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Abstract In this study, we investigate the uncertainties
associated with land surface processes in an ensemble
predication context. Specifically, we compare the uncer-
tainties produced by a coupled atmosphere–land modeling
system with two different land surface models, the Noah-
MP land surface model (LSM) and the Noah LSM, by
using the Maximum Likelihood Ensemble Filter (MLEF)
data assimilation system as a platform for ensemble
prediction. We carried out 24-hour prediction simulations
in Siberia with 32 ensemble members beginning at 00:00
UTC on 5 March 2013. We then compared the model
prediction uncertainty of snow depth and solid precipita-
tion with observation-based research products and eval-
uated the standard deviation of the ensemble spread. The
prediction skill and ensemble spread exhibited high
positive correlation for both LSMs, indicating a realistic
uncertainty estimation. The inclusion of a multiple snow-
layer model in the Noah-MP LSM was beneficial for
reducing the uncertainties of snow depth and snow depth
change compared to the Noah LSM, but the uncertainty in
daily solid precipitation showed minimal difference
between the two LSMs. The impact of LSM choice in
reducing temperature uncertainty was limited to surface
layers of the atmosphere. In summary, we found that the
more sophisticated Noah-MP LSM reduces uncertainties
associated with land surface processes compared to the
Noah LSM. Thus, using prediction models with improved
skill implies improved predictability and greater certainty
of prediction.

Keywords ensemble simulation, land-atmosphere inter-
action, ensemble spread, vertical temperature, snow predic-
tion

1 Introduction

Land–atmosphere interactions and land surface models
(LSMs) are important for understanding future climate
change (Yu et al., 2016) and for demonstrating the
importance of improving the parameterization of snow
and soil processes. In terms of land surface schemes in
regional climate models, Zeng et al. (2015) showed that
land surface schemes affect heat wave prediction in China,
whereas Jin et al. (2010) examined the sensitivity of LSMs
in a regional climate model and concluded that sophisti-
cated LSMs reduce the errors related to surface air
temperature. In addition, land surface processes and land
use changes strongly affect snow distribution and radiation
balances in snowy regions (Suzuki et al., 2011, 2015a).
In the Siberian region, snow and land surface processes

have significant effects on water and carbon dynamics
(Suzuki et al., 2006a, 2006b). Suzuki et al. (2015b, 2016)
showed that solid precipitation and evapotranspiration are
important for understanding the hydrological cycle in the
Lena river basin. Recently, Suzuki et al. (2017) analyzed
how LSMs affect coupled atmosphere–land processes
using strongly coupled atmosphere–land data assimilation,
and revealed that sophisticated LSMs can reduce the
uncertainty related to surface temperature. Orth et al.
(2016) indicated that a coupled land–atmosphere model
using a sophisticated LSM might lead to larger errors in
precipitation and temperature data, compared to use a less
sophisticated LSM, and suggested that the inclusion of
uncertainty in LSM parameters is important for better
weather prediction. In addition, the variables resolved in
the LSM parameterization, such as cloud microphysics and
cumulus schemes, radiation schemes and certain land and
ocean variables, and the planetary boundary layer (PBL),
interact directly with other physical parameterizations in
the atmospheric model. Therefore, it is important to
understand how the model physics of an LSM relates to
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the predictability of land and atmosphere variables.
One of the best known LSMs is the Noah LSM (Ek,

2003), which is free to use and is coupled with many
numerical weather models, including the North American
Mesoscale model, the Global Forecast System, and other
National Centers for Environmental Prediction (NCEP)
modeling systems. The recently developed Noah-MP LSM
(Niu et al., 2011) is an extended version of the Noah LSM
with enhanced multi-physics (MP) options designed to
address critical shortcomings in the Noah LSM. These two
LSMs are widely used in climate studies. Using these two
LSMs, we can easily evaluate how sophisticated physics
processes in LSMs affect coupled land–atmosphere model
predictions and uncertainty.
In this study, we examine the effects of these two LSMs

on prediction uncertainties for solid precipitation and snow
depth at the beginning of March 2013 in Siberia, using a
framework similar to that of Suzuki et al. (2017) but
focusing on the ensemble prediction step in the data
assimilation process. The primary goals of this study were
two-fold: (i) to investigate the differences in solid
precipitation and snow depth prediction uncertainties
between the Noah and Noah-MP LSMs, and (ii) to show
the effects on the uncertainty of the atmospheric state
(temperature profile) in the Noah and Noah-MP LSMs.

2 Methodology

2.1 Model and prediction uncertainty

We conducted prediction uncertainty experiments using
ensemble simulations with a coupled atmosphere–land
surface model. The atmospheric model used in this study
was the regional Weather Research and Forecasting (WRF)
model- Advanced Research WRF (ARW) Version 3
(Skamarock et al., 2008). In the WRF-ARW, all model
atmospheric settings are defined as in Table 1.
The Noah LSM has one canopy layer and four soil layers

of thickness 0.1, 0.3, 0.6, and 1.0 m (total soil depth 2 m)
located at depths of 0, 0.1, 0.4, and 1 m, respectively, from
the ground surface to the bottom. The Noah LSM employs
a single snow layer. The lower 1 m acts as a reservoir with
gravity drainage at the bottom, and the upper 1 m of the
soil serves as the root zone. The surface skin temperature is

determined following Mahrt and Ek (1984) by applying a
single, linearized surface energy balance equation repre-
senting the combined ground/vegetation surface. Thus, the
vegetation canopy does not affect the surface energy
balance directly. The Noah-MP is a version of the Noah
LSM augmented with multi-physics options. The differ-
ences between these models include the following: 1)
restructuring the model to include a separated vegetation
canopy accounting for vegetation effects on surface energy
and water balances; 2) a modified two-stream approxima-
tion scheme to include the effects of vegetation canopy
gaps that vary with solar zenith angle and the effects of
canopy 3-D structure on radiation transfer; and 3) a 3-layer
physically based snow model. Both LSMs utilize the same
vertical levels in the atmosphere and soil, and each
simulates soil moisture (both liquid and frozen), soil
temperature, skin temperature, snowpack depth, snowpack
water equivalent, canopy water content, and the energy
flux and water flux terms of the surface energy balance and
surface water balance. Table 2 summarizes the differences
in snow and vegetation simulations between the two
LSMs.
Prediction uncertainty is typically calculated from

ensemble runs of prediction models. In our application,
the land surface prediction uncertainty is produced by
running ensembles of the WRF models with a land surface
scheme. Specifically, we use the framework of the
Maximum Likelihood Ensemble Filter (MLEF) (Zupanski,
2005) data assimilation system but without the analysis
component. In general, an ensemble data assimilation
system consists of (i) ensemble initiation, (ii) ensemble
prediction, and (iii) analysis. We use steps (i) and (ii) but

Table 1 Schemes used in experiments for cumulus clouds, planetary

boundary layer, microphysics, and longwave and shortwave radiation

transfer parameterizations

Parameterization Schemes used

Cumulus clouds Kain–Fritsch convection scheme (Kain, 2004)

Planetary boundary layer Yonsei University scheme (Hong et al., 2006)

Microphysics Lin scheme (Lin et al., 1983)

Longwave radiation transfer Rapid Radiative Transfer Model of Global
climate models (Iacono et al., 2008)

Shortwave radiation transfer (Chou and Suarez, 1999)

Table 2 Description of two LSMs

Parameters Noah LSM Noah-MP LSM

Vegetation One canopy layer, simple canopy resistance. Simple Jarvis-type
canopy resistance function, single linearized energy balance
equation representing combined ground–vegetation surface,
considering seasonal LAI and green vegetation fraction

Snow interception includes loading–unloading, melt–refreeze capabil-
ities, and sublimation of canopy-intercepted snow, along with detailed
representation of transmission and attenuation of radiation through the
canopy, within- and below-canopy turbulence, and different options for

representing the biophysical controls on transpiration

Snow One-layer energy–mass balance model that simulates snow
accumulation, sublimation, melting, and heat exchange at the

snow–atmosphere and snow–soil interfaces

Three-layer energy–mass balance model that represents percolation,
retention, and refreezing of meltwater within the snowpack
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not step (iii). There were 32 ensemble members, and lateral
boundary conditions were defined by applying the
ECMWF Reanalysis Interim (ERA-Interim) model ana-
lyses. The model simulation domain for the WRF model is
shown as the region within the black line (Figs. 1(a) and
1(b)). The horizontal resolution was 27 km, and the model
included 28 vertical layers in the atmosphere, and 4 soil
layers. There were 100�105 horizontal grid points,
thus implying a model domain of approximately
2700�2800 km2. The northern part of the study domain
is occupied by the Central Siberian Plateau, which is
relatively flat, whereas the southern part is characterized by
mountains and complex topography.

2.2 Ensemble initial conditions

The initial conditions for ensemble prediction were based
on the ensemble initiation scheme used in the MLEF (e.g.,
Suzuki et al., 2017) with some modifications. To obtain an
equilibrium state for the initial conditions, we used eight
months of spin-up from 00:00 UTC on 1 July 2012 to
00:00 UTC on 3 March 2013 in both the Noah and Noah-
MP LSMs. The initial state at 00:00 UTC on 1 July 2013

and the boundary conditions were given by the ERA-
Interim global reanalysis dataset (Dee et al., 2011). The
approach involves running a single deterministic predic-
tion centered on the initial time of data assimilation (i.e.,
from time t ¼ – T to t ¼ T ), where t denotes time and
t ¼ 0 is the initial time of the ensemble prediction. Here,
we used T = 48 hours. The initial uncertainty is defined
using time-shifted prediction differences: given a predic-
tion integration of length 2T, we define an ensemble
perturbation using a difference xi – x

C , where x is a state
vector, the prediction output time is fti : – T£ti£T ,
ði ¼ 1,:::,NÞg, and N is the desired number of ensembles.
Index i denotes ensemble member [i.e., xi ¼ xðtiÞ], and
xC ¼ xð0Þ denotes the central prediction at time t = 0. The

i-th uncertainty vector is given as pi ¼
1ffiffiffiffi
N

p xi – x
C

� �
. The

analysis at t = 0 is created by interpolating from the global
model as this process produces a better representation of
the truth than the prediction that was started 48 hours
earlier. Therefore, the initial ensemble perturbations are re-
centered around the analysis, where xA represents the
analysis, and the initial conditions (IC) for the ensemble
prediction are xICi ¼ xA þ pi. Figure 2 shows a schematic

Fig. 1 (a) Map of major vegetation categories, and (b) elevation in the model simulation domain. The regions within the white and the
black lines denote the target analysis region (TAR) and the model simulation domain, respectively.
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of the procedure used to calculate the initial conditions for
the ensemble prediction for each LSM. A deterministic
prediction from t = -T to t = T is calculated using both the
Noah LSM and the Noah-MP LSM, and N+ 1 outputs are
created (x1,…,xN and xC), where N is the number of
ensembles. The initial conditions at t = -T are created from
an 8-month spin-up using the Noah and Noah-MP LSMs.
The initial uncertainty at t = 0 is defined as pi = xi – x

C. The
analysis at t = 0 is created by interpolating from the global
model. The central time t = 0 defines the initial time
conditions.

2.3 Case study

The study area was centered over Siberia, where snow and
freezing soils are important components of the natural
environment (Suzuki et al., 2006b, 2015b). Figure 1(a)
shows the vegetation map used in the LSMs and the
synoptic pattern (wind vectors at 500 hPa) obtained from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim dataset, which contains
global atmospheric reanalysis data. The vegetation cate-
gories are summarized in Table 3. The target analysis
region (TAR) is encompassed by the white line.
Figure 1(b) shows a topographic map of the simulation
area. As shown in Fig. 1(a), the TAR is predominantly
covered by forest, whereas the northwestern regions are
covered by tundra and wetlands. The region consists of
flat terrain known as the Siberian Plateau (Fig. 1(b)).
Figure 3(a) shows the daily precipitation for 5 March 2013
obtained by the Global Precipitation Climatology Project
(GPCP) 1-Degree Daily Precipitation (Version 1.2) (Huff-
man et al., 2001). The study area was affected by snow
precipitation, but nearly half of the TAR was free of
precipitation. The Canadian Meteorological Centre (CMC)
snow depth (Brasnett, 1999) data for 5 March 2013 reveal
that the eastern and northern parts of the TAR had snow
depths of 30–40 cm, and that the southwestern part had

more than double that depth of snow (Fig. 3(b)).
The initial conditions at 00:00 UTC on 5March 2013 are

shown in Figs. 4(a)–4(d). The Noah LSM determined a
significantly lower surface albedo value (0.27 m) than the
Noah-MP LSM (0.40 m). This difference can be explained
by the vegetation canopy treatment of the Noah-MP, which
has an independent canopy energy balance model that
should provide more realistic predictions than the Noah
LSM. Similarly, the surface temperature from both LSMs
showed clear latitudinal differences, whereby the surface
temperature determined by the Noah-MP was higher than
that of the Noah LSM owing to the lower albedo
determined by the Noah-MP. For the Noah LSM, the
area-averaged albedo and surface temperature at 00:00
UTC on 5 March 2013 were approximately 0.62 and
– 35.6°C, respectively, whereas the albedo and surface
temperature for the Noah-MP LSM were approximately
0.42 and – 32.6°C, respectively.

2.4 Prediction error and uncertainty evaluation

To evaluate the 24-hour prediction error, we used

Fig. 2 Initial conditions and their uncertainty values. Central
time t = 0 defines the initial time conditions. A deterministic
prediction from t = -T to t = T is calculated using the (a) Noah
LSM and (b) the Noah-MP LSM, and N+ 1 outputs are created
(x1,…,xN and xC), where N is the number of ensembles. The initial
conditions at t = -T are created from an 8-month spin-up using the
Noah and Noah-MP LSMs as shown in Table 2. The initial
uncertainty at t = 0 is defined as pi = xi –x

C. The analysis at t = 0 is
created by interpolating from the global model.

Table 3 Major and model vegetation categories and surface albedo

Major vegetation category Model vegetation category Albedo

Urban Urban and Built-Up Land 0.15

Cropland Dryland Cropland and Pasture 0.19

Irrigated Cropland and Pasture 0.15

Mixed Dryland/Irrigated Cropland and
Pasture

0.17

Cropland/Grassland Mosaic 0.19

Cropland/Woodland Mosaic 0.19

Grassland 0.19

Shrubland 0.25

Mixed Shrubland/Grassland 0.23

Savanna 0.20

Forest Deciduous Broadleaf Forest 0.12

Deciduous Needleleaf Forest 0.11

Evergreen Broadleaf Forest 0.11

Evergreen Needleleaf Forest 0.10

Mixed Forest 0.12

Wetland Water Bodies 0.19

Herbaceous Wetland 0.12

Wooded Wetland 0.12

Barren and Sparsely Vegetated 0.12

Tundra Herbaceous Tundra 0.16

Wooded Tundra 0.16

Mixed Tundra 0.16

Bare Ground Tundra 0.17

Snow Snow or Ice 0.70
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observation-based products, denoted by XO, including
GPCP 1-degree daily precipitation, CMC 25 km daily
snow depth, and the ERA-Interim reanalysis dataset
(approximately 80 km for temperature profiles). Therefore,
XO can also be interpreted as a validation analysis. We
evaluated the 24-hour prediction (XF) against XO using the
root square error (RSE)

RSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXF –XOÞ2

q
, (1)

where XF is the 24-hour prediction value and XO is the
observational value. Note that this error measure is
equivalent to the absolute error |XF –XO|. Because a
control deterministic prediction (XF) is equivalent to an
ensemble mean prediction from a typical ensemble data
assimilation process in the MLEF framework, the RSE can
also be interpreted as the root-mean-square distance
between the analyzed and predicted fields (e.g., Whitaker
and Loughe, 1998). Hereafter, we use the RSE as a
measure of prediction skill. The ensemble prediction
uncertainty is measured by the standard deviation of the
prediction error covariance ( in our notation), calculated as
follows:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

p2i

vuut , (2)

where pi is the ith column of the square root ensemble
prediction error covariance.
In addition, when examining the correlation between the

prediction error and the uncertainty of that error (which is
important because the uncertainty should reflect the true
predictability of a variable represented by the prediction
error), a large uncertainty indicates a less predictable event,
and vice versa. Because low numbers of predictable events
are generally more difficult to predict, they should have a
larger error; therefore, the prediction error standard
deviation and RSE should be positively correlated, which
is often termed the spread–skill relationship (Whitaker and
Loughe, 1998; Roulston, 2005; Grimit and Mass, 2007).
The correlation � between the uncertainty and error is often
used to check whether the uncertainty is realistic. This
correlation is computed by the following:

� ¼ X TY

kXk⋅kYk, (3)

Fig. 3 Spatial distribution of (a) daily precipitation and (b) snow depth on 5 March 2013. The region within the black line denotes the
target analysis region (TAR).
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where X and Y represent the RSE and standard deviation
vectors, respectively, and superscript T denotes a trans-
pose. A correlation> 0.5 is generally accepted as satisfac-
tory (e.g., Du, 2007) for establishing that the estimated
uncertainty is realistic.

3 Results

3.1 Snow depth prediction

Figures 5(a) and 5(b) show the RSE of snow depth
determined by the Noah-MP and Noah LSMs, respec-
tively, at 00:00 UTC on 6 March 2013, which is the end of
the 24-hour prediction, using CMC daily snow depth data
as a validation. The Noah LSM poorly estimated snow
depth compared to the Noah-MP LSM, indicated by
significantly larger area-averaged RSE of snow depth
(39.1 cm versus 11.0 cm, respectively). By contrast, we do
not observe such a significant difference in the snow water
equivalent between the Noah and Noah-MP LSMs

(115.1 mm and 113.8 mm, respectively). As described in
section 2.1, the Noah-MP has multiple snow layers,
whereas the Noah LSM has a single snow layer. Thus,
the Noah LSM employs the same snow density for the
entire snow depth. However, in reality, snow behaves
differently because natural snow will be compacted by its
own weight, and snow density can therefore increase with
depth from the snow surface. The Noah-MP LSM has three
snow layers that can replicate a snow density profile
similar to that of natural conditions; therefore, the Noah-
MP LSM reproduces snow depth better than the Noah
LSM.

3.2 Uncertainty in solid precipitation

Figures 6(a) and 6(b) show the RMSE of solid precipita-
tion for the Noah-MP and Noah LSMs, respectively. The
Noah-MP LSM showed lower uncertainty than the Noah
LSM in the lower-central region of the study area.
However, at the southern boundary of central Siberia and
in some eastern regions, the RSE for the Noah-MP LSM

Fig. 4 Maps of the initial state of surface albedo and surface temperature at 00:00 UTC on 5 March 2013 determined by the (a,c) Noah
LSM and (b,d) the Noah-MP LSMwithin the model simulation domain. The region within the white line denotes the target analysis region
(TAR).
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was higher. The TAR-averaged RSE values for the Noah
and Noah-MP LSMs were 1.0 mm and 1.1 mm,
respectively; thus, the Noah-MP LSM does not provide
any clear improvement in the RSE of 24-hour solid
precipitation prediction. To address uncertainty, we also
show the � value for the solid precipitation predictions
from the two LSMs in Figs. 6(c) and 6(d). The correlation ρ
between RSE and � for the same LSM was 0.67 for the

Noah LSM and 0.60 for the Noah-MP LSM. Both of these
values suggest that the skill–spread relationships are
satisfactory (i.e.,> 0.5). In addition, there was almost no
difference between the TAR-averaged � values for the
Noah (0.9 mm) and Noah-MP (0.8 mm) LSMs. The
magnitudes of both RSE and � were similar for both
LSMs; therefore, we conclude that the uncertainty
estimation using both models is realistic.

Fig. 5 Maps of the root square error (RSE) of snow depth distribution at 00:00 UTC on 6 March 2013 predicted by the (a) Noah LSM
and (b) Noah-MP LSM.

Fig. 6 Maps of root square error (RSE) in precipitation between observation and prediction using (a) Noah and (b) Noah-MP LSMs, and
the uncertainty � in precipitation for the (c) Noah and (d) Noah-MP LSMs at 00:00 UTC on 6 March 2013.
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The comparison of the solid precipitation uncertainties
in Figs. 6(c) and 6(d) suggests that the Noah-MP LSM
produced somewhat lower uncertainty, especially near the
center of the domain, and an area of strong uncertainty in
solid precipitation was located south of that in the Noah
LSM. Although we could not find any difference in the
TAR-averaged solid precipitation uncertainty between the
Noah and Noah-MP LSMs in Figs. 6(c) and 6(d), the high-
RSE values in Figs. 6(b) and 6(d) (red or orange areas)
were lower than those in Figs. 6(a) and 6(c).

3.3 Uncertainty in snow depth change

Next, rather than estimating snow depth itself, we
evaluated the uncertainty in daily snow depth change,
because snow depth prediction is influenced by the spin-up
conditions rather than the 24-hour prediction, as shown in
Figs. 5(a) and 5(b). Here, we use the daily observed snow
depth change (5–6 March 2013) in CMC snow depth and
the model-predicted snow depth change (00:00 UTC 5
March 2013 to 00:00 UTC 6 March 2013) in the Noah and
Noah-MP LSMs.
We first test the spread–skill relationship. Figures 7(a)–

7(d) show the spatial patterns of the RSE and � values of
daily snow depth change for the Noah and Noah-MP

LSMs. We observe some reduction in the RSE in the Noah-
MP LSM. The TAR area-averaged RSE values for the
Noah and Noah-MP LSMs were 1.8 cm and 1.4 cm,
respectively, which are very similar to those of the TAR
area-averaged � for both LSMs (1.5 cm for Noah LSM, 1.1
cm for Noah-MP LSM). Both LSMs gave large RSEs at
locations similar to those with highly uncertain solid
precipitation predictions, as shown in Figs. 6(c) and 6(d).
The correlation � between the RSE of snow depth and the
� of solid precipitation was 0.76 for the Noah LSM and
0.76 for the Noah-MP LSM. These correlations are even
higher than those for solid precipitation, suggesting that the
uncertainty in snow depth change is realistic.
Figures 7(c) and 7(d) show that the Noah-MP LSM

estimates include less uncertainty than those of the Noah
LSM in the area where solid precipitation occurred, as
shown in Fig. 2(a). Furthermore, this area was mostly
covered by deciduous needle leaf forest, as shown in
Fig. 1(a). The forest canopy in the Noah-MP LSM was
separated from the ground surface, whereas the Noah LSM
merged the canopy and ground snow; therefore, we
attribute the reduced uncertainty in the Noah-MP LSM to
its more realistic treatment of the forest canopy. Overall,
the comparatively sophisticated Noah-MP LSM can
reduce uncertainties related to not only absolute snow

Fig. 7 Maps of the root square error (RSE) of daily snow depth change between observations and predictions using (a) Noah and (b)
Noah-MP LSMs, and the uncertainty � in daily snow depth change for the (c) Noah and (d) Noah-MP LSMs at 00:00 UTC on 6 March
2013.
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depth but also daily snow depth change during the 24-hour
prediction period. We assume that this result is also due to
the use of multiple snow layers and the more realistic forest
canopy treatment in the model; that is, the Noah-MP can
more accurately calculate the snow density of multiple
layers, and the water and energy balance above the forest
canopy. We also checked the uncertainty in other surface
variables (figures not shown) and found that the more
sophisticated LSM can generally reduce uncertainty in
land surface parameters.

3.4 Vertical uncertainty changes due to LSMs

Finally, we show how different LSMs affect the uncer-
tainty in air temperature. Figures 8(a)–8(d) show the
latitudinally averaged (60°N–70°N) temperature differ-
ence (the Noah LSM minus the Noah-MP LSM) for
atmospheres of 500 hPa and 850 hPa, at a height of 2 m,
and at the surface. Positive values denote improvements in
temperature uncertainty determined by the Noah-MP
LSM, because such values indicate that the RSE or
uncertainty of the Noah-MP LSM was smaller than that of
the Noah LSM. The correlation coefficients � between the
differences (Noah LSM minus Noah-MP LSM) in RSE
and � are 0.39 at the surface, 0.32 at 2 m, 0.42 at 850 hPa,
and -0.68 at 500 hPa. Although these correlations between
the RSE and � are not large, the averaged differences in
RSE and � between the two LSMs over the region were
very similar: the Noah-MP LSM improved the RSE and �
for surface temperature by 1.7°C and 1.1°C, for 2-m

temperature by 0.6°C and 0.4°C, for 850-hPa temperature
by 0.3°C and 0.0°C, and for 500-hPa temperature by
–0.2°C and 0.1°C, respectively. The negative correlation at
500 hPa results from the negative difference in RSE
between the Noah and Noah-MP LSMs. Small differences
in uncertainty are observed in the lower (850 hPa) and
middle (500 hPa) atmosphere. However, near the surface
(at 2 m and at the surface), the uncertainty differences are
much more positive, suggesting that the Noah LSM
produces larger uncertainty than the Noah-MP LSM. As
anticipated, the effect of the LSM is confined to the near-
surface layers of the atmosphere.

4 Discussion

Table 4 presents a summary of the results. Accordingly, the
more sophisticated Noah-MP LSM snow model, which
includes multiple snow layers, can reduce the error in snow
depth predictions by simulating realistic snow density
profiles within the modeled snow layers. Cai et al. (2014)
showed that the Noah-MP provided the best simulation of
annual terrestrial water storage throughout the US, relative
to Noah LSM. Our snow depth predictions are directly
related to terrestrial water storage because snow is a major
component of annual terrestrial water. Thus, we conclude
that the Noah-MP LSM can provide more realistic snow
simulation than Noah LSM. In terms of predicting solid
precipitation, sophisticated LSMs do not contribute to
reducing TAR-averaged solid precipitation errors but could

Fig. 8 Latitudinally averaged (60°N–70°N) zonal cross-section of root square error (RSE) and uncertainty � in temperature at each
vertical level for (a, e) 500 hPa, (b, f) 850 hPa, (c, g) 2 m air temperature, and (d, h) surface temperature.
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reduce local prediction errors. In addition, these results
suggest that a sophisticated LSM can reduce the
uncertainty in near-surface layers, which may be why
sophisticated LSMs such as Noah-MP do not improve the
uncertainty in solid precipitation predictions, as these
LSMs have almost no effect on temperature or cloud
hydrometeors for most parts of the atmospheric tempera-
ture in the context of short-range weather prediction. These
results are consistent with those of Orth et al. (2016), who
implied that these sophisticated models would have no
impact on precipitation or temperature predictions because
their reduced uncertainty might lead to an increased
compensating error. On the other hand, Hu et al. (2014)
demonstrated that, in WRF simulations, Noah-MP LSM
performed slightly better (i.e., better predicted the
precipitation field) than Noah LSM in reproducing severe
drought events in Southwest China. Although we did not
find any differences in area-averaged solid precipitation
between Noah and Noah-MP LSMs, the WRF simulation
with Noah-MP LSM locally improved solid precipitation
prediction, especially in areas with heavy snowfall, which
supports the findings of Hu et al. (2014).
Finally, we discuss the limitations of the present result.

We focused on solid precipitation and snow depth
predictions over a 24-hour period. Douville (2010) showed
that land surface hydrology enabled reliable seasonal
forecasting of surface air temperature and precipitation
predictability over Eurasia. Compared with such seasonal
evaluations, the 24-hour time frame employed here is a
very short period over which to compare the solid
precipitation predictions between two LSMs. Despite
these constraints, we showed some positive impacts for
24-hour weather prediction resulting from more sophisti-
cated land surface models such as Noah-MP LSM. Further
improvements in predictions require the use of a global
climate model such as a general circulation model, because
regional forecasts can be limited by the lateral boundary
conditions given by a global model, and the effective
prediction time-scale is strongly dependent on boundary
conditions and the size of the calculation domain.
Overall, the differences in results between the two LSMs

analyzed in this study can be largely explained by the
reduction of uncertainty achieved when using the sophis-
ticated land surface model, which in turn improved
weather prediction.

5 Conclusions

We investigated the uncertainty in solid precipitation and
snow depth prediction, as well as the change in uncertainty
in atmospheric temperature, using two different LSMs.
Our findings were as follows.
1) For the same LSM, the RSE and of snow precipita-

tion show highly positive correlation (> 0.5), indicating
that the uncertainty estimation is realistic.
2) The inclusion of multiple snow layers in the Noah-

MP model is beneficial for reducing snow depth
uncertainty.
3) The uncertainties in daily snow depth change were

reduced more in the Noah-MP than in the Noah model, but
the uncertainty in daily solid precipitation showed minimal
difference between the two LSMs.
4) According to a vertical cross-section of the latitudin-

ally averaged atmospheric temperature uncertainty, the
more sophisticated LSM mainly improved temperature
uncertainty within the surface layer, whereas the lower and
middle atmosphere were not strongly affected by either
LSM. However, the uncertainty reduction was much
greater for Noah-MP than for the Noah LSM.
5) The more sophisticated Noah-MP LSM achieves a

greater reduction in uncertainty, which supports the
prevailing belief (e.g., Du, 2007) that using prediction
models with improved skill provides improved predict-
ability and reduced uncertainty in prediction.
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