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Abstract The Paleo-Asian Ocean (Southern Mongolian
Ocean) ophiolitic belts and massive granitoids are exposed
in the Alxa block, in response to oceanic subduction
processes. In this work, we report petrographic, geochem-
ical, and zircon U-Pb age data of some granitoid intrusions
from the northern Alxa. Zircon U-Pb dating for the quartz
diorite, tonalite, monzogranite, and biotite granite yielded
weighted mean 206Pb/238U ages of 302�9.2 Ma, 246.5�4.6
Ma, 235�4.4 Ma, and 229.5�5.6 Ma, respectively. The
quartz diorites (~302 Ma) exhibit geochemical similarities
to adakites, likely derived from partial melting of the
initially subducted Chaganchulu back-arc oceanic slab.
The tonalites (~246.5 Ma) display geochemical affinities of
I-type granites. They were probably derived by fractional
crystallization of the modified lithospheric mantle-derived
basaltic magmas in a volcanic arc setting. The monzo-
granites (~235 Ma) are characterized by low Al2O3, but
high Y and Yb with notably negative Eu anomalies. In
contrast, the biotite granites (~229.5 Ma) show high Al2O3

but low Y and Yb with steep HREE patterns and the
absence of negative Eu anomalies. Elemental data
suggested that the biotite granites were likely derived
from a thickened lower crust, but the monzogranites
originated from a thin crust. Our data suggested that the
initial subduction of the Chaganchulu oceanic slab towards
the Alxa block occurred at ~ 302 Ma. This subduction
process continued to the Early Triassic (~246 Ma) and the
basin was finally closed before the Middle Triassic (~235
Ma). Subsequently, the break-off of the subducted slab
triggered asthenosphere upwelling (240–230 Ma).

Keywords Paleo-Asian Ocean, Alxa, granite, geochem-
istry

1 Introduction

The Alxa block occupies a key tectonic position at the
junction between the Central Asian Orogenic Belt
(CAOB), the Tarim block, the North China Craton and
the North Qilian orogenic belt (Wu and He, 1993; Wang et
al., 1994; Zhang et al., 1997; Zhai and Bian, 2000; Ge et
al., 2009; Geng and Zhou, 2012; Gong et al., 2012, 2013;
Song et al., 2013; Zhang et al., 2013). The northern margin
of the Alxa block is attached to the southern CAOB which
is one of the most important areas for studying Phanerozoic
continental growth in the world (Fig. 1). The Alxa block is
a critical zone to investigate the tectonic evolution of the
Paleo-Asian Ocean. There was a general consensus that
successive lateral accretions from the Paleo-Asian Ocean
produced the CAOB, with the formation of abundant
accretionary complexes. However, the time of the closure
of the Paleo-Asian Ocean remained controversial:
1) before late Carboniferous (Gao et al., 1998; Chen et al.,
1999; Gao and Klemd, 2003; Xia et al., 2004; Charvet et
al., 2007, 2011; Wang et al., 2007a, 2011; Gao et al., 2009;
Yang and Zhou, 2009; Han et al., 2010a, b, c, 2011; Hegner
et al., 2010); 2) in the late Permian-early Triassic (Li et al.,
2002, 2005; Li et al., 2009; Xiao et al., 2008, 2009, 2010a,
b, 2013, 2015; Tian et al., 2013, 2015) and 3) during the
Triassic (Zhang et al., 2005; Zhang et al., 2007). Most
studies have focused on three regions: the northern part of
Xinjiang, Mongolia, and the eastern border of Mongolia
(Fig. 1) including the Altai orogenic belt (Vladimirov et
al., 2001, 2005; Annikova et al., 2006; Wang et al., 2007c,
2008a), the eastern Tianshan orogenic belt (Wang et al.,
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2008b; Zhou et al., 2010), the Hegenshan orogen and the
Suolunshan-Xilamulun regions at the eastern border of
Mongolia (Tao et al., 2003; Shi et al., 2004; Bao et al.,
2007; Li et al., 2007; Zhao et al., 2007; Miao et al., 2008;
Zhang et al., 2008; Chen et al., 2009; Liu et al., 2009;
Zhang, 2009; Tong et al., 2010a, b), and the Northern
Mongolia-West Baikal orogenic belt (Yarmolyuk et al.,
2002; Jahn et al., 2009). However, only a few studies have
been carried out in the northern Alxa block (Wang et al.,
1998a, b; Xu et al., 2001; Zhang et al., 2002b; Wang et al.,
2004; Li et al., 2010; Zhang et al., 2013; Zheng et al.,
2014) and western Inner Mongolia (Li et al., 2006a; Wang
et al., 2010; Zhang et al., 2011; Li et al., 2012).
In this work, LA-ICP-MS zircon U-Pb dating and major

and trace element geochemical data have been determined
for some felsic intrusions in the northern Alxa block. Our
main objectives are to reconstruct the tectonic framework
of the Alxa from late Paleozoic to early Mesozoic and to
further constraint the closure of the Paleo-Asian Ocean.

2 Geological setting

The Alxa block includes three important boundary faults
and two ophiolitic belts. The three faults from north
to south are the Yagan fault belt, the Wutaohai-Enger
Us fault belt, and the Chaganchulu fault belt (the
Badanjilin fault belt, Zheng et al., 2014) (Fig. 2). The
northern margin of the Alxa can be further divided into
four tectonic units by the three faults (Fig. 2; Wu and He,
1993): the Yagan tectonic belt (immature island arc), the

Zhusileng-Hangwula Paleozoic tectonic belt (early Paleo-
zoic passive continental margin that converted to an active
continental margin in the late Paleozoic), the Zongnaishan-
Shalazhashan tectonic belt (mature island arc), and the
Bayinnuoergong-Langshan tectonic belt (stable block).
The Zhusileng-Hangwula tectonic belt is located

between the Yagan fault belt and the Enger Us fault belt.
The Precambrian strata include metarhyolite, slate, quart-
zite, and granitic gneiss. Dalmanitina fossils are discovered
in the Ordovician strata. Wu and He (1993) suggested that
the tectonic belt represented an early Paleozoic passive
continental margin. In addition, the lower Paleozoic strata
were mainly carbonate-flysch formations and submarine
volcanics. These observations indicated that the Zhusileng-
Hangwula tectonic belt transformed from a passive
continental margin to an active continental margin in the
late Paleozoic (Wu and He, 1993).
The Zongnaishan-Shalazhashan tectonic belt is bounded

by the Enger Us fault belt to the south and the Chaganchulu
fault belt to the north. The ancient strata are Mesoarchean-
Paleoproterozoic strata comprising the Alxa Group
metamorphic rocks (Wang et al., 1994). In addition,
Paleozoic to Mesozoic granitoids widely occurred in the
belt, such as the Zongnaishan granite (single zircon U-Pb
ages of 236.6�0.95 Ma, 249.7�2.6 Ma, and 268.4�0.69
Ma) which was interpreted to be a continental margin arc
granite (Xie et al., 2014). However, as the principal part of
the Zongnaishan-Shalazhashan arc zone, the Wuliji granite
(~250.8 Ma) was interpreted to be a post-collisional granite
and was produced by partial melting of mantle with
assimilation of volcanic arc crust (Zhang et al., 2013).

Fig. 1 Distribution of Early Mesozoic granitoids in the middle-south segment of the CAOB (modified after Li et al., 2010; Tong et al.,
2010a; Li et al., 2012).
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Based on these published data, the Zongnaishan-Shalazha-
shan tectonic belt was considered as a volcanic arc (Zhang
et al., 2013; Xie et al., 2014; Zheng et al., 2014).
In the Bayinnuoergong-Langshan tectonic belt the

Precambrian basement are mainly composed of metasedi-
mentary and metavolcanic rocks, and tonalitic-granodiori-
tic gneisses (Geng et al., 2007; Geng and Zhou, 2010,
2011). Abundant Permian granites (289–269 Ma) occurred
in this belt, including dioritic gneiss, garnet-bearing
tonalitic gneisses, and gneissic granites. They exhibit
crust-mantle mixed geochemical characteristics (Geng and
Zhou, 2012). Additionally, the Bayinnuoergong granite
(zircon U-Pb age of 252.3�0.96 Ma) has been interpreted
to be a syn-collisional granite (Xie et al., 2014).
Two ophiolitic belts (Enger Us and Chaganchulu) have

been discussed in previous studies (e.g., Zheng et al.,
2014). The Enger Us ophiolitic belt extended in NEE
direction. The Enger Us ophiolitic suite consisted of
ultrabasic rocks, gabbros, basalts, and cherts (Wang et al.,
1994). Most of the mafic-ultramafic rocks were highly
deformed and had undergone carbonatation and silicifica-
tion. The Chaganchulu ophiolitic belt consisted of
lenticular and striped ultrabasic rocks, gabbros, cherts,
and rare basalts (Wang et al., 1994; Zheng et al., 2014).
Based on regional geology, paleobiogeography, paleomag-
netic and geochemical evidence, Zheng et al. (2014)
suggested that the Enger Us ophiolitic belt represented the
Paleo-Asian major oceanic basin and the Chaganchulu
ophiolitic belt represented a back-arc basin. Recently,
Zhang et al. (2015) have carried out statistical analysis of

zircon xenocrysts within Permian magmatic rocks from the
Zongnaishan-Shalazhashan (ZS) tectonic belt and Bayin-
nuoergong-Langshan (BL) tectonic belt. The ages and Hf
isotopic data of the zircon xenocrysts imply that the
basement beneath the ZS tectonic belt is relatively young,
resembling the southern Central Asian Orogenic Belt
(CAOB), in contrast to the BL tectonic belt. Thus, the
boundary of the CAOB with the Alxa Block might be
represented by the Chaganchulu ophiolitic belt.

3 Geology of granitoids and sampling

3.1 Quartz diorite

The quartz diorite is exposed in the Shazaoquan area
(Fig. 3; samples AYQ-25, AYQ-26, AYQ-27, AYQ-28,
and AYQ-29). It is intruded into the Lower Proterozoic
Longshoushan Group. The quartz diorite was intruded by
late biotite granite. The mineral assemblage consists of
quartz (10%), plagioclases (55%), and amphiboles (35%).
Accessory minerals include sphene and minor magnetite
(Fig. 4(a)).

3.2 Tonalite

The tonalite is exposed in the Dashankou-Yaoquan area. It
intruded into the quartz diorite and its middle section was
later invaded by a Middle Triassic monzogranite (Fig. 3;
samples AYQ-3, YQ-26, YQ-27, YQ-28, and YQ-29). It

Fig. 2 The sketch of plate tectonic units in the Alxa block.

Xin SHA et al. Late Paleozoic tectonic evolution of the Paleo-Asian Ocean 193



consists mainly of quartz (25%), plagioclase (60%), biotite
(8%), amphibole (5%), and secondary apatite and
magnetite (Fig. 4(b)).

3.3 Monzogranite

The monzogranite is distributed in the Yaoquan-Hong-
shanliang area. Its irregular shape has its long axis
extending in the EW direction, and it invaded the
Paleoproterozoic Longshoushan Group and the Carboni-
ferous quartz diorite (Fig. 3; samples AYQ-9, AYQ-10,
AYQ-11, AYQ-12, and AYQ-13). It consists mainly of
plagioclases (30%), other feldspars (33%), quartz (30%),
and biotite (5%), with a small amount of opaque minerals
(Fig. 4(c)).

3.4 Biotite granite

The biotite granite is located in western of the quartz
diorite, and it invaded in the Paleoproterozoic Long-

shoushan Group (Fig. 3; samples AYQ-17, AYQ-18, AYQ-
19, AYQ-19R, AYQ-20, AYQ-21). It consists mainly of
quartz (30%), plagioclases (25%), other feldspars (42%),
and biotite (3%) (Fig. 4(d)).

4 Analytical methods

Whole rock major elements were analyzed at the State Key
Laboratory of Continental Dynamics, Northwest Univer-
sity, and were completed by the Rigaku RIX2100 X-ray
fluorescence spectrometer (XRF), following the analytical
procedures of Liu et al. (2007). The analytical precision is
within 0.1%. Trace elements were analyzed at the State
Key Laboratory of Continental Dynamics, Northwest
University, and the Institute of Geochemistry in Guang-
zhou. The analyses were completed using the Perkin-
Elmer Sciex ELAN 6000 inductively coupled plasma mass
spectrometer (Guangzhou) and the 820-MS plasma mass
spectrometer (Northwest University), following the analy-

Fig. 3 Sketch of the rock block and location of samples.
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tical procedures of Govindaraju (1994), Li (1997), and Li
et al. (2006b). The analytical precision is within 5%. The
results of these analyses are shown in Table 1.
Fresh rock samples were crushed to pass a 120-mesh

sieve, and separation of zircon crystals was accomplished
by conventional artificial panning, heavy liquid separation,
magnetic techniques, and binocular microscope observa-
tion. Samples were numbered as quartz diorite (TW-4),
tonalite (TW-6), monzogranite (TW-2), and biotite granite
(TW-3). Zircon cathodoluminescence (CL) images and
LA-ICP-MS zircon U-Pb dating were completed by the
State Key Laboratory of Continental Dynamics, Northwest
University. LA-ICP-MS was performed with the 820-MS
plasma mass spectrometer, which has the collision
response system and was the newest generation machine
of Varian, Inc. (USA). The laser ablation system was the
GeoLas 2005-type, ArF 193 nm UV excimer laser, which
was produced by the Lambda Physik AG Company
(Germany). The analytical procedures followed those of
Liu et al. (2007). The analytical results are shown in
Table 2.

5 Results

5.1 LA-ICP-MS zircon U-Pb dating

Zircons of the samples are mostly euhedral with short

columnar shapes. The zircons display oscillatory zoning
consistent with magmatic zircons (Fig. 5; Belousova et al.,
2002). They exhibit wide ranges of U (31.89–4187.52
ppm) and Th (17.69–1440 ppm) contents with high Th/U
ratios (0.16–1.43 ppm) typical of magmatic zircons
(Belousova et al., 2002). Based on the fact that the
ordinary lead correction can cause a greater effect on the
207Pb/235U ratio, we adopted the 206Pb/238U age-weighted
average to represent the formation age of these granitoids.
Zircon U-Pb dating results for the quartz diorite, tonalite,
monzonitic granite, and biotite granites yielded weighted
mean 206Pb/238U ages of 302�9.2 Ma, 246.5�4.6 Ma,
235�4.4 Ma, and 229�5.6 Ma, respectively (Fig. 6;
Table 2).

5.2 Whole-rock geochemistry

5.2.1 Quartz diorite (~302 Ma)

The quartz diorites have SiO2 contents ranging from 60.66
wt% to 61.37 wt% (Table 1). They exhibit relatively high
Al2O3 (17.98–18.44 wt%), CaO (6.08–6.59 wt%), and
Na2O (4.20%–4.46 wt%), but low K2O (0.67%–0.92
wt%). The MgO contents range from 2.13–2.51 wt% with
variable Mg-number (Mg#) values of 48 to 51. The sample
points plot in the low-K (tholeiitic) series of the SiO2-K2O
diagram (Fig. 7(a)) and in the diorite field of the
SiO2-(Na2O+ K2O) discrimination diagram (Fig. 7(b)).

Fig. 4 Microphotographs of rocks. (a) Quartz diorite; (b) tonalite; (c) monzogranite; (d) biotite granite. Or: Orthoclase; Pl: Plagioclase;
Bi: Biotite; Qtz: Quartz; Hb: Amphibole; Mc: Microcline.
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Table 1 Major-element and trace-element compositions of the granitoids

No.
Rocks

AYQ-25
quartz diorite

AYQ-26
quartz diorite

AYQ-27
quartz diorite

AYQ-28
quartz diorite

AYQ-29
quartz diorite

AYQ-3
tonalite

YQ-26
tonalite

YQ-27
tonalite

YQ-28
tonalite

YQ-29
tonalite

SiO2 60.99 60.66 61.05 61.10 61.37 62.14 67.93 68.94 67.04 66.83

Al2O3 17.98 18.16 18.41 18.44 18.42 16.97 16.55 16.12 16.26 16.60

TiO2 0.58 0.63 0.60 0.58 0.62 0.76 0.53 0.50 0.54 0.52

TFe2O3 4.81 5.13 4.74 4.66 4.59 5.11 3.24 3.26 3.81 3.40

MnO 0.10 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.05

MgO 2.51 2.51 2.32 2.31 2.13 2.30 1.29 1.15 1.33 1.40

CaO 6.52 6.08 6.42 6.40 6.59 4.84 2.89 2.53 3.14 3.53

Na2O 4.32 4.20 4.46 4.28 4.26 3.69 4.30 4.28 4.26 4.30

K2O 0.67 0.92 0.76 0.76 0.70 2.66 2.14 2.43 2.52 2.44

P2O5 0.18 0.18 0.18 0.18 0.18 0.26 0.16 0.15 0.17 0.17

LOI 0.84 0.97 0.57 0.74 0.64 0.69 0.84 0.83 1.22 1.16

Total 99.50 99.53 99.60 99.54 99.58 99.50 100.2 100.4 100.3 100.2

Mg# 51 49 49 50 48 47 44 41 41 45

Na2O/K2O 6.45 4.57 5.87 5.63 6.09 1.39 2.01 1.76 1.69 1.76

A/CNK 0.91 0.96 0.93 0.94 0.93 0.95 1.13 1.13 1.05 1.03

σ 1.38 1.48 1.51 1.40 1.34 2.11 1.66 1.74 1.91 1.91

Ba 161 213 160 197 143 569 428 537 378 427

Rb 19 27 22 27 21 135 113 114 114 102

Cs 1.42 1.73 1.99 2.14 1.89 6.82 5.99 9.32 8.05 6.95

Th 1.31 2.30 1.88 3.98 1.59 8.98 13.7 12.2 10.7 11.4

U 0.70 0.69 0.30 0.45 0.92 3.04 2.11 1.95 1.61 2.09

Nb 4.00 4.52 4.29 4.02 4.32 13.31 12.9 13.6 13.1 15.6

Ta 0.26 0.29 0.28 0.26 0.33 1.35 0.98 1.11 1.04 2.35

K 5562 7637 6309 6309 5811 22082 17764 20171 20919 20255

Pb 6.48 6.67 6.66 6.60 6.91 16.60 19.4 19.1 15.7 14.5

Sr 587 582 611 607 620 457 362 333 358 428

Zr 95 93 102 103 76 265 205 220 198 231

Hf 2.53 2.34 2.47 2.48 1.92 6.01 4.88 5.37 4.77 5.53

P 786 786 786 786 786 1135 699 655 742 742

Ti 3476 3776 3596 3476 3716 4555 3177 2997 3236 3117

Y 16.72 13.70 13.20 11.41 12.83 22.72 25.3 31.3 24.7 60.0

Cr 16.84 16.42 14.24 13.35 16.03 31.19 23.1 18.2 18.8 19.3

Ni 10.88 11.55 10.33 10.59 10.62 12.18 7.87 6.48 6.83 7.58

La 11.01 12.25 12.70 15.44 12.18 19.08 47.9 43.1 37.6 32.5

Ce 26.21 27.44 27.71 31.05 25.40 40.56 91.3 87.0 72.1 68.3

Pr 3.56 3.47 3.41 3.57 3.17 4.97 10.3 9.55 7.88 8.19

Nd 16.18 14.77 14.38 14.25 13.54 20.89 37.6 33.5 28.4 33.1

Sm 3.76 3.15 3.02 2.74 2.89 4.79 6.92 5.74 5.45 8.61

Eu 1.17 1.07 1.07 1.02 1.05 1.25 0.96 0.97 0.94 1.39

Gd 3.49 2.84 2.73 2.43 2.65 4.54 6.04 5.01 5.00 8.86

Tb 0.51 0.40 0.39 0.34 0.38 0.66 0.84 0.84 0.76 1.69

Dy 2.97 2.36 2.26 1.99 2.21 3.86 4.56 5.30 4.42 11.0

Ho 0.58 0.46 0.45 0.39 0.44 0.75 0.83 1.05 0.85 2.18

Er 1.61 1.31 1.27 1.09 1.23 2.09 2.30 2.96 2.40 5.98
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(Continued)
No.
Rocks

AYQ-25
quartz diorite

AYQ-26
quartz diorite

AYQ-27
quartz diorite

AYQ-28
quartz diorite

AYQ-29
quartz diorite

AYQ-3
tonalite

YQ-26
tonalite

YQ-27
tonalite

YQ-28
tonalite

YQ-29
tonalite

Tm 0.23 0.19 0.19 0.16 0.18 0.31 0.32 0.41 0.35 0.81

Yb 1.51 1.22 1.20 1.02 1.16 2.00 2.13 2.50 2.30 4.57

Lu 0.22 0.19 0.18 0.16 0.17 0.29 0.31 0.36 0.34 0.56

∑REE 73.15 71.12 70.96 75.65 66.65 106.0 212.2 198.3 168.7 187.6

Sr/Y 35.11 42.46 46.27 53.18 48.30 20.10 14.31 10.64 14.49 7.13

La/Yb 7.28 10.03 10.56 15.14 10.46 9.52 22.49 17.24 16.35 7.11

(La/Yb)N 5.22 7.19 7.58 10.86 7.51 6.83 16.13 12.37 11.73 5.10

Y/Yb 11.05 11.21 10.98 11.19 11.02 11.33 11.88 12.52 10.74 13.13

Eu/Eu* 0.97 1.08 1.12 1.18 1.14 0.80 0.75 0.83 0.82 0.75

La/Ce 0.42 0.45 0.46 0.50 0.48 0.47 0.52 0.50 0.52 0.48

Rb/Sr 0.03 0.05 0.04 0.04 0.03 0.29 0.31 0.34 0.32 0.24

(Gd/Yb)N 1.91 1.92 1.88 1.97 1.88 1.87 2.34 1.66 1.80 1.60

Table 1 (continued)

No.
Rocks

AYQ-9
monzonitic
granite

AYQ-10
monzonitic
granite

AYQ-11
monzonitic
granite

AYQ-12
monzonitic
granite

AYQ-13
monzonitic
granite

AYQ-17
biotite
granite

AYQ-18
biotite
granite

AYQ-19
biotite
granite

AYQ-19R
biotite
granite

AYQ-20
biotite
granite

AYQ-21
biotite
granite

SiO2 72.74 72.79 77.65 78.13 72.72 69.58 71.04 69.94 69.83 68.89 69.55

Al2O3 13.69 13.26 11.86 11.56 14.07 15.41 14.60 15.03 14.99 15.76 13.95

TiO2 0.25 0.26 0.12 0.12 0.25 0.42 0.38 0.40 0.40 0.35 0.44

TFe2O3 2.00 1.88 1.04 1.12 1.92 2.76 2.62 2.80 2.80 2.41 2.80

MnO 0.05 0.04 0.03 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.04

MgO 0.56 0.55 0.20 0.21 0.52 0.76 0.72 0.73 0.73 0.63 0.81

CaO 1.76 2.32 1.10 0.93 1.64 2.13 2.08 1.87 1.85 1.75 2.54

Na2O 3.80 3.74 3.46 3.15 3.57 3.87 3.92 3.64 3.63 3.64 4.81

K2O 4.13 3.61 3.69 4.02 4.31 4.08 4.08 4.65 4.63 5.45 3.52

P2O5 0.09 0.08 0.04 0.04 0.08 0.13 0.13 0.12 0.12 0.11 0.13

LOI 0.54 0.99 0.36 0.31 0.43 0.55 0.54 0.48 0.49 0.50 0.95

Total 99.61 99.52 99.55 99.62 99.55 99.74 100.15 99.70 99.51 99.53 99.54

Mg# 36 37 28 27 35 35 35 34 34 34 36

Na2O/K2O 0.92 1.04 0.94 0.78 0.83 0.95 0.96 0.78 0.78 0.67 1.37

A/CNK 0.98 0.93 1.01 1.03 1.04 1.05 1.00 1.04 1.04 1.04 0.85

σ 2.11 1.81 1.48 1.46 2.09 2.38 2.28 2.55 2.54 3.19 2.61

Ba 407 341 293 267 505 1481 1511 1488 1501 1650 967

Rb 177 153 136 151 166 88 88 99 100 107 86

Cs 6.51 5.56 4.11 4.36 8.69 4.52 4.32 3.25 3.31 3.01 3.82

Th 15.19 16.24 17.23 7.53 12.26 13.44 16.85 15.15 13.08 15.62 16.90

U 4.96 3.91 7.51 4.08 2.84 1.18 1.14 1.53 1.42 1.31 1.37

Nb 11.94 11.67 7.98 8.11 9.97 5.91 5.66 6.20 6.24 5.79 6.59

Ta 1.86 1.67 1.06 1.28 1.20 0.31 0.29 0.36 0.37 0.32 0.38

K 34285 29968 30633 33372 35780 33870 33870 38602 38436 45243 29221

Pb 27.80 25.46 27.02 27.61 27.12 20.19 20.58 20.95 21.08 25.52 17.19

Sr 186 177 112 108 206 364 348 333 336 347 309

Zr 80 134 75 74 141 296 263 308 346 284 328

Hf 2.99 3.89 2.54 2.50 3.98 6.36 5.66 6.69 7.54 6.26 7.33
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The aluminum saturation index (ACNK) values range from
0.91 to 0.96, and the samples plot in the metaluminous
field of the aluminum saturation index diagram (Fig. 8).
In primitive mantle-normalized trace element spider

diagrams (Fig. 9(a)), the samples display enrichment in Rb,
Ba, Th, U, and Sr, but depletion in Nb, Ta, Ti, and HREE
with positive Sr anomalies. In the chondrite-normalized
rare earth element (REE) diagrams (Fig. 9(b)), they exhibit
moderate LREE enrichment, (La/Yb)N = 5.22–10.86, and
slightly positive Eu anomalies (dEu = 0.97–1.18). The
HREEs show flat patterns. In addition, the samples exhibit
relatively high Sr (582–620 ppm (parts per million)) and
Sr/Y (35.11–53.18), Y/Yb (10.98–11.21), and La/Yb
(7.28–15.14) ratios, but low Y (11.41–16.72 ppm), Yb

(1.02–1.51 ppm), Ni (10.33–11.55 ppm), Cr (13.35–16.84
ppm), Rb/Sr (0.03–0.05) and La/Ce (0.42–0.50).

5.2.2 Tonalite (~246.5 Ma)

The tonalites have SiO2 contents ranging from 62.14 wt%
to 68.94 wt% (Table 1) and an average Al2O3 content of
16.50 wt%. They exhibit relatively high Na2O (Na2O/K2O
= 1.72), CaO (average 3.39 wt%), and TFe2O3 (average
3.76 wt%). The MgO contents of the samples have an
average of 1.49%, and the Mg-number (Mg#) values vary
from 41 to 47. The sample points plot in the calc-alkaline
series of the SiO2-K2O diagram (Fig. 7(a)) and in the
granodiorite field of the SiO2-(Na2O+ K2O) discrimina-

(Continued)

No.
Rocks

AYQ-9
monzonitic
granite

AYQ-10
monzonitic
granite

AYQ-11
monzonitic
granite

AYQ-12
monzonitic
granite

AYQ-13
monzonitic
granite

AYQ-17
biotite
granite

AYQ-18
biotite
granite

AYQ-19
biotite
granite

AYQ-19R
biotite
granite

AYQ-20
biotite
granite

AYQ-21
biotite
granite

P 393 349 175 175 349 567 567 524 524 480 567

Ti 1498 1558 719 719 1498 2517 2278 2397 2397 2098 2637

Y 28.20 25.80 54.37 31.62 21.86 8.62 8.38 11.86 11.84 10.45 11.61

Cr 9.49 7.04 1.85 2.92 5.87 5.30 5.66 4.58 4.81 36.67 9.62

Ni 2.65 3.60 1.11 1.71 2.61 2.67 2.91 2.28 2.36 18.84 6.26

La 24.69 24.98 13.83 8.36 24.23 67.39 81.71 86.09 79.83 87.61 90.71

Ce 51.94 51.85 29.95 17.28 51.63 121.72 145.71 155.49 143.57 157.63 164.04

Pr 5.86 5.74 3.46 2.05 5.51 11.68 13.92 15.03 13.75 14.99 15.64

Nd 21.64 21.17 13.45 7.98 20.19 37.02 43.44 47.36 43.70 47.29 50.27

Sm 4.47 4.25 3.47 2.17 3.88 4.37 4.87 5.69 5.24 5.45 6.05

Eu 0.69 0.66 0.54 0.50 0.77 1.43 1.40 1.41 1.42 1.46 1.26

Gd 4.52 4.21 5.24 3.21 3.73 2.81 2.98 3.76 3.52 3.44 3.86

Tb 0.68 0.63 0.97 0.59 0.55 0.34 0.35 0.46 0.43 0.41 0.46

Dy 4.32 3.92 7.28 4.30 3.38 1.68 1.67 2.28 2.23 2.01 2.28

Ho 0.90 0.81 1.73 0.98 0.70 0.30 0.29 0.40 0.41 0.36 0.40

Er 2.71 2.46 5.35 3.04 2.09 0.86 0.81 1.18 1.19 1.06 1.16

Tm 0.44 0.40 0.84 0.50 0.34 0.13 0.12 0.17 0.17 0.15 0.16

Yb 3.05 2.75 5.44 3.43 2.29 1.17 0.97 1.13 1.17 1.03 1.10

Lu 0.46 0.42 0.80 0.51 0.35 0.20 0.17 0.18 0.19 0.17 0.18

∑REE 126.4 124.25 92.35 54.90 119.64 251.1 298.41 320.63 296.82 323.06 337.57

Sr/Y 6.58 6.86 2.06 3.40 9.42 42.20 41.58 28.05 28.33 33.23 26.66

La/Yb 8.08 9.07 2.54 2.44 10.59 57.62 83.96 76.23 67.94 84.97 82.23

(La/Yb)N 5.80 6.51 1.82 1.75 7.59 41.33 60.23 54.68 48.73 60.95 58.98

Y/Yb 9.24 9.37 9.99 9.23 9.55 7.37 8.61 10.50 10.08 10.13 10.52

Eu/Eu* 0.47 0.47 0.39 0.58 0.61 1.17 1.04 0.87 0.95 0.96 0.74

La/Ce 0.48 0.48 0.46 0.48 0.47 0.55 0.56 0.55 0.56 0.56 0.55

Rb/Sr 0.95 0.87 1.21 1.40 0.81 0.24 0.25 0.30 0.30 0.31 0.28

(Gd/Yb)N 1.22 1.26 0.80 0.77 1.35 1.99 2.54 2.76 2.48 2.76 2.89

Note: Major elements were analyzed by XRF (in wt. %) and trace elements were analyzed by ICP-MS (in ppm). Test unit: The major elements were analyzed by the
State Key Laboratory of Continental Dynamics, Northwest University; trace elements in quartz diorite, tonalite, and biotite granite were analyzed by the State Key
Laboratory of Continental Dynamics, Northwest University; and those in monzogranite were completed by the Institute of Geochemistry in Guangzhou. Eu/Eu* = EuN/
(EuN � GdN)

1/2; s = ((K2O+ Na2O) � (K2O+ Na2O))/(SiO2 – 43).
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Table 2 Zircon LA-ICP-MS U-Pb ages of rocks

Sample number Pb Th U Th/U Isotope ratio Surface age

Analysis point number �10–6 207Pb/206Pb �% 207Pb/235U �% 206Pb/238U �% 207Pb/235U 1s 206Pb/238U 1s

The quartz diorite (TW-4)

TW4-05 19.65 60.80 80.70 0.75 0.0528 0.0024 0.3408 0.0125 0.0468 0.0008 298 9 295 5

TW4-06 21.83 76.61 86.69 0.88 0.0524 0.0034 0.3386 0.0196 0.0469 0.0009 296 15 296 6

TW4-07 15.83 46.64 62.13 0.75 0.0521 0.0028 0.3469 0.0162 0.0483 0.0009 302 12 304 5

TW4-09 13.06 34.95 53.17 0.66 0.0535 0.0054 0.3510 0.0336 0.0476 0.0013 305 25 300 8

TW4-13 10.34 31.25 44.14 0.71 0.0529 0.0052 0.3523 0.0326 0.0483 0.0013 306 24 304 8

TW4-15 16.22 44.34 70.10 0.63 0.0532 0.0052 0.3576 0.0331 0.0487 0.0013 310 25 307 8

TW4-16 8.11 17.69 31.89 0.55 0.0522 0.0039 0.3502 0.0239 0.0487 0.0010 305 18 307 6

TW4-22 13.65 34.20 61.32 0.56 0.0517 0.0040 0.3460 0.0245 0.0486 0.0011 302 18 306 7

TW4-23 15.25 44.66 67.23 0.66 0.0498 0.0033 0.3351 0.0202 0.0488 0.0010 294 15 307 6

TW4-24 26.58 79.38 118.13 0.67 0.0528 0.0071 0.3493 0.0451 0.0480 0.0017 304 34 302 10

TW4-25 14.27 45.73 69.54 0.66 0.0526 0.0046 0.3447 0.0283 0.0476 0.0012 301 21 300 7

TW4-26 11.74 24.86 49.02 0.51 0.0525 0.0054 0.3494 0.0341 0.0483 0.0013 304 26 304 8

TW4-27 10.29 26.98 40.58 0.66 0.0531 0.0060 0.3492 0.0375 0.0477 0.0014 304 28 300 9

TW4-30 13.27 32.74 61.24 0.53 0.0522 0.0031 0.3484 0.0184 0.0484 0.0009 304 14 305 6

TW4-31 10.31 23.46 38.24 0.61 0.0515 0.0105 0.3460 0.0684 0.0487 0.0024 302 52 307 14

TW4-32 12.43 38.38 57.97 0.66 0.0535 0.0050 0.3494 0.0308 0.0474 0.0012 304 23 298 7

TW4-33 14.94 34.57 70.47 0.49 0.0528 0.0032 0.3480 0.0187 0.0479 0.0009 303 14 301 6

TW4-34 14.20 36.88 61.42 0.60 0.0530 0.0054 0.3511 0.0337 0.0481 0.0013 306 25 303 8

TW4-35 10.97 29.46 50.92 0.58 0.0517 0.0042 0.3451 0.0259 0.0485 0.0011 301 20 305 7

Table 2 (continued)

Sample number Pb Th U Th/U Isotope ratio Surface age

Analysis point number �10–6 207Pb/206Pb �% 207Pb/235U �% 206Pb/238U �% 207Pb/235U 1s 206Pb/238U 1s

The tonalite (TW-6)

TW6-05 156.41 429.37 818.57 0.52 0.0568 0.0022 0.3011 0.0078 0.0385 0.0006 267 6 243 3

TW6-06 104.55 192.00 559.01 0.34 0.0567 0.0049 0.3012 0.0240 0.0385 0.0009 267 19 244 6

TW6-07 137.76 512.39 705.82 0.73 0.0570 0.0031 0.3006 0.0141 0.0383 0.0007 267 11 242 4

TW6-09 57.96 152.27 304.04 0.50 0.0515 0.0032 0.2784 0.0152 0.0392 0.0007 249 12 248 4

TW6-13 210.61 385.99 1118.63 0.35 0.0553 0.0019 0.2945 0.0061 0.0387 0.0005 262 5 245 3

TW6-15 44.10 137.15 215.44 0.64 0.0545 0.0075 0.2922 0.0387 0.0389 0.0014 260 30 246 8

TW6-16 213.66 458.69 1106.96 0.41 0.0524 0.0019 0.2841 0.0065 0.0394 0.0006 254 5 249 3

TW6-17 70.11 261.42 344.18 0.76 0.0513 0.0021 0.2779 0.0086 0.0393 0.0006 249 7 248 4

TW6-18 72.61 309.84 352.83 0.88 0.0518 0.0022 0.2818 0.0094 0.0394 0.0006 252 7 249 4

TW6-22 67.64 199.55 331.94 0.60 0.0526 0.0027 0.2879 0.0121 0.0397 0.0007 257 10 251 4

TW6-23 81.44 227.95 409.04 0.56 0.0537 0.0018 0.2918 0.0060 0.0394 0.0006 260 5 249 3

TW6-25 108.12 357.91 553.15 0.65 0.0532 0.0047 0.2826 0.0234 0.0386 0.0009 253 19 244 6

TW6-26 54.43 169.98 270.85 0.63 0.0517 0.0025 0.2789 0.0109 0.0391 0.0006 250 9 247 4

TW6-27 109.12 346.75 550.70 0.63 0.0551 0.0026 0.2926 0.0110 0.0386 0.0006 261 9 244 4

TW6-31 54.77 136.42 272.42 0.50 0.0526 0.0027 0.2889 0.0121 0.0399 0.0007 258 10 252 4

TW6-32 136.68 318.22 684.10 0.47 0.0527 0.0027 0.2896 0.0126 0.0398 0.0007 258 10 252 4

TW6-34 168.75 456.91 850.56 0.54 0.0565 0.0035 0.2996 0.0164 0.0385 0.0007 266 13 244 5

TW6-35 157.76 371.01 806.26 0.46 0.0559 0.0024 0.2924 0.0094 0.0379 0.0006 260 7 240 4
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tion diagram (Fig. 7(b)). The ACNK values range from
0.95 to 1.13, and the samples plot in the metaluminous and

slightly peraluminous I-type fields on the aluminum
saturation index diagram (Fig. 8).

Table 2 (continued)

Sample number Pb Th U Th/U Isotope ratio Surface age

Analysis point number �10–6 207Pb/206Pb �% 207Pb/235U �% 206Pb/238U �% 207Pb/235U 1s 206Pb/238U 1s

The monzonitic granite (TW-2)

TW2-05 141.34 349.49 747.33 0.47 0.0558 0.0035 0.2855 0.0160 0.0371 0.0007 255 13 235 5

TW2-07 763.54 1440.00 4187.52 0.34 0.0562 0.0025 0.2817 0.0102 0.0363 0.0006 252 8 230 4

TW2-08 100.32 196.79 522.26 0.38 0.0055 0.0020 0.2862 0.0074 0.0378 0.0006 256 6 239 4

TW2-10 87.81 178.19 464.72 0.38 0.0558 0.0024 0.2843 0.0098 0.0370 0.0006 254 8 234 4

TW2-13 390.48 464.87 2091.35 0.22 0.0539 0.0021 0.2803 0.0080 0.0378 0.0006 251 6 239 4

TW2-14 124.08 252.48 658.44 0.38 0.0537 0.0018 0.2739 0.0055 0.0370 0.0005 246 4 234 3

TW2-18 761.82 644.41 4070.38 0.16 0.0568 0.0018 0.2939 0.0057 0.0376 0.0005 262 5 238 3

TW2-23 779.77 756.33 4166.91 0.18 0.0551 0.0028 0.2786 0.0119 0.0367 0.0006 250 9 232 4

TW2-26 118.38 354.82 593.46 0.60 0.0542 0.0019 0.2790 0.0061 0.0374 0.0005 250 5 237 3

TW2-27 155.70 309.42 786.08 0.39 0.0609 0.0048 0.3079 0.0221 0.0367 0.0009 273 17 232 5

TW2-30 105.48 118.53 555.40 0.21 0.0566 0.0031 0.2862 0.0137 0.0367 0.0007 256 11 232 4

TW2-31 55.36 138.53 274.79 0.50 0.0556 0.0034 0.2851 0.0152 0.0372 0.0007 255 12 236 4

TW2-32 117.23 263.91 598.71 0.44 0.0505 0.0020 0.2629 0.0074 0.0377 0.0006 237 6 239 4

TW2-34 83.29 173.62 423.40 0.41 0.0531 0.0020 0.2724 0.0070 0.0372 0.0006 245 6 236 3

TW2-35 141.50 546.96 686.60 0.80 0.0575 0.0020 0.2887 0.0068 0.0364 0.0005 258 5 231 3

Table 2 (continued)

Sample number Pb Th U Th/U Isotope ratio Surface age

Analysis point number �10–6 207Pb/206Pb �% 207Pb/235U �% 206Pb/238U �% 207Pb/235U 1s 206Pb/238U 1s

The biotite granite (TW-3)

TW3-05 41.53 191.15 216.93 0.88 0.0592 0.0067 0.2935 0.0313 0.0360 0.0011 261 25 228 7

TW3-06 15.48 89.49 74.57 1.20 0.0592 0.0086 0.2942 0.0410 0.0361 0.0013 262 32 228 8

TW3-07 39.21 264.30 204.69 1.29 0.0546 0.0055 0.2728 0.0258 0.0363 0.0010 245 21 230 6

TW3-08 22.60 133.51 115.03 1.16 0.0518 0.0083 0.2567 0.0399 0.0359 0.0014 232 32 228 9

TW3-09 34.67 157.37 191.80 0.82 0.0555 0.0046 0.2775 0.0215 0.0363 0.0009 249 17 230 5

TW3-10 22.51 142.52 119.05 1.20 0.0544 0.0034 0.2720 0.0151 0.0363 0.0007 244 12 230 4

TW3-14 38.40 223.65 190.66 1.17 0.0559 0.0076 0.2767 0.0362 0.0359 0.0013 248 29 228 8

TW3-16 93.23 283.62 539.08 0.53 0.0555 0.0027 0.2770 0.0109 0.0362 0.0006 248 9 229 4

TW3-17 35.29 259.60 187.50 1.39 0.0575 0.0056 0.2803 0.0257 0.0354 0.0010 251 20 224 6

TW3-18 32.15 172.05 163.71 1.05 0.0531 0.0040 0.2678 0.0185 0.0366 0.0008 241 15 232 5

TW3-23 38.29 192.77 209.41 0.92 0.0551 0.0025 0.2742 0.0099 0.0361 0.0006 246 8 229 4

TW3-24 53.03 246.71 294.25 0.84 0.0574 0.0053 0.2887 0.0250 0.0365 0.0009 258 20 231 6

TW3-25 33.31 179.65 184.52 0.97 0.0560 0.0072 0.2808 0.0345 0.0364 0.0012 251 27 230 8

TW3-27 22.23 146.19 116.34 1.26 0.0558 0.0052 0.2785 0.0243 0.0362 0.0009 249 19 229 6

TW3-30 31.30 229.49 158.60 1.45 0.0514 0.0035 0.2575 0.0157 0.0363 0.0007 233 13 230 5

TW3-33 32.66 185.63 182.80 1.02 0.0460 0.0027 0.2316 0.0122 0.0365 0.0006 212 10 231 4

TW3-34 22.94 135.03 127.77 1.06 0.0510 0.0039 0.2572 0.0180 0.0366 0.0008 232 15 232 5

TW3-35 23.28 153.44 130.55 1.18 0.0562 0.0055 0.2778 0.0258 0.0359 0.0010 249 20 227 6

Notes: Errors are 1s. Common Pb was corrected using measured 204Pb. Testing: State Key Laboratory of Continental Dynamics, Northwest University
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In the primitive mantle-normalized trace element spider
diagrams (Fig. 9(c)), the samples display enrichment in Rb,
Ba, Th, and K and depletion in Nb, Ta, P, and Ti. In the
chondrite-normalized rare earth element diagrams (Fig. 9
(d)), there are extreme differentiations between the LREEs
and HREEs and moderately negative Eu anomalies (dEu =
0.75–0.80). In addition, the samples exhibit relatively high
abundances of Sr (average of 371.28 ppm), Y (average of
29.68 ppm), and Yb (average of 2.47 ppm), and high Rb/Sr
ratios (0.24–0.34), but low La/Ce (0.47–0.52) ratios.

5.2.3 Monzogranite (~235 Ma)

The monzogranites have SiO2 contents ranging from 72.72
to 78.13 wt% (Table 1) and Al2O3 contents ranging from
11.56 wt% to 14.07 wt%. They exhibit relatively
equivalent Na2O (3.15–3.80 wt%) and K2O (3.61–4.31
wt%, K2O/Na2O = 0.97–1.28) values, but low CaO (0.93–
2.32 wt%), MgO (0.20–0.56 wt%, Mg# = 27–37), and TiO2

(0.12–0.26 wt%). The sample points plot in the high-K
calc-alkaline series of the SiO2-K2O diagram (Fig. 7(a))

Fig. 5 Cathodoluminescence (CL) images of selected zircons. (a) Quartz diorite; (b) tonalite; (c) monzogranite; (d) biotite granite.
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Fig. 6 Zircon U-Pb isotopic concordia diagram and relative probability diagrams. (a) Quartz diorite; (b) tonalite; (c) monzogranite;
(d) biotite granite.

Fig. 7 Granite SiO2-K2O discrimination diagram (a) (the solid line is after Peccerillo and Taylor, 1976, and the broken line is after
Middlemost, 1985) and SiO2-(K2O+Na2O) classification diagram of granite (b) (Wilson, 1989). a-nepheline syenite; b-syenite; c-
alkaline granites; d-granite; e-quartz diorite, granodiorite; f-diorite; g-gabbro; h-gabbro; I-gabbro; j-syenite diorite; k-syenite; l-iolite (the
solid line distinguishes alkaline from sub-alkaline rocks).
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and in the granite field of the SiO2-(Na2O+ K2O)
discrimination diagram (Fig. 7(b)). The ACNK values
range from 0.93 to 1.04, and the samples plot in the quasi-
aluminous field of the aluminum saturation index diagram
(Fig. 8).
In the primitive-mantle-normalized trace element spider

diagrams (Fig. 9(e)), the samples display enrichment in Th
and K, but strong depletion in Nb, Ta, Sr, P, and Ti. In the
chondrite-normalized rare earth element diagrams (Fig. 9
(f)), they exhibit LREE enrichment [(La/Yb)N = 1.75–
7.59], extreme differentiation between LREEs and HREEs,
and strong negative Eu anomalies (dEu = 0.39–0.61). In
addition, they exhibit relatively high Rb/Sr (0.81–1.40) but
low La/Ce (0.46–0.48) ratios.

5.2.4 Biotite granite (~229.5 Ma)

The biotite granites have SiO2 contents ranging from 68.89
to 71.04 wt% (Table 1) and Al2O3 contents ranging from
13.95 wt% to 15.76 wt%. They exhibit high CaO (1.75–
2.54 wt%), relatively equivalent Na2O (3.63–4.81 wt%)
and K2O (3.52–5.45 wt%, Na2O/K2O = 0.67–1.37), and
low MgO (0.63–0.81 wt%) and TiO2 (0.35–0.44 wt%),
with low Mg# (34–36). The sample points plot in the high-
K calc-alkaline series of the SiO2-K2O diagram (Fig. 7(a))
and in the granite field of the SiO2-(Na2O+ K2O)
discrimination diagrams (Fig. 7(b)). The ACNK values
range from 0.85 to 1.05, and the samples plot in the
metaluminous field of the aluminum saturation index
diagram (Fig. 8).
In the primitive-mantle-normalized trace element spider

diagrams (Fig. 9(g)), the samples display enrichment in Ba,
Rb, and Th, but strong depletion in Nb, Ta, Sr, P, and Ti. In
the chondrite-normalized rare earth element diagrams (Fig.
9(h)), they exhibit LREE enrichment [(La/Yb)N = 41.33–
60.95], extreme differentiation between LREEs and
HREEs, and a lack of notably negative Eu anomalies
(dEu = 0.74–1.17).

6 Discussion

6.1 Petrogenesis

6.1.1 Quartz diorite (~302 Ma)

All the quartz diorites share the geochemical affinities of
adakites such as high Al2O3, Sr, Sr/Y ratio, and depletion
in low Y and Yb contents (Defant et al., 1991; Drummond
et al., 1996; Martin, 1999; Zhang et al., 2010). The REE
data defined listric-shaped REE profiles on chondrite-
normalized diagrams, implying the fractionation of
amphibole (Richards and Kerrich, 2007). As we all
know, the removal of amphibole would produce a decrease
in Dy/Yb ratio. However, the negative correlation between
Dy/Yb and SiO2 is not observed in a Harker diagram (not
shown).
In the SiO2-MgO diagram (Fig. 10), all the quartz

diorites plot within the adakite field. There are several
genetic models proposed to interpret the origin of adakitic
rocks: 1) partial melting of a young, hot subducted slab (e.
g., Drummond and Defant, 1990); 2) crustal assimilation
and fractional crystallization (AFC) of basaltic magmas at
high pressure conditions (e.g., Castillo et al., 1999;
Macpherson et al., 2006); and 3) partial melting of a
thickened lower crust (e.g., Muir et al., 1995).
In general, those adakitic rocks derived from AFC of

basaltic magmas are a component of a suite of igneous
rocks with basaltic-andesitic-rhyolitic compositions (Cas-
tillo et al., 1999). But basaltic and rhyolitic rocks are not
observed near these quartz diorites. Additionally, the
absence of inherited zircons and relatively high Mg# (48–
51) implied that they did not likely originate from
fractional crystallization of primary basaltic magmas with
old crustal contaminant (Castillo et al., 1999).
Thickened lower crust-derived adakitic rocks are

enriched in K2O content but depleted in Na2O content in
contrast with our samples. Recently, Hou et al. (2004)
suggested that the Gangdese adakitic intrusions originating
from the lower crust exhibit high Rb/Sr ratios (> 0.05). In
contrast, our quartz diorites have relatively low Rb/Sr
ratios (0.032–0.046). More importantly, those adakitic
rocks are generally exposed in some specific regions which
have undergone crustal thickening, e.g. orogenic belts
(Kay et al., 1993; Wang et al., 2006). The quartz diorites
(adakites) with high Al and Na2O contents argue against

Fig. 8 A/NK-A/CNK discriminant diagram (after Maniar and
Piccoli, 1989).
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Fig. 9 PM-normalized trace element spider diagrams and chondrite-normalized REE patterns for the quartz diorite (a) (b), tonalite
(c) (d), monzogranite (e) (f), biotite granite (g) (h) (PM-normalized values and chondrite-normalized values from Sun and McDonough,
1989).
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the model that they were not partial melts of lower
continental crust which are characterized by high K2O and
(Na2O+ K2O) contents and low Al2O3 contents (Atherton
and Petford, 1993; Kay et al., 1993; Drummond et al.,
1996; Kay and Mpodozis, 2001; Zhang et al., 2001a, b, c,
2002a; Mao et al., 2012). As we will discuss below, there
was no crustal thickening process before the emplacement
of these quartz diorites. Consequently, it was difficult to
envisage that they were produced by partial melting of a
thickened lower crust.
An alternative genetic model was that these quartz

diorites were likely derived by partial melting of a
subducted oceanic slab. This viewpoint was supported by
their high Na2O, Na2O/K2O, and low K2O varying from
0.67–0.92 wt% (Martin, 1999). Previous studies indicated
that slab-derived adakitic melts show relatively low Rb/Sr
ratios with a range from 0.01 to 0.04 (Drummond et al.,
1996). The low Rb/Sr ratios in our samples further
supported a subducted slab as their source. The relatively
high Mg-number (Mg# = 48–51) is attributed to gradual
assimilation of slab melts by asthenospheric mantle during
ascent. All these features suggested that the quartz diorites
were derived from a subducted oceanic slab (Sen and
Dunn, 1994; Martin, 1999; Rapp et al., 1999; Xu and Ma,
2003; Wang et al., 2007b; Mao et al., 2012). The (La/Yb)N-
YbN and Sr/Y-Y diagrams (Fig. 11) showed that the
protolith is roughly a garnet amphibolite, which indicates
that the source region might not have residual plagioclases,
but rather amphiboles, garnets, and Fe-Ti oxides (ilme-
nites, rutiles, etc.).

6.1.2 Tonalite (~246.5 Ma)

All the tonalites are also calc-alkaline series and share
geochemical affinities of I-type granites. They are
characterized by high SiO2, Al2O3, and Na2O, low K2O,
moderate negative Eu anomaly and negative Nb, Ta, Ti
anomalies. The occurrence of amphibole in Fig. 4(b)
further suggested that they are I-type granites.
The relative high Mg# (41–47) suggested that these

felsic rocks were likely produced by fractional crystal-
lization of mantle-derived basaltic magmas. The specula-
tion was supported by negative correlations between MgO,
TFe2O3, Mg#, compatible elements (e.g., Cr and Ni) and
SiO2. These correlations might be attributed to the removal
of mafic minerals including biotite and amphibole, inferred
by the occurrence of these minerals in Fig. 4(c). The
negative Nb-Ta-Ti anomalies in these tonalites suggested
that the lithospheric mantle source had been modified by
subducted slab-released components. Consequently, we
considered that the tonalites were likely derived by
fractional crystallization of a modified lithospheric man-
tle-derived basaltic magma.

6.1.3 Monzogranite (~235 Ma)

All the monzogranites are characterized by high SiO2 and
K2O, low Al2O3, CaO, TFe2O3, MgO, and TiO2, and
display metaluminous and high-K calc-alkaline signatures.
They exhibit geochemical characteristics of mafic rocks-
derived from partial melts in continental crust (Li et al.,

Fig. 10 Quartz diorite and tonalite SiO2-MgO diagram (Rapp, 1997; adakite in eastern China and the Pacific quoted from Zhang et al.,
2001b).
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2007). In the Ga/Al diagram (Fig. 12), the samples are
plotted within the I-S field. Additionally, standard CIPW
calculations show that the rocks contain diopside, but< 1
wt% corundum (not shown in table), indicating that the
monzogranites are I-type granites.
According to the trace element geochemistry, all the

monzogranites display enrichment in Rb, Th, and K, but
strong depletion in Ba, Nb, Ta, Sr, P, and Ti. Low P and Ti
may be associated with the fractional crystallization of
ilmenite, sphene, and apatite. The depletion of Nb and Ta
may be associated with the depletion of crustal magma,
and the high Rb/Sr ratio indicates that the magma source is
a crustal source (Rubatto and Hermann, 2003). The coeval
basaltic magmas were required for triggering partial
melting of the crustal source.

6.1.4 Biotite granite (~229.5 Ma)

The biotite granites are characterized by high SiO2 and
Al2O3 contents, and low Mg and TiO2 contents with
ASI< 1.1. A CIPW standard mineralogy calculation
shows corundum< 1 wt% (no table). All the evidence
indicate that the biotite granites belong to I-type granites
(Fig. 12).
All the samples display enrichment of Ba, Rb, Th, and

LREE, but strong depletion of Nb-Ta-Ti and P, and high
Rb/Sr ratio, indicating a crustal source (Rubatto and
Hermann, 2003). All the evidence implies that these biotite
granites were probably derived by partial melting of
metaigneous rocks. Considering that the rocks have low
Mg-number (Mg# = 34–36) and compatible element
contents (e.g., Ni and Cr), we inferred that significant
mantle materials were not involved in forming the biotite
granites.
The absence of significantly negative Eu anomalies

indicates that the source was plagioclase-free due to the
high partition coefficient (D) of Eu (DEu = 5.417) between

felsic melts and plagioclase (Nash and Crecraft, 1985). All
the samples are strongly enriched in LREE with high (La/
Yb)N of 41–61 and exhibit steep HREE patterns with (Gd/
Yb)N of 2.0–2.9, indicating the presence of garnet in the
source. Previous studies indicate that during the dehydra-
tion-melting of meta-igneous rocks (biotite gneiss and
quartz amphibolite), garnet would occur as one of residual
phases at pressures≥12.5 kbar and plagioclase would be
unstable at pressures≥15 kbar (Douce et al., 1995). The
occurrence of garnet without plagioclase indicates that the
source of the biotite granites is relatively deep (> 50 km).
In summary, the biotite granites were likely produced by
partial melting of meta-igneous rocks within the thickened
lower crust (> 50 km).

6.2 Tectonic implications

In recent years, based on comprehensive studies on
ophiolites, magmatism, structure geology, sedimentary
rocks, and HV/EHV metamorphic rocks (Zonenshain et
al., 1990; Chen and Jahn, 2004; Gao et al., 2007; Zhang et
al., 2007; Hegner et al., 2010), knowledge about the
tectonic evolution of the CAOB has been tremendously
improved. However, granitoids from each tectonic unit
have been interpreted to be emplaced in different tectonic
settings, and their tectonic implications remain unclear and
controversial (Kozakov et al., 1997; Budnikov et al., 1999;
Yarmolyuk et al., 2002; Jahn et al., 2004, 2009; Annikova
et al., 2006; Orolmaa et al., 2008).
Using 227 Ma as the dividing line, the early Mesozoic

granitoids of the CAOB were emplaced in two magmatic
episodes (Li et al., 2010) (Fig. 1). In the western Baikal
orogen, the first-stage magmatic rocks (251–227 Ma,
alkaline A-type granites) were emplaced in a post-orogenic
or intraplate tectonic setting (Yarmolyuk et al., 2002; Jahn
et al., 2004, 2009). In the Altai orogen, the first-stage
granites consist of post-orogenic I-type and A-type

Fig. 11 (La/Yb)N-YbN and Sr/Y-Y diagrams of the quartz diorite and tonalite. (Chappell and White, 1974; Drummond and Defant,
1990). Sr/Y-Y diagram: 1. eclogite (garnet/pyroxene = 50/50); 2. amphibole garnet (garnet/amphibole = 50/50); 3. amphibole eclogite
(amphibole/garnet/pyroxene = 10/40/50); 4. garnet amphibolite (garnet/amphibole = 10/90).
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granites, and most scholars believed that the main orogenic
event ended during the Late Permian (Fig. 1; Pavlova et al.,
2008). In the eastern Tianshan and Beishan orogens, the
first-stage granites are composed of high-K calc-alkaline
A-type and I-type granites, emplaced in a post-collision
tectonic setting (Fig. 1; Li et al., 2006a; Zhang et al., 2007;
Wang et al., 2008b; Li et al., 2010; Wang et al., 2010; Zhou
et al., 2010; Zhang et al., 2013). However, in the middle of
Mongolia, the first-stage granites are high-K calc-alkaline
and calc-alkaline S- and I-type granites, formed in a late
syn-orogenic setting (Orolmaa et al., 2008) (Fig. 1). In the
Inner Mongolia and Jilin orogen, the first-stage granites
consist of high-K calc-alkaline I-type and S-type granites
with arc affinities (Fig. 1) (Tao et al., 2003; Bao et al.,
2007; Li et al., 2007; Miao et al., 2008; Zhang et al., 2008;
Chen et al., 2009; Zhang, 2009; Tong et al., 2010a).
The second stage ranged from Late Triassic to Early

Jurassic (226–195 Ma). These magmatic rocks include
high-K calc-alkaline A-type granites and I-type granites,

formed in a post-orogenic tectonic setting or an extensional
environment (Vladimirov et al., 2001; Tao et al., 2003; Shi
et al., 2004; Annikova et al., 2006; Ma et al., 2007; Wang
et al., 2007c, 2008a; Li et al., 2010) (Fig. 1). However,
granites in the Okhotsk belt and adjacent Mongolia were
emplaced in a syn-orogenic tectonic setting. Their
emplacement might be in response to Mesozoic back-arc
basin closure and arc-continent collision (Yarmolyuk et al.,
2002; Jahn et al., 2004, 2009). Therefore, the two-stage
granitoids from different tectonic units were emplaced in
different tectonic environments.
Abundant Early Permian granites also intruded into the

Alxa metamorphic basement, indicating that the studied
area was strongly modified by the late Paleozoic orogeny
(Geng and Zhou, 2012). Based on the spatial and temporal
distribution of the Paleozoic granites, ophiolite-complex
rocks, and volcanic-sedimentary assemblage, we believe
that the late Paleozoic Enger Us ophiolitic belt (~302 Ma
for pillow lava; Zheng et al., 2014), Shalazhashan granite

Fig. 12 Diagrams of Ce (a), Zr (b), Nb (c), and (Na2O+K2O) (d) vs. 10000 � Ga/Al (after Whalen et al., 1996).
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(continental margin arc), and Chaganchulu ophiolitic belt
(~275 Ma for gabbro; Zheng et al., 2014) made up a
trench-arc-basin system as a product of the Paleo-Asian
Oceanic southward subduction. Xie et al. (2014) have
found some radiolarian fossils as young as the Late
Permian, implying that the subduction of the Enger Us
ocean might have lasted to at least the Late Permian.
Furthermore, the ca. 250 MaWuliji post-collisional granite
intruded into the upper section of the Late Permian, which
is molasse formation composed of sandstone, gravel-
bearing sandstone, silty shale, and conglomerate (Zhang et
al., 2013). Thus, the Paleo-Asian branch ocean, repre-
sented by the Enger Us ophiolitic belt, was probably closed
at the end of the Permian.
The quartz diorites (adakites) (~302Ma) in this study are

close to the southern Chaganchulu ophiolitic belt. As
indicated by the petrogenesis of the quartz diorites, they
likely originated from a subducted slab. Given the
temporal and spatial distribution of the Chaganchulu
ophiolitic belt and quartz diorites, we suggest that the
quartz diorites might be derived by partial melting of the
Chaganchulu back-arc oceanic slab. In the Langshan area,
eastern Alxa block, some 292–285 Ma deformed granitic-
granodioritic porphyries show typical arc affinities and
might have been emplaced before the collision of the
Zongnaishan-Shalazhashan arc with the Alxa block (Lin et
al., 2014). Similarly, Feng et al. (2013) have investigated
some 306–262 Ma, EW-trending mafic-ultramafic rocks
which occurred in the Bijiertai, Honggueryulin, and
Qinggele areas along the Bayinnuoergong-Langshan
tectonic belt. All the mafic-ultramafic rocks represent arc
magmatism as products of the Chaganchulu back-arc
oceanic subduction. At ca. 246.5 Ma, the emplacement of
the tonalites with arc affinities implied a subduction setting
rather than a collisional or post-collisional setting. The
Chaganchulu oceanic continued to the Early Triassic.

Considering the location and age of the Enger Us and
Hegenshan ophiolitic belt, the Enger Us oceanic basin
might be equivalent to the Hegenshan ocean which was
also closed not later than the Permian (Fig. 1; Miao et al.,
2008). Similarly, another Paleo-Asian branch ocean,
represented by the Suolunshan-Xilamulun suture zone,
might be equivalent to the Chaganchulu back-arc oceanic
basin, which was closed in the late Permian-early Triassic,
consistent with the final amalgamation of the Sino-Korean
and Siberian cratons (Wang and Fan, 1997; Li et al.,
2006b; Li et al., 2007; Tong et al., 2010b).
From 235 Ma to 229.5 Ma, partial melting of the

continental lower crust produced the monzogranites and
biotite granites. In the tectonic discrimination diagrams of
granites (Fig. 13), all the samples are plotted within the
post-collision field (Pearce et al., 1984). It is then inferred
that the area might have undergone tectonic transformation
from a collisional orogenic compressional environment to
a post-orogenic extensional environment.
On the basis of the new petrological, geochemical, and

geochronologic data, together with studies on regional
geology, we propose an integrated model for the Late
Paleozoic to Early Mesozoic tectonic evolution of the Alxa
block as illustrated in Fig. 14:
1) Southward subduction of the Paleo-Asian Ocean

produced a trench-arc-basin system (Southern Mongolian
Ocean+ Zongnaishan-Shalazhashan island arc+ Chagan-
chulu back-arc basin) (Fig. 14(a)).
2) From 302 Ma to Late Permian, the Chaganchulu

back-arc oceanic slab subducted south underneath the Alxa
block (Feng et al., 2013; Lin et al., 2014; Zheng et al.,
2014), and partial melting of the subducted slab produced
the quartz diorites with adakitic affinities (Fig. 14(b)).
3) From Late Permian to 240 Ma, the southward

subducted slab-released fluids induced partial melting of
the overlying enriched mantle wedge. Then, fractional

Fig. 13 Tectonic discrimination diagram of monzogranite and biotite granite (after Pearce et al., 1984).
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crystallization of the modified mantle-derived basaltic
magmas produced the tonalites (Fig. 14(c)). In this period,
the Enger Us oceanic basin was closed due to the collision
of South Mongolian Block with the Zongnaishan-Shalaz-
hashan arc (Xie, 2014; Zheng et al., 2014; Xiao et al.,
2015).
4) From 240 Ma to 230 Ma, the Chaganchulu back-arc

basin was finally closed and the Zongnaishan-Shalazha-
shan island arc was welded to the Alxa block, followed by
crustal thickening. Then, asthenosphere mantle upwelling
triggered by the slab break-off induced partial melting of
the thickened lower crust to produce the biotite granites
and partial melting of relatively thin crust to form the
monzogranites, respectively (Fig. 14(d)).

7 Conclusions

1) The quartz diorites (302�9.2 Ma) were derived by
partial melting of the initially subducted Chaganchulu
back-arc oceanic slab, The tonalites (246.5�4.6 Ma) were

produced by fractional crystallization of a modified
lithospheric mantle-derived basaltic magma, and were
formed in a volcanic arc setting. The monzogranites
(235�4.4 Ma) had a crustal source, and coeval basaltic
magmas were required for triggering partial melting of the
crustal source. The biotite granites (229.5�5.6 Ma) were
derived by partial melting of meta-igneous rocks within the
thickened lower crust.
2) The Enger Us oceanic basin was likely closed in the

Late Permian, and the Chaganchulu back-arc oceanic basin
began to subduct underneath the Alxa block at 302 Ma.
This subduction process continued to the Early Triassic
(246 Ma) and the basin closed fully before the Middle
Triassic (235 Ma). The compressional environment led to
crustal thickening. Then the asthenosphere mantle upwel-
ling was triggered by slab breakoff and mantle-derived
magma underplating near the crust-mantle boundary (240–
230 Ma). The tectonic environment then converted to a
post-orogenic extensional environment, and the area might
also have undergone a conversion process from crustal
thickening to thinning.

Fig. 14 Tectonic evolution sketch of the Alxa region (after Zhang et al., 2013; Xie et al., 2014; Zheng et al., 2014; Xiao et al., 2015).
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