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Abstract Automatic multi-sensor image registration is a
challenging task in remote sensing. Conventional image
registration algorithms may not be applicable when
common underlying visual features are not distinct. In
this paper, we propose a novel image registration approach
that integrates local self-similarity (LSS) and mutual
information (MI) for multi-sensor images with rigid/non-
rigid radiometric and geometric distortions. LSS is a well-
performing descriptor that captures common, local internal
layout features for multi-sensor images, whereas MI
focuses on global intensity relationships. First, potential
control points are identified by using the Harris algorithm
and screened based on the self-similarity of their local
surrounding internal layouts. Second, a Bayesian prob-
abilistic model for matching the ensemble of the LSS
features is introduced. Third, a particle swarm optimization
(PSO) algorithm is adopted to optimize the point and
region correspondences for maximum self-similarity and
MI and, ultimately, a robust mapping function. The
proposed approach is compared with several conventional
image registration algorithms that are based on the sum of
squared differences (SSD), scale-invariant feature trans-
forms (SIFT), and speeded-up robust features (SURF)
through the experimental registration of pairs of Landsat
TM, SPOT, and RADARSAT SAR images. The results
demonstrate that the proposed approach is efficient and
accurate.

Keywords automatic registration, multi-sensor images,
local self-similarity, mutual information, particle swarm
optimization

1 Introduction

In many remote-sensing applications such as multispectral
classification, environmental monitoring, image fusion,
change detection, and weather forecasting, image registra-
tion is an important pre-processing procedure which
involves combining relevant information from various
types of imageries (Bentoutou et al., 2002; Klein, 2004;
Bentoutou and Taleb, 2005a; Bentoutou et al., 2005b;
Farah et al., 2008). Image registration is also a challenging
task because remotely sensed image data are typically
distorted geometrically and radiometrically when recorded
by sensors on satellites or aircrafts. The sources of
geometric distortion include the rotation of the Earth, the
curvature of the Earth’s surface, and the uncontrolled
variation in the position and attitude of the remote-sensing
platform (Richards and Jia, 2006). It becomes more
challenging when image registration is applied to multi-
sensor images, e.g., multi/hyper-spectral images and
synthetic aperture radar (SAR) images because these two
types of sensors exhibit large differences in instrumenta-
tion effects and imaging principles and reveal different
characteristics of the Earth’s surface (Mahmudul et al.,
2012). Thus, there are increasingly rigid geometric
deformations such as small variations in scale, orientation,
and shear, and other non-rigid deformations among multi-
sensor images. Simultaneously, since the various imaging
mechanisms of multi-sensors can affect the measured
brightness values of the pixels, thereby distorting their
relative brightness and changing the distributions of
brightness over an image (Richards and Jia, 2006), such
radiometric distortions exacerbate registration difficulties
as well. Thus, geometric and radiometric distortions are
very common in multi-sensor images. The main purpose of
image registration is to remove or suppress geometric
distortions between the reference and sensed images to
geometrically align the images (Meskine et al., 2010).
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In manual registration, the selection of control points
(CPs) is usually performed manually, which is inaccurate,
time-consuming, and sometimes infeasible due to image
complexity (Brook and Ben-Dor, 2011). Therefore, many
studies have focused on automatic registration. Most
existing automatic image registration techniques can be
classified into two categories: intensity-based and feature-
based (Zitová and Flusser, 2003). Intensity-based
approaches, such as mutual information (MI), estimate
transformations (mapping functions) on the basis of the
intensity relationship between two whole images (Bentou-
tou et al., 2002). Feature-based approaches, such as the
sum of squared differences (SSD) (Wolberg and Zokai,
2000), scale-invariant feature transform (SIFT) (Lowe,
2004; Yi et al., 2008), and speeded-up robust features
(SURF) (Bay et al., 2008; Bouchiha and Besbes, 2013),
perform registration by matching features (e.g., points,
corners, contours, shapes, and regions) that are extracted
from the images (Goshtasby et al., 1986; Li et al., 1995;
Belongie et al., 2002; Wong and Clausi, 2007). The most
critical issue for image registration, regardless of which
approach is used, is the selection of the geometric mapping
function (Bentoutou et al., 2002), whereas the accuracy of
geometric mapping is strongly affected by the measure-
ment of similarity. However, a perfect similarity measure-
ment for multi-sensor registration is still not possible
because radiometric and geometric distortions from multi-
sensor images are more complex than those in similar-
sensor images, and the reference image and sensed image
may not share certain common underlying visual proper-
ties (Pratt, 1974; Abdel Sayed et al., 1995; Kim and
Fessler, 2004; Shechtman and Irani, 2007; Arévalo and
González, 2008; Borzi et al., 2009; Cole-Rhodes and
Eastman, 2011).
In 2007, Shechtman and Irani proposed a novel

similarity measure that is known as the “local self-
similarity (LSS) descriptor” (Shechtman and Irani, 2007).
LSS is a local feature descriptor that captures the internal
geometric layouts of images based on a log-polar location
grid. The LSS descriptor is stable against complex
intensity variations, which means that it can capture
more meaningful similarities in image patterns. Addition-
ally, it allows local spatial affine distortions and non-affine
distortions by using the binned log-polar representation.
All of these processes can be achieved without prior
learning and thus enable the matching of a wide variety of
image and video types (Shechtman and Irani, 2007). With
its high efficiency, LSS has been applied in many fields
such as image data retrieval (Ken, 2009; Liu et al., 2009;
Yang and Hou, 2012), image classification (Zheng, 2011;
Zhang et al., 2013), image upscaling (Lee and Kim, 2012),
and identification of anatomical landmarks (Ricardo,
2012). Scholars have also extended LSS to free viewpoint
action recognition (Jiao, 2012) and multimodal sense
stereo correspondence measures (Atousa, 2011). Despite
its successful applications in other areas, the LSS method

has received little attention in the multi-sensor registration
field. In this paper, we will demonstrate that LSS has great
potential in the automatic registration of multi-sensor
images.
Although LSS performs very well in capturing internal

geometric layouts of local self-similarities with invariance
to colour and edge variations, it is more limited by the
lower discriminability of local features (Sedaghat and
Ebadi, 2015) than by global features that are often
observed. This issue may cause problems when locally
optimal CPs are not correctly matched between images.
Hence, it should be combined with another global
similarity measure. Mutual information (MI), which was
introduced by Viola (Viola andWells, 1997) and Collignon
(Collignon et al., 1995), could be a good choice because
MI does not focus on information about the surface
properties of objects (restrictive features) and is robust
against variations in illumination. With its strength in
obtaining global pattern information, the MI approach has
been successfully applied to overcome problems that are
associated with multimodal medical image registration
(Taleb et al., 2001). Researchers have extended its
application to multimodal remote-sensing image registra-
tion (Chen et al., 2003a, b; Cole-Rhodes et al., 2003;
Arévalo and González, 2008; Suri and Reinartz, 2010;
Cole-Rhodes et al., 2012). Therefore, combining LSS and
MI can be an effective way to improve multi-sensor image
registration.
In this paper, we propose a novel multi-sensor image

registration method that combines local self-similarity and
mutual information. The integrated method takes both
local and global similarity into account, where local
similarity is measured by LSS and global information is
provided by MI. We also used the Harris corner detector
(Harris and Stephens, 1988) to obtain potential CPs and the
particle swarm optimization (PSO) (Messerschmidt and
Engelbrecht, 2004) algorithm to optimize parameters that
are related to the integrated similarity measurement of LSS
and MI. A detailed introduction of the proposed registra-
tion method will be given in Section 2. In Section 3, we
will present evaluation results of the proposed approach on
multi-sensor remote-sensing images, including TM, SPOT,
and SAR. Comparisons with conventional image registra-
tion methods, namely simple PSO with MI, sum of square
differences (SSD), SIFT, and SURF, are also included in
this section. Conclusions and discussions are presented in
Section 4.

2 Methodology

This section describes how we integrated LSS and MI to
develop an efficient and accurate multi-sensor image
registration method. As shown in Fig. 1, the proposed
registration approach consists of three main steps: In the
first step, the Harris algorithm (Harris and Stephens, 1988)
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is used to detect corner points (potential CPs), and the LSS
descriptors are used to screen out less informative CPs. In
the second step, matching of CPs on the sensed and
reference images is performed by using the Bayesian
model (Boiman and Irani, 2007), which has been
demonstrated to be effective for matching local self-
similarities across images and videos (Shechtman and
Irani, 2007). In the third step, parameters of the geometric
mapping function are optimized by applying the particle
swarm optimization (PSO) algorithm and setting MI
maximization as the optimization objective. Then, these
parameters are applied to align the sensed and reference
images.

2.1 Identification of CPs using LSS

The identification of CPs is a key step in image
registration. Most CP extraction methods are based on
local invariant features because of their robustness against
geometric and illumination differences (Brook and Ben-
Dor, 2011). The existing feature-based methods extract a
compact set of features (such as edges, lines, points, and
shapes) for determining the CPs. They are normally used
when the object features are distinct and easy to obtain.
However, to be acquired by these methods, features often

must have specific characteristics such as well-defined
lines, edges, or shapes. Furthermore, finding correspond-
ing points in reference images for all CPs in a sensed image
is difficult because of apparent and dramatic geometric
distortions. The distortions increase in complexity when
sensed and reference images have been obtained by
different types of sensors under different weather, time,
and altitude conditions. Matching the potential CPs is
impossible if no further information is provided to help
define the features of CPs.
The LSS descriptors do not require particular edges,

lines, or intensities and effectively capture the local
internal spatial layout of self-similarity and tolerate affine
and intensity distortions. Matching CPs based on both
point and region features is undoubtedly more precise than
matching based on individual pixels (Shechtman and Irani,
2007). Therefore, LSS descriptors are introduced to
identify CPs in this paper. Prior to that step, the Harris
algorithm, which is a classic extraction arithmetic operator
that is based on the point features of signals (Harris and
Stephens, 1988), was used to select corner points, i.e.,
potential CPs. Since the number of points that are captured
by the Harris algorithm is too large, we use a 10-pixel-
radius window and impose a condition for removing less-
useful corner points (Fig. 2). The window is used to select

Fig. 1 Flowchart of the proposed method.
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informative CPs that are as evenly distributed as possible
within an image. The condition that is used to filter CPs is
that at least half of the window around a corner point must
contain dark objects, typically water bodies. Via this
filtering, the remaining CPs could have higher potential for
generating informative LSS descriptors (Shechtman and
Irani, 2007). Then each remaining CP is described by its
relative position and invariant local internal layout
features, which are defined by an ensemble of LSS
descriptors. In this study, such CPs are defined as useful.
CPs on the reference and sensed images are matched in
pairs only when they share very similar LSS descriptor
values and relative positions.
According to Shechtman and Irani’s work, the LSS

descriptor is expressed as the correlation between a
centered patch with its surrounding image region. The
calculation is initially achieved by the sum of squared
differences (SSD) between a small image patch and its
surrounding large image region, which generates a local
internal correlation surface that describes the local spatial
layouts in detail. To account for radially increasing rigid
and non-rigid distortions, the correlation surface is
transformed into a log-polar binned form and the maximal
value is adopted in every bin (Shechtman and Irani, 2007).
In this study, the LSS descriptor refers to a local image
region that is centered at pi (typically of radius 10) and
contains the surrounding image patches (typically 3 � 3),
which are transformed to a binned form that contains 80

bins (20 evenly spaced angles and 4 radial intervals of
equal length). In addition, the vector of 80 entries is
normalized by linearly stretching its values to the range of
[0, 1] to make it invariant under intensity distribution
differences between corresponding patches and their
surrounding image regions. The descriptor is constructed
in such a way to capture detailed internal layout
information while tolerating affine and non-rigid deforma-
tions. This makes it especially suitable for multi-sensor
image registration, where the sensed image and reference
image have different patterns and intensities. Then, the
features of CPs are constructed by searching the LSS
descriptors that are within a local image centered at each
CP, which is much larger than the region for capturing a
LSS descriptor. The CPs will be ready for matching once
their LSS descriptors have been constructed.

2.2 Matching CPs using ensembles of LSS descriptors

Matching CPs on the sensed and reference images is
performed by using the Bayesian model (Boiman and
Irani, 2007), which has been demonstrated to be effective
for matching local self-similarities across images and
videos (Shechtman and Irani, 2007). To find the pairs that
share the most common spatial distribution and relation-
ship of local descriptors, a likelihood map is calculated for
each CP in a reference map by using a Gaussian image
pyramid weighted Bayesian probabilistic model. The
location of the peak value in the likelihood map indicates
a potential corresponding CP in the registered image. To
ensure the accuracy of the local matching, the Hausdorff
distance is also used in this step.
Similarity information of a single descriptor is inade-

quate for accurate matching of CPs. Therefore, we adopt an
ensemble of LSS descriptors to account for the spatial
information among descriptors. By matching such an
ensemble of LSS descriptors, we not only obtain the local
internal spatial layout of a descriptor for CPs but also
capture a large range of geometric layouts that are
combined by an ensemble of descriptors for CPs.
A is the sensed image, B is the reference image, pi is the

extracted CP, and Li is the local image that is centered at pi
(typically of radius 20). In each Li, an ensemble of
descriptors is searched within the local image.
A good match is an ensemble of descriptors in the local

image Li of image A that corresponds to a similar ensemble
of descriptors in image B. Such pairs of ensembles share
similar descriptors in terms of values and relative
geometric positions. In this case, a CP that is centered at
local image Li of image A can find its corresponding CP in
image B. In addition, small local shifts are permitted to
account for small non-rigid deformations during the
matching process. To achieve this, an ensemble matching
algorithm (Boiman and Irani, 2007), which is mainly based
on a Bayesian probabilistic model, is adopted to capture
relative geometric relations among the local descriptors

Fig. 2 (a) Corner points that were extracted from a TM image
using the Harris algorithm. (b) Remaining corner points after less
useful ones were removed.

782 Front. Earth Sci. 2018, 12(4): 779–790



within local images. The procedure of the Bayesian
probabilistic model is presented in Fig. 3.

Specifically, pi denotes a centered CP in Li and cB
denotes a point that may correspond to pi (Fig. 3). We
define q1, q2, q3,…, qn as a region that contains a descriptor
that is associated with the following two attributes: 1) the
descriptor vector dj and 2) its location in absolute
coordinates lj. d j

Li
denotes the jth observed descriptor in

Li, and l jLi denotes the location of the jth observed

descriptor. Similarly, d j
B represents the descriptor vector

of the jth hidden region in B, and l jB represents its location.
The likelihood of similarity between this pair of ensembles
can be expressed as follows:

Pðpi,cBÞ ¼ Pðpi,d1Li ,:::,l1Li ,:::,cB,d1B,l1B,:::Þ: (1)

On the basis of the Bayesian probabilistic model, we
obtain:

Pðpi,d1Li ,:::,l1Li ,:::,cB,d1B,l1B,:::Þ

¼ α∏
j
Pðl jBjl jLi ,pi,cBÞPðd

j
Bjd j

Li
ÞPðd j

Li
jl jLiÞ: (2)

Locations with high likelihood values are considered the
detected locations of Li within B. Considering that self-
similarity may appear at various scales and in regions of
different sizes, we capture LSS descriptors at multiple
scales by applying a Gaussian image pyramid. Every
ensemble of descriptors is searched at each scale

independently to generate likelihood maps. By normal-
izing each likelihood map based on the number of
descriptors in its scale, the maps can be weighted
according to the degree of sparseness (Hoyer, 2004) on a
variety of scales. Figure 4 shows examples of likelihood
maps for two CPs.

2.3 Optimization of registration based on MI

The LSS approach mainly focuses on local information
while the global geometric layout and overall spatial
distribution are barely considered. This may lead to
inaccurate matching because points with similar surround-
ing distributions may be incorrectly chosen as correspond-
ing CPs. The test point error (Greenfeld, 2002) and
modified Hausdorff distance methodology are often used
to solve this problem. However, they both locally compare
the geometric relationship of a collection of points to the
whole image. To take advantage of both local and global
information, we use the maximum MI as the optimization
objective in this paper and introduce a particle swarm
optimization (PSO) algorithm for searching for the best
possible CP matches and parameters of the geometric
mapping function.
MI is defined as the information that is contained in two

random variables A and B about each other. MI can be
expressed as follows:

IðA,BÞ ¼ HðAÞ þ HðBÞ –HðA,BÞ, (3)

where I(A, B) is the MI of A and B, and H(A) and H(B) are
the entropies of A and B, respectively, whileH(A, B) is their
joint entropy.
When the MI method is used in image auto-registration,

the sensed image and the reference image can be
considered as variables A and B, respectively. The two
images should be registered when I(A, B) reaches its
maximum value. The entropies of the two images and their
joint entropy can be calculated by the following equations:

HðAÞ ¼ –
X
a

pAðaÞlogApðaÞ, (4)

Fig. 3 Bayesian probabilistic model for matching ensembles of
descriptors.

Fig. 4 Likelihood maps (b, c) for matching two control points (circled in red) in reference image (a).
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HðBÞ ¼ –
X
b

pBðbÞlogBpðbÞ, (5)

HðA,BÞ ¼ –
X
a,b

pA,Bða,bÞlogA,Bpða,bÞ, (6)

where pA(a) and pB(b) are marginal probability functions
and pA,B(a, b) is the joint probability function. pA,B(a, b)
can be obtained via the following equation:

pA,B a,bð Þ ¼ hða,bÞX
a,b

hða,bÞ, (7)

where h is the joint histogram, which is a two-dimensional
matrix that indicates the numbers of intensity pairs in the
reference and sensed images (Chen et al., 2003b). pA(a)
and pB(b) can be computed in a similar manner.

hða,bÞ ¼
hð0,0Þ hð0,1Þ::: hð0,N – 1Þ
hð1,0Þ
:::

hð1,1Þ:::
:::

hð1,N – 1Þ
:::

hðM – 1,0Þ hðM – 1,0Þ::: hðM – 1,N – 1Þ

0
BB@

1
CCA:

(8)

In the joint histogram, M and N are the ranges of the
intensity values of the two images; h(a, b) is the number of
pixel pairs with intensity value a in A and intensity value b
in B. The primary characteristic of the joint histogram is its
increasing dispersion level with the mis-registration of the
two images (Liang et al., 2014). The value of MI reaches
its maximum when the sensed and reference images are
accurately registered.
PSO is a population-based evolutionary computation

technique (Kennedy and Eberhart, 1995, 2001) with strong
search capabilities. In comparison with genetic algorithms,
which exploit the competitive characteristics of biological
evolution (e.g., survival of the fittest), PSO exploits
cooperative and social aspects, such as the flocking of
birds and the swarming of insects (Wachowiak et al.,
2004). Starting from a diffused status, populations
(particles) tend to move in the search space. All PSO
particles in an N-dimensional space are searching for their
own best fit. The investigation of the theoretical properties
of PSO is an active research area (Clerc and Kennedy,
2002).
In PSO, velocity iteration and particle location can be

expressed as follows:

vðt þ 1Þ ¼ ωvðtÞ þ c1r1ðpbest – xðtÞÞ
þ c2r2ðgbest – xðtÞÞ, (9)

xðt þ 1Þ ¼ xðtÞ þ vðt þ 1Þ, (10)

where v(t+ 1) is the velocity of each particle in the next
iteration, v(t) is its current velocity, pbest is the personal

best particle, and gbest is the global best particle.
Furthermore, x(t+ 1) represents the new location of the
particle;w represents the inertial weight, which is the effect
of the current velocity on the next iteration; and c1 and c2
are study factors that represent the information exchange
between each particle in the whole population; they are
usually given the value of 2 in calculations. r1 and r2 are
“acceleration coefficients”, which are random numbers that
are uniformly distributed in the range of [0,1] and are used
to increase the randomness of particle movement.
In this paper, we set combinations of possible CPs that

are found in image A as particles and update each particle’s
location by randomly choosing other matched points in
image A. The optimization objective is to identify the
optimal combinations of CPs and to maximize the MI of
the two images. Thus, we limit the space and constrain
particles by finding feasible solutions in a specific space;
the results of this approach indicate that better solutions
should be searched on the basis of previous iterations. This
approach can also improve the calculation speed and
accuracy of the algorithm and solve the integration
problem of the polynomial mapping function with MI.
By finding the maximum MI using combinations of
matched pairs of points as particles in PSO, we obtain
the following benefits:
1) Existing registration methods that are based on MI

use PSO only to focus on affine deformations, such as
translation, rotation, and scaling. However, non-affine
distortions are excluded; this situation is unsuitable for the
registration of multi-sensor images. By adopting the cluster
pairs of points as PSO particles, the resulting polynomial
mapping function can correct non-rigid deformations.
Then, the polynomial mapping function is used to align
sensed images with reference images.
2) By integrating LSS and MI, the global and local

information are well-balanced. We guarantee not only the
accuracy of local point matching but also the best ensemble
of point matching geometrically and intensively from a
global perspective.

3 Experiments and results

The proposed scheme is tested by registering various types
of remote-sensing images from multi-sensors, including
optical data from Landsat TM and microwave imagery of
RADARSAT SAR (Fig. 5). These images cover the same
study area in Guangzhou, which is the largest city in south
China. The TM imagery and SAR imagery have
uncorrelated illumination and different data collection
times. The optical sensors operate in the visible and
infrared regions of the electromagnetic spectrum to provide
information, whereas the SAR sensor generates a directed
beam of pulses that illuminate terrain to produce high-
resolution back-scattering of radar-frequency energy. On
the SAR image, large bright areas exist where some objects
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are oriented in divergent positions to the satellite track
direction. Thus, strong corner reflections are generated;
however, this type of reflection does not exist in the optical
image. Reflectance from these areas is relatively lower in
the optical image than the SAR image.
During the preprocessing step, all the images are

resampled to the same resolution of the finer image so
that registration can be performed and the proposed
method can be assessed.
Section 3 consists of three parts: In the first part, the

procedure of applying the proposed method is presented
using Landsat TM and SAR images. The second part
shows the performances of the proposed method in
registering various types of imagery, such as Landsat
TM, SPOT, and RADARSAT SAR. The third part
compares the proposed method with three different
feature-based methods, i.e., SSD, SIFT, and SURF.

3.1 Procedure of the proposed registration method

A Landsat TM image (398 � 763) and a close-range
RADARSAT SAR image (335 � 526) were used to
demonstrate the steps of applying the LSS-MI. Acquired
by different platforms, these two images have different
spectral responses, spatial resolutions, and observation
times. The TM image, which has a resolution of 30 m, was
manually pre-registered and resampled to the same
resolution as the SAR image, which is 12.5 m.
First, a coarse result was obtained by using an ensemble

of LSS descriptors. Then, PSO optimization was per-
formed. The parameters of PSO were set as follows: The
particle population in the iteration was initially restricted to

30 individuals with 30 dimensions. Iterations were set to
stop if the gbest value remains unchanged for 20 runs or
the iteration count reaches a maximum value of 200. The
hybrid PSO uses combinations of possible CPs as particles.
To test the performance of the PSO parameters, we
compared our algorithm with an original PSO for MI by
using the TM and SAR images that are shown in Fig. 5.
Figure 6 shows the evolution of the best solution during
iterations. The MI index indicates the fitness value of the
best particle that was obtained during the runs of PSO. A
higher maximum fitness provides better accuracy in
estimating the optimal value, which was identified by
searching with the newly proposed PSOwith MI. Then, the
novel algorithm was applied to the pair of TM and SAR
images.
As shown in Fig. 6, our algorithm outperformed the

original algorithms. When the simple PSO algorithm is
used, the rate of the MI of the sensed and reference images

Fig. 5 Multi-sensor images that were used to evaluate the LSS-MI registration method. (a) The TM (band 4398 � 763) image. (b) The
SAR (HV) image (335 � 526). CPs that were extracted from remote-sensing images. (c) CPs that were extracted from the TM image. (d)
CPs that were extracted from the SAR image.

Fig. 6 Evolution of best solution during the run of PSOs.
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increases slowly. The maximum MI value is also low
(approximately 0.14), compared with that of our modified
PSO algorithm (approximately 0.8). The comparison
results demonstrate that the modified PSO algorithm for
MI has a high chance of finding the best set of transform
parameters.

3.2 Effectiveness of the LSS-MI method

In this section, remote-sensing images of various spatial
resolutions from various sensors such as Landsat TM,
SPOT, and RADARSAT SAR images were used to
demonstrate the effectiveness of the proposed LSS-MI
method. First, we used a single-band (band 4) TM image
and a single-band (band 4) SPOT image. The spatial
resolutions of the TM image and the SPOT image are 30 m
and 10 m, respectively. Although their spectral responses
are similar, they were measured at different times. As
stated in Section 2, these two images were resampled to the
same resolution before performing the LSS-MI registra-
tion. As shown in Fig. 7(a) and 7(b), the textures and
intensities of these two images are different. However,
most pairs of control points are still accurately matched.
The second pair of images includes a band 4 TM image and
a panoramic band SPOT image which has a spatial
resolution of 2.5 m. As shown in Figs. 7(c) and 7(d), the

differences between the two images are even more
apparent than with the first pair, which makes it very
difficult to select control points manually. However, the
proposed LSS-MI method performs very well under these
conditions and matches most pairs of control points
accurately. The third pair of multi-sensor images includes
the TM image and the SAR image that were considered in
Section 2. The registration results (Fig. 8) show that the
LSS-MI method successfully matched the two spectral
response images.

3.3 Performance of the LSS-MI method

Typical feature-based image registration methods such as
SSD (Wolberg and Zokai, 2000), SIFT (Yi et al., 2008),
and SURF (Bouchiha and Besbes, 2013) are compared
with our method. The matching performances of the SSD-
based method, SURF-based method, and our proposed
method are presented in Fig. 9. The SIFT-based method
was omitted from the figure because it failed to match the
corner points. Two statistical indicators, the number of
obtained matches in the outputs and the RMSE of the
registration results, are listed in Table 1. Given that the
images we used have different sizes (398�763 and
335�526), we modified the RMSE equation as
follows:

Fig. 7 (a) Landsat 5 band 4 image (30 m). (b) SPOT band 4 image (10 m). (c) Landsat 5 band 4 image (30 m). (d) SPOT Panchromatic
band image (2.5 m).
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX��

ðxAi – xBi Þ2 þ ðyAi – yBi Þ2
�
=n
�r
, (11)

where xAi and x
B
i denote the relative x-coordinates of the i

th

CP in images A and B, respectively; yAi and yBi denote the
relative y-coordinates of the ith CP in images A and B,
respectively; and n is the number of captured pairs of CPs.
The SSD- and SURF-based methods were able to obtain

matches (Table 1 and Fig. 9). However, the RMSE of the

registration results that were acquired by using these two
algorithms were large and, hence, unacceptable. The LSS-
based method outperformed the SSD- and SURF-based
methods in terms of both the number of obtained matched
pairs and RMSE. However, its RMSE value was still larger
than that of our proposed method. The SIFT-based method
delivers no matches in outputs because the features in the
images that correspond to different sensor types share
different properties (e.g., intensity, shape, line, and

Fig. 8 (a) The aligned image. (b) The reference image. (c) Merged image of the aligned image and the reference image.

Fig. 9 Comparison between the SURF-based, SSD-based methods and our proposed method. (a) Matching performance based on
SURF. (b) Matching performance based on SSD. (c) Matching performance based on integrated LSS and MI.
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gradient). In conclusion, our proposed method produces
the most matched pairs and the lowest RMSE, which
ensures the best registration results for the test set of multi-
sensor images. The aligned image and the reference image
that are acquired by using our proposed method are shown
in Fig. 8.

4 Discussion and conclusions

In this paper, we present a new method for automated
multi-sensor image registration which exploits similarity
from both local and global viewpoints. The LSS method is
used to capture the local internal layout, thereby allowing
both affine and non-affine deformations. Corner point
matching based on an ensemble of descriptors is used to
capture the geometric layout on various scales (local region
to local image). From a global viewpoint, we optimize MI
by using a modified PSO algorithm which improves the MI
rate significantly and, hence, ensures the accuracy and
robustness of the mapping function.
We evaluated the proposed approach by applying it to

various types of remote-sensing imagery in Guangzhou,
China. The results show that the LSS-MI method can
accurately and effectively register multi-sensor images
with various resolutions and imaging principles. A
comparison with other existing image registration meth-
ods, namely, SSD, SIFT, SURF, and LSS, shows that our
proposed method is the most robust and efficient in dealing
with greyscale and geometric discrepancies between
corresponding pixels and regions, and affine and non-
affine deformations.
The proposed method still has a few limitations: First,

the quality of initially selected potential CPs by the Harris
detector may influence the performance of the proposed
method. Therefore, it is necessary to screen out many
points that are not useful, which may otherwise consume
substantial computational resources. Second, when the
LSS descriptors’ discriminability is relatively low, it may
influence how reliably different features are distinguished
and matched. Although we introduce the Bayesian model
and the Gaussian image pyramid to help solve this
problem, the computational cost inevitably rises. In

addition, several empirical parameters should be set in
advance before applying the proposed method. Typically,
the radius of the window for filtering CPs was set as 10 in
the CP identification step. The local self-similarity
descriptor was defined with radius of 10 based on a unit
of patches of size 3 � 3. In the CP matching step, the local
image radius was generally set to 20. During the MI
optimization, the particle population in the iteration was
initially restricted to 30 individuals with 30 dimensions.
Iterations were set to stop if the maximum fitness remained
unchanged for 20 runs or the iteration count reached a
maximum value of 200. Nevertheless, these empirical
parameters seemed to perform well with the multi-sensor
images that were considered in our experiments.
Future research may focus on topics such as finding a

more robust way of selecting initial corner points and
better balancing between calculation accuracy and effi-
ciency. For further applications, it will also be necessary to
examine the performance of the LSS-MI method in more
challenging multi-sensor image registration tasks, such as
registering a visible band image with a LIDAR image or
registering a thermal band image with a visible band
image, where similarity of the geometry or intensity
distributions is extremely low.
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