized data used for this study

Scene ID Satellite Band Image name Observation time Scene position

Latitude Longitude

1 RADADSAT-2 C RD2016715543-1 07-JUL-2016 06:48 36°00¢N 120°45¢E

2 ALOS L ALPSRP100140730 11-DEC-2007 13:33 36°30¢N 126°05¢E
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from July 7, 2016 in the Yellow Sea of China where parts
of oil spills were leaked from unclear sources (Fig. 2(a)).
Scene 2 detected oil spill pollution from December 11,
2007 along the northwest coast of Cheonsu bay in South
Korea, where heavy oil spills occurred from oil tankers
(Fig. 2(b)).

3 Results and discussion

3.1 Comparison of polarized parameters between C- and L-
band simulated CP SAR

Prior to efficient detection of oil spills and lookalikes on
the ocean surface, polarized parameters should be derived
from the reconstructed pseudo quad-polarized data accord-
ing to Table 2. Eleven polarized parameters were
investigated between the C- and L-bands, including three
backscattering coefficients of �HH, �HV, and �VV, scatter-

ing entropy H , scattering angle α, reference height RH , co-
polarized phase difference φH –V, co-polarized power ratio
r, co-polarized correlation �H –V, and conformity coeffi-
cient γ .
To evaluate the reconstruction performance of polarized

parameters on oil spills and lookalikes, reconstruction
accuracy was added as the evaluation criterion. This can be
expressed as follows:

Accuracy ¼ PolCtlr –PolFP
PolFP

, (11)

where PolFP and PolCtlr are the polarized parameters of
quad-polarized and Ctlr mode CP SAR, respectively.
The comparison results are shown in Table 3. Here, we

also define an empirical threshold of 0.3 as the satisfactory
level of accuracy. Notably, apart from �HV and RH , the
other polarized parameters listed in Table 3 can be
reconstructed with a satisfactory accuracy for both C and
L bands. According to the definition of RH , its low

Fig. 2 Location of oil spills and segregation of lookalikes in SAR imagery. (a) C-band RADADSAT-2 quad-polarized SAR imagery,
acquisition in 2016-7-7, Yellow Sea, China. (b) L-band ALOS PALSAR quad-polarized SAR imagery, acquisition in 2007-12-11,
Cheonsu Bay, South Korea.
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reconstruction accuracy can be attributed to the low
reconstruction accuracy of l3. This presents the same
term of volume scattering with �HV. In terms of
performance of bands, C band has a higher reconstruction
accuracy than L band, especially for φH –V.
Figure 3 shows the scatter plot, detailing how well the

reconstructed pseudo quad-pol results fit the original quad-
pol data. In Figs. 3(a), 3(b) or 3(e), 3(f), most pixels of
scatter points fall close to the one-to-one line with small
bias, exhibiting a good reconstruction performance in the
HH and VV channels for both C and L bands. However, a
large bias in Fig. 3(b) shows the poor reconstruction
performance of the HV channel for both C and L bands. On
the whole, the performance of C band is better than that of
L band. The poor reconstruction accuracy of the HV
channel can be attributed to the condition of the reflective
asymmetry hypothesis. Because of the effect of sensor
noise and the complex scattering mechanism on the ocean
surface, SHHS

*
HV or SVVS

*
VH in the true SAR data is not 0,

causing the major bias of the HV channel in reconstruction.
In addition, C band seems to perform much better in the
reconstruction result. This can be attributed to the fact that
C band is much more sensitive to the ocean surface Bragg
capillary gravity wave, owing to the nearby scale of wave
number.
From the quantitative comparison of listed polarized

parameters, the accuracies of all 11 polarized parameters
(Table 2) are given in Table 3. In terms of band influence
on reconstruction, the reconstruction performance of C
band is much more satisfying than that of L band. In terms
of polarized parameter influence on reconstruction, the
reconstruction results of �HH, �VV, H , α, φH –V, r, �H –V,
and γ behave well for reconstructed parameter application
(accuracy smaller than 10%). Nevertheless, the rest of the
parameters do not have a satisfying reconstruction
accuracy because of a large bias between the quad-pol
and pseudo quad-pol data.

3.2 Effect of polarized parameters on oil-water classifica-
tion

In this section, the 11 CP parameters were calculated to
obtain the oil-water classification. Considering the robust-
ness of the classifier, the method of maximum likelihood
classification (MLC) is widely applied in polarized SAR
classification (Frost and Yurovsky, 1985; Majd et al.,
2012). MLC is a type of classification method based on the
Bayesian discriminant function:

giðxÞ ¼ pðωijxÞ ¼ pðxjωiÞpðωiÞ=pðxÞ, (12)

where pðωijxÞ is the conditional probability of x in ωi
observation; pðωiÞ is the prior probability of class type ωi;
pðxÞ is the occurring probability when x is not about the
class type. Assuming that the pixels characteristics of
samples conform to a Gaussian distribution, the MLC
discriminant criterion can be expressed as follows:

gi xð Þ ¼ ln p ωið Þ½ � – 1
2
lnj

X
i
j – 1

2
ðx – uiÞT

X – 1

i
ðx – uiÞ,

(13)

here x is eigenvector; Σ is covariance matrix.

X
i
¼

δ11 δ12 ⋯ δ1n

δ21 δ22 ⋯ δ2n

M M M M

δn1 δn2 ⋯ δnm

2
66664

3
77775, (14)

where δij ¼
1

N

X
k
ðxik –�iÞðxjk –�jÞ; xik is the kth eigen-

value of ith eigenvector; N is the total number of
eigenvalues of ith eigenvector; �i is the mean vector of ith

eigenvector.
Considering the classification performance, 80,000

Table 2 Polarized parameters used in this paper

Polarized parameters Definition

Backscattering coefficient �0HH ¼ hSHHS*HHi, �0VV ¼ hSVVS*VVi, �0HV ¼ hSHVS*HVi
Entropy H ¼

X3

i¼1
– pilog3pi ðpi ¼ li=

X3

j¼1
ljÞ, li is the ith eigenvalue of coherency matrix ½T �

Scattering angle α ¼ p1α1 þ p2α2 þ p3α3, αi is derived from the ith eigenvalue of coherency matrix ½T �
Reference height RH ¼ l3

l1

Co-polarized phase difference φH�V ¼ :hSHHS*VVi

Co-polarized power ratio
r ¼ hjSHHj2i

hjSVVj2i

Co-polarized correlation �H�V ¼ jhSHHS*VVij=jSHHjjSVVj

Conformity coefficient
γ ¼ 2ðReðSHHS*VVÞ � jSHVj2Þ

ðjSHHj2 þ 2jSHVj2 þ jSVVj2Þ

Note: SHH, SHV, and SVV are the elements of a Sinclair matrix. h    i represents ensemble average. * represents conjugate operation. Re represents the real part.

356 Front. Earth Sci. 2019, 13(2): 351–360



pixels were randomly selected as the training input of the
classifier, and another 80,000 pixels were used for the
verification of classification accuracy. The confusion
matrix was derived. Kappa coefficient and mapping
accuracy are shown in Table 4.
According to the kappa coefficient and mapping

accuracy (Table 4), it was observed that among all the

listed polarized parameters, �HH, �VV, H , �H –V, and γ
showed better classification results than the others. For C
band, the kappa coefficient of �HH, �VV, H , �H –V, and γ
range from 0.68 to 0.73. For L band, the kappa coefficient
of �HH, �VV, H , �H –V, and γ range from 0.44 to 0.57.
Obviously, the classification capability of reconstructed
polarized parameters of C band is superior than those of L

Fig. 3 Reconstruction performance for HH, HV, and VV channels. (a) HH channel of C band; (b) HH channel of L band; (c) HV channel
of C band; (d) HV channel of L band; (e) VV channel of C band; (f) VV channel of L band.
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Table 3 Comparison of polarized parameters between C- and L-bands

Band Parameter Ocean surface features Average accuracy

Ocean Oil spills Lookalikes

C �HH 0.004 0.056 0.023 0.027

L 0.071 0.106 0.038 0.071

C �HV 0.905 1.494 0.765 1.054

L 0.442 6.870 0.555 2.622

C �VV 0.006 0.048 0.002 0.056

L 0.075 0.158 0.046 0.093

C H 0.081 0.227 0.025 0.111

L 0.007 0.437 0.080 0.174

C α 0.004 0.067 0.013 0.028

L 0.045 0.112 0.021 0.059

C RH 0.894 2.532 0.636 1.354

L 0.175 10.639 1.092 3.968

C φH�V 0.110 0.182 0.324 0.205

L 0.421 0.576 0.834 0.610

C r 0.034 0.211 0.003 0.086

L 0.149 0.104 0.068 0.107

C �H�V 0.012 0.160 0.034 0.068

L 0.007 0.220 0.004 0.077

C γ 0.002 0.428 0.012 0.147

L 0.011 0.628 0.008 0.215

Table 4 Classification performance of CP parameters between C- and L-bands

Band Parameter Ocean surface features Kappa coefficient Mapping accuracy/%

Ocean Oil spills Lookalikes

C �HH 0.0327 0.0027 0.0107 0.6799 80.6

L 2.155 0.1449 0.6838 0.5509 68.4

C �VV 0.0445 0.0037 0.0146 0.7028 82.1

L 2.056 0.1344 0.7161 0.5721 70.1

C H 0.1060 0.6956 0.2192 0.7251 84.4

L 0.1885 0.8340 0.2910 0.4428 63.5

C α 49.43 54.23 49.26 0.2315 52.1

L 44.44 50.73 45.96 0.2467 48.3

C φH�V 0.0243 0.0197 0.1533 0.0917 49.2

L 0.0726 0.0466 0.0056 0.2591 48.9

C r 0.7374 0.7551 0.7614 0.2364 50.6

L 1.0516 1.0997 0.9635 0.1217 46.1

C �H�V 0.9510 0.4873 0.8803 0.7171 84.1

L 0.9044 0.3761 0.8377 0.4450 63.6

C γ 0.9360 0.2864 0.8576 0.7313 84.9

L 0.8946 0.1655 0.8205 0.4428 63.6
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band. The mapping accuracy also provides similar results
as kappa coefficient. Considering the reconstruction
accuracy and classification results, we recommend using
�HH, �VV, H , �H –V, and γ of C band for oil spill
classification.
As discussed in the reconstruction algorithm, it should

be noted that although the reconstruction performance of
the HH and VV channels shows satisfying application
against quad-pol data, the reconstruction performance of
the HV channel should be improved. Because the HV
channel exhibiting volume scattering mechanism is
significant for many SAR remote sensing retrievals, it is
necessary to consider the improvement of HV channel
reconstruction, especially for the ocean surface.

4 Conclusions

This paper reveals the potential of CP SAR in marine oil
spill detection and classification. Because of the absence of
actual CP SAR observation data, two scenes of C-band
RADARSAT-2 and L-band ALOS-2 quad-polarized SAR
images were used to simulate the CP SAR data. Regarding
reconstruction accuracy, apart from �HV and RH , other
polarized parameters of �HH, �VV, H , α, φH –V, r, �H –V,
and γ can be reconstructed with a satisfactory accuracy for
both C and L bands. Furthermore, the polarized parameters
with satisfactory accuracies for C band have higher
reconstruction accuracies than those for L band, especially
for φH –V. Considering the effect of polarized parameters
on oil spill classification, the MLC classification method
was also evaluated, and the classification results show that
the polarized parameters �HH, �VV, H , �H –V, and γ exhibit
better classification results than others. Moreover, the
classification performance of C band is superior to that of L
band. Therefore, we recommend to use �HH, �VV, H ,
�H –V, and γ of the C band for oil spill classification.
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