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Abstract Understanding the rate of snowmelt helps
inform how water stored as snow will transform into
streamflow. Data from 87 snow telemetry (SNOTEL)
stations across the Southern Rocky Mountains were used
to estimate spatio-temporal melt factors. Decreases in
snow water equivalent were correlated to temperature at
these monitoring stations for eight half-month periods
from early March through late June. Time explained 70%
of the variance in the computed snow melt factors. A
residual linear correlation model was used to explain
subsequent spatial variability. Longitude, slope, and land
cover type explained further variance. For evergreen trees,
canopy density was relevant to find enhanced melt rates;
while for all other land cover types, denoted as non-
evergreen, lower melt rates were found at high elevation,
high latitude and north facing slopes, denoting that in cold
environments melting is less effective than in milder sites.
A change in the temperature sensor about mid-way through
the time series (1990 to 2013) created a discontinuity in the
temperature dataset. An adjustment to the time series yield
larger computed melt factors.

Keywords melt, SWE, temperature, SNOTEL, tempera-
ture sensor change

1 Introduction

The snowpack is an important water storage component;
understanding the timing of snowmelt is crucial to
determine changes in streamflow for snow dominated
watersheds (Doesken and Judson, 1996). The amount of
water in the snowpack (snow water equivalent or SWE)
varies over the year as snow accumulates and then later
melts. SWE also varies inter-annually based on winter
precipitation amounts. The rate of melt varies as a function
of the energy balance, which includes short wave and long
wave radiation, sensible and latent heat fluxes, ground
heat, and heat from precipitation, and total melt quantities
are a function of net accumulation (U.S. Army Corps of
Engineers, 1956).
Modeling snowmelt using the energy balance approach

requires estimates of all the energy components (Ohmura,
2001), which is typically difficult to obtain at many
locations. As such, a temperature-index approach is often
used. This method relates melt factors with temperature
and has been explored for over a century (Horton, 1915). It
has been used extensively to estimate snowmelt (e.g., U.S.
Army Corps of Engineers, 1956) and streamflow, such as
with the Snowmelt Runoff Model (SRM, Martinec et al.,
2008). There have been various evaluations of the
advantages and disadvantages of each approach (tempera-
ture index versus energy balance) (e.g., He et al., 2011;
Kumar et al., 2013; Valéry et al., 2014). This current paper
explores the temperature-index approach across the South-
ern Rocky Mountains using station observations.
The linear slope between snowmelt and temperature

yields a melt factor, but this melt factor varies over time
(Linsley, 1943; U.S. Army Corps of Engineers, 1956;
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Rango and Martinec, 1995; Anderson, 2006). The
temporal variation is a function of a variety of factors
including the progressively lower cold content of snow-
packs and the increasing incoming short wave radiation as
the melt season progresses, and changes in snow surface
albedo, in some cases due to melt water at the surface.
Estimates of net (short and long wave) radiation have been
added to the temperature-index approach to contend with
melt factor changes over time (Rango and Martinec, 1995;
Brubaker et al., 1996). However, short and long wave
radiation data are not readily available.
Temperature is among the most commonly measured

meteorological variables. However, measurements tend to
be limited in snow covered environments, such as at higher
elevation mid-latitude regions. Yet, daily snowmelt
measurements necessary to compute melt factors have
historically been very limited and are for sites with very
specific characteristics. Often melt factors are calibrated in
a hydrological model and not based on measurements (e.g.,
Leavesley, 1989; Zeinivand and De Smedt, 2009, Omani et
al., 2016). Temperature-index models need enhancement
to bridge the gap between restricted data availability and
increasing demand for high resolution estimates (Hock,
2003).
Therefore, this paper explores the temporal and spatial

variability in melt factors based on multi-year, daily
snowmelt and temperature measurements collected by the
Natural Resources Conservation Service (NRCS) at the
automated snowpack telemetry (SNOTEL) stations (Nat-
ural Resources Conservation Service, 2016a). However,
there is an inconsistency among the SNOTEL temperature
data due to sensor changes occurring from 2004 to 2006
across the study domain (Julander et al., 2007). This
change has been shown to cause an artificial amplification
of warming trends (Oyler et al., 2015). An adjusted
temperature time series could improve the consistency of
the dataset (e.g., Ma et al., 2016). To evaluate bias due to
this sensor change, concurrent sensors (pre- and post-
change) were operated at a number of sites in Idaho (stated
in Oyler et al., 2015 and presented by Morrisey, 2015).
This bias adjustment was used to adjust the temperature
time series prior to the sensor change. Therefore, the
unadjusted and adjusted time series can be used to compute
the melt factor and the implication of this sensor change
can be demonstrated.
In this paper, the following four questions were

addressed:
1) Can we estimate melt factor variability over time and

space for ½ month periods across the Southern Rocky
Mountains using SNOTEL data? 2) Can we explain the
spatial and temporal melt factor variability based on terrain
and land cover (type and density) across the entire domain?
3) Can we explain the spatial and temporal melt factor
variability over individual headwater basins? and 4) What
is the implication of a network-wide change in the

temperature sensor configuration, specifically is there a
systematic change in the melt factor?

2 Study area and data

The Southern Rocky Mountains span Southern Wyoming,
Colorado, and Northern New Mexico of the Western U.S.
The long-term NRCS SNOTEL stations across the study
domain used by Fassnacht and Records (2015) were used
in the analysis. The stations ranged in elevation from 2268
to 3536 meters (Fig. 1). These stations were established
between 1979 and the mid-1980s to measure daily SWE
and precipitation (Natural Resources Conservation Ser-
vice, 2016b). In the late 1980s temperature sensors were
added, and the 24-year time period of daily SWE and
temperature data (wcc.nrcs.usda.gov) from 1990 through
2013 was extracted. The quality-controlled SWE data were
obtained from Fassnacht and Records (2015). The
concurrent temperature data were checked to remove
outliers and other erroneous data (Avanzi et al., 2014).
An elevation dataset (ned.usgs.gov) was obtained from

the U.S. Geological Survey (U.S. Geological Survey,
2016) and used to derive slope and aspect across the entire
domain using the ArcGIS software (esri.com). Land cover
and canopy density datasets (landcover.usgs.gov) were
obtained for the study area from the National Land Cover
Database (U.S. Geological Survey, 2016). The global
position system (GPS) coordinates of each SNOTEL
station, provided by the NRCS, were used to extract the
slope, aspect, land cover type, and canopy density for each
station at a 30-m resolution. These are the precise GPS
coordinates, not the publicly available GPS coordinates
from NRCS. These spatial data were obtained from
Fassnacht and Records (2015). Land cover classification
was simplified to evergreen when the NLCD was 42, and
non-evergreen for all other NLCD land cover types, as
evergreen was the only vegetation type to have above the
snowpack foliage.

3 Methods

Snowmelt was calculated for each station during nine, half-
month periods from early March through early July. For a
specific half-month period, stations that experienced a
daily decrease in SWE and had daily temperature
measurements were used to calculate melt factor. This
was calculated from the slope of daily average temperature
versus daily decrease in SWE for all years of concurrent
SWE and temperature measurement (e.g., Fig. 2) yielding
a melt factor with units of millimetres per day per degree
Celsius (mm/d/°C). The fit of the lines was not always
strong (Fig. 2) since there are other drivers of melt besides
temperature. The sample size for each half month period
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was required to be greater than 20 days of concurrent melt
and temperature measurements over the 24 years of record.
Additionally, a minimum coefficient of determination (r2)
value for the fitted slope was required to be greater than 0.2
for the station to be included in the analysis. Possible
outliers were identified as melt factors that were more than
2 times standard deviation greater than the mean, or that
were less than 1.75 times less than the mean. This
difference in acceptable standard deviations was used since
the melt factors follow a log-normal distribution, based on
observation of the distribution of the data.
Some difference in the computation of the melt factor

may occur due to assumptions about the data used. Some
studies only used temperature warmer than freezing and
included negative melt and small amounts of melt, within
the precision of the snow pillow (2.54 mm) (DeWalle et al.,
2002; He et al., 2011). This study used daily mean
temperatures colder than freezing temperatures (U.S.
Army Corps of Engineers, 1956; Leavesley, 1989), but
did not use negative melt or daily SWE decreases, i.e., melt
of 2.54 mm.
The original temperature dataset was adjusted using a

polynomial function fit to the Morrisey bias correction
data, specifically all daily mean temperature data from the

period prior to the sensor change were adjusted. Both the
original and the adjusted dataset were used to estimate the
melt factor for each station (e.g., Fig. 2). The resultant melt
factors were then compared. This comparison addressed
the fourth research question. The melt factors computed
from the adjusted temperature were used for all subsequent
analyses.
The spatio-temporal variability of melt factors was

evaluated considering the time period and the independent
terrain/canopy variables. These were location (latitude,
longitude, and elevation), slope, northness (cosine of
aspect times sine of slope (Fassnacht et al., 2012), canopy
density, and land cover type as evergreen or non-
evergreen. The independent variables were not cross-
correlated, a maximum coefficient of determination (R2) of
0.15 existed between latitude and elevation.
For the entire domain, time was the most important

variable, and the best fit non-linear function was used to
detrended all the station half-month melt factor data,
yielding the residuals unexplained by the time variable. A
sequential regression approach was then used where the
residuals were correlated with subsequent terrain/canopy
variables and further detrended. A split of the dataset by
land cover type was considered if it improved the

Fig. 1 Location of 87 SNOTEL stations across the Southern Rocky Mountains used to compute the half-month melt factors categorized
by land cover type (evergreen or non-evergreen) and median date of peak SWE. The eight study headwater basins are shown.
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correlation with terrain/canopy variables. This process
continued until the improvement in R2 value was smaller
than 0.05 (Fassnacht et al., 2013). This showed the
sequential explanation of variance by different terrain/
canopy variables.
To investigate the correlation of terrain/canopy without

time, a multi-variation linear regression was applied to
each half-month period with at least eight computed melt
factors. Each of the six variables independent variables
was correlated to the melt factor, the most highly correlated
variables were chosen to develop an equation. The
coefficients in the linear equation were optimized by
searching for the combination to maximize the R2 and
Nash-Sutcliffe coefficient of efficiency (Nash and Sut-
cliffe, 1970) values. This regression approach was used for
the entire study domain and then for eight smaller
headwater regions across the Southern Rocky Mountains
(Fig. 1).

4 Results

From the best fit criteria, a variety of half-month periods
could be computed for 87 of the 90 stations used by
Fassnacht and Records (2015): 1) melt factors were not
computed for three stations (Culebra #2, Columbine, and
Red Mountain Pass), 2) only one half-month melt period
was computed at six stations, and 3) melt factors for six
half-month periods were computed at seven stations. An
average of 3.6 melt periods was computed per station (40%

of all the possible station melt-periods). Early May was the
half-month period with the most computed melt factors at
69 stations (Fig. 3(a)). Since the melt factors could only be
computed for one station during the early July period (Fig.
3(b)), this period was removed from further analysis. In
total there were 312 station-periods of melt factors
computed.
The melt factor increases as the winter progresses into

the spring and the variability increases with time (Fig. 3(a)
and Fig. 3(b)). A non-linear function with time can explain
70% variance in melt factor and but a limited amount of the
remaining variance across the Southern Rocky Mountains
is explained spatially (Fig. 4). Longitude is the most
important spatial variable across the entire domain, after
which the melt factor dataset is divided into evergreen and
non-evergreen (Fig. 4). After the land cover split, 9% of the
variance in the residuals is explained by slope for
evergreen and 10% by elevation in non-evergreen (Fig. 4).
Across the entire domain for individual half-month

periods, the spatial variability is not well explained by
terrain/canopy variables. The multi-variate regressions did
not fit well with Nash-Sutcliffe coefficient of efficiency
(NSCE) values between 0.05 (late May) and 0.31 (early
April), with an average of 0.18 (Fig. 5(a)). The R2 values
are similar to the NSCE, but the latter present the fit to the
1:1 line, which is more appropriate here (Legates and
McCabe, 1999). Terrain and canopy explain much of the
spatial variation in the melt factors for the Yampa, North
Platte and Arkansas (Figs. 5(b), 5(c) and 5(i), respectively)
with basin average NSCE values from 0.49 to 0.61. There

Fig. 2 Daily snowmelt measured as a decrease in SWE versus mean temperature daily four half-month for (a) late April through (d) early
June at the Bear Lake (05J39S) SNOTEL station. Temperature is given as the original dataset (MFo in italics, T as light diamonds) overlain
by the adjusted dataset (MFa, T as dark circles). The best fit line for each period and the two datasets is shown with slope and coefficient of
determination (R2 value). All relations are statistically significant at the p< 0.05 level.
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is a decent to good explanation for the Colorado, South
Platte, and San Juan/Animas (Figs. 5(d), 5(f) and 5(g),
respectively) with basin average NSCE values from 0.26 to
0.38. The spatial variation in the melt factors for early
April over the Colorado and for late April over the Rio
Grande were well explained by terrain/canopy, but the
other periods were not (Fig. 5(d) and Fig. 5(h)).
Terrain and canopy variables do not explain much of the

remaining variance across space (Fig. 4 and Fig. 5(a)).
These terrain/canopy variables do explain much of the
spatial variance for some of the individual basins (Fig. 1)
but not for all (Fig. 5). For all basins, except the Gunnison,
the NSCE and R2 values are both greater than 0.5 for at
least one half-month period. For the Yampa (Fig. 5(b)) and
North Platte (Fig. 5(c)), the spatial variance for four half-
month periods are well explained by the terrain/canopy
variables. At temperatures colder than 15 Celsius the old
temperature sensor had a cold bias, while at temperatures
warmer than 15 degrees Celsius it had a warm bias
(Morrisey, 2015). Melt temperatures were usually colder
than 15 degrees Celsius and the adjusted temperatures
were warmer than the original temperatures (Fig. 2). The

computed melt factors were thus greater for the adjusted
dataset (Fig. 2 and Fig. 6). The temperature bias is seen in
the correlation between the two sets of melt factors. While
the R2 values are all greater than 0.98, the slope increases to
0.95 for late April and decreases to 0.84 in late June.
Overall the melt factor computed from the original
temperature data set is 92% of those computed from the
adjusted temperature data (Fig. 6).

5 Discussion

The SNOTEL data can be used to estimate the melt factor
(Fig. 3(b)) for most of the stations used by Fassnacht and
Records (2015) and for different time periods (Fig. 3(a)).
Beyond DeWalle et al. (2002) that focused on the Rio
Grande region in the southern portion of this study domain
(Fig. 1), SNOTEL data have not been directly used to
estimate melt factors. This work provides an analysis of a
dataset to confine acceptable values for calibration, etc.
(e.g., He et al., 2011) and a possible means to extend
results across space. This work can be extended to the

Fig. 3 Summary of (a) number of SNOTEL stations out of 87 during each of the eight half-month time periods from early March
through late June that fit the snowmelt factor computation criteria, with the mean and standard deviation for each period, and (b) snowmelt
factors as a function of time of year across the Southern Rocky Mountains. As there are only five station-periods for early March (Fig. 3),
the 25th and 75th percentiles are not shown.
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Fig. 4 Schematic of the sequence of the multi-step regression model to describe the correlation of melt factor with spatio-temporal
variables (italicized). In each subsequent step, the residuals of the detrended values are correlated with a spatio-temporal variables; the
dataset is divided into evergreen and non-evergreen land cover between the second and third steps. The equations and R2 value explaining
the variance for each successive step are given.

Fig. 5 Nash-Sutcliffe coefficient of efficiency (NSCE) and the specific terrain or canopy variables used in the multi-variate linear
regressions over seven half-month periods (late March through late June) for (a) the entire study domain of the Southern Rocky
Mountains, and (b) through (i) for the eight headwater regions in the area. Variables are shown when used in the regression. For example,
for the Yampa River during early April (4/1), only elevation was used in the regression with a NSCE value of 0.87, whereas for the North
Platte during the same period (4/1), all six variables were used in the regression with a NSCE value of 0.82. The grey bar indicates that
melt factors were computed at too few (< 8) stations for the specific time period. All NSCE values were greater than zero, except during
early April in the San Juan/Animas.
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Western U.S., including Alaska, to capitalize on the daily
temporal resolution (Fassnacht et al., 2014) and the extent
of the SNOTEL network (wcc.nrcs.usda.gov) and other
areas were such SWE and temperature data exist (e.g.,
López-Moreno et al., 2010).
Melt factors increase as the snow season progresses

from March through June (Fig. 3(b)) since incoming solar
radiation increases, albedo may decrease due to enlarged
rounding of grains and the increased presence of water at
the surface, and incoming longwave radiation increases
due warmer temperatures and the presence of more
moisture in the air (Anderson, 2006). Moreover, as a
snowpack approaches isothermal conditions, the effective-
ness of energy inputs (including temperature) is greater for
producing melting. Yet only temperature is used in the
computation of melt factors. A temperature-based
approach is thus reasonable (Ohmura, 2001; Hock,
2003), especially in areas with limited data availability
(Lydon and Schulz, 1986). It should be noted that the
correlation between SWE and temperature was often low
(e.g., Fig. 2). Previous efforts have included net radiation
(e.g., Rango and Martinec, 1995; Brubaker et al., 1996),
but those data are not always available. Large individual
quantities of melt (Cooley and Palmer, 1997; Fassnacht
and Records, 2015) can occur on specific days that are
much higher than what can be estimated from the melt
factors presented herein (Fig. 3(b)) used with observed
temperatures. However, such quantities are typically for
specific days.
For the entire Southern Rocky Mountains, time explains

two-thirds of the variance when the eight half-month
periods from March through June are evaluated (Fig. 4).
Across the Rio Grande, DeWalle et al. (2002) show a linear
change in melt factor of 0.05 to 0.1 mm/d/°C per day

depending upon the SNOTEL station. Herein, a non-linear
increase in the melt factor is more appropriate than a linear
increase (Fig. 4).
The melt factors derived from the SNOTEL stations

across the Southern Rocky Mountains (Fig. 3) are similar
to those found in the literature for this region. At a site in
Central Colorado (Brumley), the calibrated model average
late June melt factor was 1.18 mm/°C per 6 hours (He et
al., 2011), and in this study the early June melt factor was
3.7 mm/d/°C (late June could not computed). In the Rio
Grande, DeWalle et al. (2002) computed average melt
factors from 2.9 (Wolf Creek) to 5.9 (Lily Pond) mm/d/°C.
Here, the melt factors were similar to the lower values with
an early June melt factor of 3.1 mm/d/°C at Wolf Creek. At
four other SNOTEL station, the melt factors were lower
(1.0 to 2.9 mm/d/°C for early April through early June)
than those presented by DeWalle et al. (2002). The upper
range of the DeWalle et al. (2002) is more similar to less
continental environments (Linsley, 1943; U.S. Army
Corps of Engineers, 1956). However, DeWalle et al.
(2002) also showed 70% inter-annual variability in the
average melt factor across the Rio Grande SNOTEL
stations, due mostly to the timing of melt.
Most studies prior to 2015 used the original temperature

time series. For example, DeWalle et al. (2002) used
SNOTEL data from before the SNOTEL temperature
sensor change, while others have used data across both
time series (e.g., He et al., 2011). The adjustment used
herein corrects a pre-sensor change time series that has a
cold bias at temperatures colder than 15 degrees Celsius
and that increases to about 2 degrees colder at a
temperature of – 15°C. There are thus different implica-
tions if only the pre-sensor change, post-sensor change or
entire time series is used to estimate the melt factor. Herein,
we show that melt factors would be larger when the time
series is adjusted (Fig. 2 and Fig. 6).
There are other approaches to adjusting the SNOTEL

temperature time series. Oyler et al. (2015) provided an
adjustment using adjacent cooperative (COOP) weather
stations that are part of the USHCN network (Menne et al.,
2015). However, these COOP stations are mostly at lower
elevation than the SNOTEL stations, and large differences
can exist even in much more homogeneous terrain (Pielke
et al., 2002; Fassnacht et al., 2016). In mountainous
terrains, the spatial variability can be even more
pronounced (Patterson, 2016).
There are limitations to extending the SNOTEL-derived

melt factors beyond individual stations to locations
between stations (He et al., 2011; Kumar et al., 2013).
Using fine scale simulations over a small watershed
(0.39 km2), the temperature index approach was found to
under-predict melt in open areas and over-predict melt in
shaded areas (Kumar et al., 2013). At a much coarser
resolution, specifically a dozen SNOTEL stations across
the Western U.S., the variability in the late June melt factor
was large and found to a sensitive hydrologic modeling

Fig. 6 Comparison of the melt factors (MF) computed using the
original temperature dataset (MFo) versus the adjusted dataset
(MFa) in the sequence of half-month periods. The best fit equation
through the origin shows that the melt factors from the original
temperature dataset are 92% of those compute from the adjusted
temperature dataset.
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parameter (He et al., 2011). However, the melt factors
presented for the Southern Rockies are at a medium
resolution of approximately 1 SNOTEL station every 2000
km2. While the spatial distribution of the melt factors
cannot be attributed to terrain/canopy variables across the
entire domain (Fig. 4), across specific watersheds there is a
strong correlation (Fig. 5). The seasonal variation in the
melt factor is a non-linear function of time (Fig. 4). The
NCSE would likely improve if the entire domain was
separated into evergreen and non-evergreen; the analysis
presented in Fig. 5 used all stations for the entire domain to
be consistent with the analysis for the individual basins.
While a majority of the SNOTEL stations in this study

(48 of 87) tend to be in evergreen land cover (Fig. 4) with
an average canopy density of 70% (range from 23% to
92%), these stations are actually in small clearings in the
forest (Meromy et al., 2013). Almost half of the remaining
SNOTEL stations are in no or low-vegetation land cover
(landcover.usgs.gov) with no canopy, but these also tend to
be in the vicinity of forested areas to reduce wind effects on
the snow pillow (Meromy et al., 2013). They also tend to
be in locations where snow accumulated early and melts
late (Daly et al., 2000).
The methods and results presented herein could be used

with remotely sensed snow covered area (e.g., Richer et al.,
2013) and SNOTEL data (e.g., Fassnacht et al., 2016) to
model runoff (e.g., Dressler et al., 2006). The SNOTEL
data could be combined with other data to expand melt
factor computations to locations between SNOTEL
stations (Sexstone and Fassnacht, 2014). The data could
also be used to calibrate other models (e.g., Kampf and
Richer, 2014). This work could also be expanded to a sub-
daily time scale (e.g., Tobin et al., 2013; Webb et al.,
in review), but the sensitivity and precision of the snow
pillow data (e.g., Johnson and Schaefer, 2002; Johnson and
Marks, 2004) may preclude going to an hourly time step
with the SNOTEL dataset. Similarly, snow lysimeter data
(e.g., Dunne et al., 1976; Colbeck, 1979) could also be
used to evaluate melt factors from SNOTEL stations, but
such data are not as widely measured.

6 Conclusions

Computed snow melt factors varied exponentially as a
function of time of year, ranging from 0.21 mm to 4.23 mm
per day per degree Celsius across 87 stations in the
Southern Rocky Mountains over eight half-month periods.
Melt factors averaged 0.49 mm/d/°C in early March and
reached a maximum average of 2.79 mm/d/°C in late June.
Terrain and canopy variables could not be used to explain
the spatial variability of melt factors across the entire
domain, but were suitable to explain the spatial variability
across five headwater basins (Yampa, North Platte, Color-
ado, South Platte, Arkansas). For three other basins

(Gunnison, Rio Grande, San Juan/Animas), the variability
in April melt factors was well correlated with terrain and
canopy variables.
The SNOTEL temperature time series is discontinuous

due to a sensor change. One method was applied to adjust
this time series for the period prior to the change. This
yielded a mean increase in the melt factor of 9%, range
from 1.2% more in late April to 14.3% more in late June.
This temperature time series discontinuity must be further
evaluated.
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