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Abstract The minute-scale variations of fine particulate
matter (PM2.5) and carbon monoxide (CO) concentrations
near a road intersection in Shanghai, China were
investigated to identify the influencing factors at three
traffic periods. Measurement results demonstrate a syn-
chronous variation of pollutant concentrations at the
roadside and setbacks, and the average concentration of
PM2.5 at the roadside is 7% (44% for CO) higher than that
of setbacks within 500 m of the intersection. The pollution
level at traffic peak periods is found to be higher than that
of off-peak periods, and the morning peak period is found
to be the most polluted due to a large amount of diesel
vehicles and unfavorable dispersion conditions. Partial
least square regressions were constructed for influencing
factors and setback pollutant concentrations, and results
indicate that meteorological factors are the most signifi-
cant, followed by setback distance from the intersection
and traffic factors. CO is found to be sensitive to distance
from the traffic source and vehicle type, and highly
dependent on local traffic conditions, whereas PM2.5

originates more from other sources and background levels.
These findings demonstrate the importance of localized
factors in understanding spatiotemporal patterns of air
pollution at intersections, and support decision makers in
roadside pollution management and control.

Keywords traffic-related pollutants, fine-scale variation,
distance gradient, meteorology, road intersection

1 Introduction

Roadside has been regarded as a seriously polluted area
posing adverse health threats from exposures to traffic-
related air pollutants (HEI, 2010), but is a place where
people spend a significant amount of their daily outdoor
time (Kaur and Nieuwenhuijsen, 2009). In particular, road
intersections and their surroundings are more contaminated
due to a high emission rate resulting from the geometrical
characteristics of intersected roads and big variations in
traffic flow (e.g., free, interrupted, congested) and
vehicular state (e.g., idle, acceleration, deceleration, cruise)
(He et al., 2009; Soulhac et al., 2009; Mazzeo and Venegas,
2012). It is also reported that the impact of major roads on
air quality is significant within a range of up to 500 m
distance (HEI, 2010). Such a range could cover a wide area
of dense population around an intersection, and air
pollution is thus of great concern to these people.
There are plenty of studies that have been conducted to

estimate traffic-related air pollution. Most of them focused
on pollutant emissions and distributions around roadways,
by different transportation modes, or at transit stops, but
few studies addressed air pollution around an intersection
as it is more complex for the dispersion of air pollutants
with many uncertainties (Soulhac et al., 2009; Kellnerova
and Janour, 2011; Tiwary et al., 2011). A limited number of
studies at road intersections mainly concentrate on three
aspects: field observations, wind tunnel experiments, and
numerical simulations (Tiwary et al., 2011). Due to the
difficulty in data acquisition, field studies are even fewer,
which is actually important for urban planners, designers,
and government officials to better understand the pollution
pattern around an intersection. Recently, the project group
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of “dispersion of air pollution and penetration into the local
environment” (DAPPLE) launched tens of field measure-
ments in the vicinity of a street intersection in central
London, focusing on the effects of wind on pollutant
dispersion (Shallcross et al., 2009; Tomlin et al., 2009;
Martin et al., 2010a, b), and Mazzeo and Venegas (2012)
related the ambient wind with NOx concentrations and
wind speed/direction measured in a street canyon close to
an intersection. These studies well present the associations
of air pollutants with roof-top or ground wind at
intersections, but do not address traffic effects on air
pollution patterns. With these considerations, only a few
studies have been conducted among the literature
reviewed. Pandian et al. (2009) reported the effects of
traffic and road characteristics on vehicle emissions, and
He and Lu (2012) explained the variations of particles of
different sizes at a roadside affected by traffic and weather
factors. The relationship between traffic signal timing and
fine particle concentrations on sidewalks was also
discussed by Slavin and Figliozzi (2013). Recently,
Wang et al. (2015a, b) proposed a set of hybrid methods
to estimate the fine-scale PM2.5 and CO variations near
road intersections.
Current studies have preliminarily described the dis-

tribution pattern of air pollutant concentrations at inter-
sections and unveiled the underlying determinants, while
there are still many things unknown. For instance, previous
roadside measurements include pedestrian exposures to air
pollutants when walking near the road, however, situations
in neighborhoods where many residences are exposed to
the pollution are rarely known. Apart from the wind, other
meteorological factors such as air temperature, dew-point
temperature, relative humidity, and air pressure are often
highly correlated with each other and jointly affect the
local pollution level (Jian et al., 2012). Consequently, there
are still some challenges to reach agreements on how these
correlated factors affect street-scale pollutant variation in a
statistical sense. Moreover, as the traffic-related emission
intensity and local meteorology are variable, air pollutants
around an intersection can significantly vary at minute
scale (Zito et al., 2008; Galatioto and Zito, 2009; Soulhac
et al., 2009; Tiwary et al., 2011; He and Lu, 2012). Studies
further found that short-term exposures (e.g., minutes) to
high pollutant levels are even more serious compared to
long-term general exposures (e.g., annual, monthly, daily)
(Brook et al., 2002; Grivas and Chaloulakou, 2006).
Hence, the fine-scale estimation of air pollution becomes
important for decision makers who can take measures at an
intersection or its surrounding built environment to reduce
pollution risk. To date, little attention has been paid to the
short-time variation of air pollutants, and the major factors
that contribute to variations have not been well known (He
et al., 2009; Soulhac et al., 2009; Martin et al., 2010a, b;
Tiwary et al., 2011; Jian et al., 2012; Farrell et al., 2014;
Zhang et al., 2014).
To fill the void, we carried out field measurements near a

road intersection in Shanghai, China, to provide additional
insights into the minute-scale concentration variation of
two air pollutants characterized by different nature— i.e.,
fine particulate matter (PM2.5) and carbon monoxide
(CO)— from the roadside to nearby setbacks. We attempt
to identify the main factors that affect the concentration
variability over three traffic periods, and hope to shed light
on the development of effective strategies for pollution
control and air quality management at roadsides.

2 Field experiment and data collection

2.1 Field experiment

A suburban site (31°1'N, 121°26'E) in Shanghai, China,
was selected for data collection, which involves a busy
signalized intersection crossed by Dongchuan Rd. (4 lanes)
and Cangyuan Rd. (2 lanes) (see Fig. 1(a)). The air
pollutants were monitored simultaneously at both roadside
(the white dot at the bottom right of Fig. 1(a)) and setbacks
(the white dots with numbers (No.1–3) in Fig. 1(a)). The
roadside site lay on the sidewalk along the campus of
Shanghai Jiao Tong University (SJTU), and setbacks sat on
the SJTU campus 110 m, 330 m, and 500 m from the
intersection. The SJTU campus was selected for setback
layout because it is an open space from roadside to
setbacks without high buildings blocking the dispersion of
pollutants, which is ideal to evaluate the immediate effects
of local traffic emissions on neighborhoods. Three set-
backs characterize different spatial locations from the
intersection, which helps to understand the distance
gradient effects of air pollution distributions.

2.2 Data collection

The field data collection lasted for four sunny days in
spring 2013, and based on a traffic survey as well as the
statistical results of this measurement shown in Fig. 1(b),
daily measurement was split into morning (07:00–09:00),
midday (11:00–14:00), and afternoon (16:00–18:00)
periods. Morning and afternoon periods are regarded as
peak traffic periods while midday is identified as the off-
peak period.
The actual pollution level varies remarkably at fine-time

scales around intersections (Zito et al., 2008), and thus
PM2.5 (mg/m3) and CO (ppm (parts per million)) were
measured at minute level in this study. Two sets of portable
monitors were used to detect both pollutants at roadside
and setbacks. The monitors were set up 1.7 m above the
ground which is close to the breathing zone of adult
pedestrians. Minute-by-minute PM2.5 concentrations were
collected using a TSI Sidepak AM510 instrument based on
light-scattering technique. Five-second instantaneous CO
concentrations were recorded by Langan T15n electro-
chemical sensors, and then one 1-min sample was obtained
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by averaging 20 continuous observations. Prior to this field
experiment, all the portable devices used here were first
calibrated before leaving the factory and then further
verified on the basis of collocated standard methods at
outdoor locations in Shanghai. Finally, roadside monitor-
ing lasted for four experimental days, while two days’ data
was collected at No. 1 (110 m) setback, and data collection
continued for one day at No. 2 (330 m) and No. 3 (500 m)
setbacks. It is noted that we only had two sets of portable
instruments for roadside and setback measurements, and
thus background measurements were missed. Fortunately,
the four experimental days were sunny with the similar
pollution background and meteorology reported by the

official online results. From the measurements, we also
found a similar pollution level among the four days, where
the daily PM2.5 and CO are about 60 mg/m3 and 0.8 ppm,
respectively, based on average values of continuous
roadside monitoring results. For these reasons, we assume
little impact from the daily background variations on our
study results.
At a street-scale traffic environment, air pollution

depends heavily on traffic, meteorology, and spatial
locations (Buonanno et al., 2011). Two cameras (two
black triangles in the lower right of Fig. 1(a)) were used to
record traffic conditions, and traffic variables were
manually counted for each of the four road segments as

Fig. 1 Schematic of field measurement: (a) experiment layout near an intersection site; (b) hourly average conditions of traffic and
meteorology at the intersection. Note: In Fig.1(a), the white circle demonstrates the intersection connected by four road segments from
directions of east, south, west, and north. In Fig. 1(b), PCMUV, LDV, MDV, and HDV denote the traffic volume of four categories of
vehicles, i.e., passenger cars and medium-utility vehicles (e.g., taxi, jeep), light-duty vehicles (e.g., coach, bus), medium-duty vehicles
(e.g., truck), and heavy-duty vehicles (e.g., trailer), respectively; AD denotes average delay of the whole intersection; AT (°C), DT (°C),
RH (%), WS (m/s), and AP (hPa) represent air temperature, dew-point temperature, relative humidity, wind speed, and air pressure,
respectively.
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shown in Fig.1(a). A 5-min sampling interval was chosen
for comparison among the four road segments, as well as
considering that it is a significantly stable fine-time scale to
reduce sampling randomness. According to the vehicle
structure and fuel types, traffic volumes (vehicles/5 min)
were subdivided into four categories of vehicles: PCMUV,
LDV, MDV, and HDVas defined in Fig. 1. A longer queue
length can cause a longer stay of vehicles on roads, and
then more emissions (Galatioto and Zito, 2009). Hence,
queue length on four road segments (vehicles/5 min) was
recorded separately during the red traffic light. Queue
length is defined as the length of stopping cars starting
from the stop line, the equal of the number of stopping
PCMUV on one lane of a segment where the other three
types of vehicles mentioned above were converted into the
reference type of PCMUV based on Transportation
Research Board’s Highway Capacity Manual. Besides
queue length, we counted the total number of stopping cars
on all lanes of each segment. The average delay (seconds/
vehicle) on each segment was then calculated as the total
delay on the segment (i.e., a product of the total number of
stopping cars and phase length of the red light) divided by
the total number of vehicles on the segment. The average
delay of the whole intersection was then defined as the sum
of the total delay on the four segments divided by the total
number of stopping vehicles. As shown in Fig. 1(b), traffic
flows were characterized by two peaks of morning and
afternoon periods with total traffic volumes of 57% and
41%, respectively, which are larger than that of midday
(about 1900 vehicles/hour). In regard to vehicle composi-
tion, the gasoline-based PCMUV dominated the traffic,
while the diesel-fueled vehicles were less than 15%, and
HDV accounted for less than 3% of the total traffic. The
average delay (AD) characterizing overall traffic condition
was higher in peaks, particularly in the morning, than that
of the midday period.
Local meteorology of air temperature (AT), relative

humidity (RH), wind speed (WS), wind direction (WD),
dew-point temperature (DT), and air pressure (AP) was
recorded at 1-min scale by a Davis Vantage Weather
Station mounted 2.5 m above the ground on the SJTU
campus (the white triangle in Fig. 1(a)) and about 200 m
away from the intersection. As illustrated in Fig. 1(b), WS
ranged from 0 to 2.4 m/s over the sampling period and
decreased gradually from morning to afternoon. WS was
1.5 times higher in the morning than in the afternoon. WD,
even with low WS (0 m/s for an exception), was found to
be variable with time throughout the observation. As a
result, the sampling positions covered both upwind and
leeward of the intersection. Besides, AT and RH exhibited
opposite patterns, whereas both AP and DT had slight
decreases from morning to afternoon. In general, such
significant time-based variations of meteorological factors
are likely to increase the complexity of pollutant dispersion
at the street scale.

3 Methodology

3.1 Data

In the field experiment, more than 24 hours of observations
were conducted with approximately two hours for each
individual period of day. Due to the accidental failure and
out-of-sync equipment, parts of the data are invalid or lost.
First, we dropped the invalid data which are out of mean
value �3 standard deviation, and 1140 groups of 1-min
samples of pollutants and meteorology as well as 166
groups of 5-min traffic records were retained. Second,
pollutants and meteorology data were unified to the
timestamp of the traffic series with a 5-min interval,
which is a rather stable interval to reduce sampling
randomness based on previous studies (Zhu et al., 2002)
where five continuous 1-min samples were regularized into
a 5-min average. After data processing, a total of 136
groups of 5-min samples for all variables are available for
analysis.
Since the wind direction was originally measured as

angles (°), for computational purpose as well as to make
measurement comparable between setbacks, a measure-
ment called relative wind direction (RWD) was defined in
this study. First, a coordinate system was built with the
intersection as origin and clockwise azimuth ranging from
0° to 359°, and 0° denotes north along the meridian line.
Second, a line was drawn linking the intersection with
setbacks, and its clockwise angle from north was
calculated. Third, the angle (0° to 180°) of that linking
line was computed with the measured wind direction (i.e.,
WD). RWD is equal to –1 when the angle is 0° with 0
corresponding to 90° and 1 to 180°. When RWD increases
from –1 to 1, the angle increases from 0° to 180°. Note that
the measured wind direction indicates the wind blowing to
the coordinate origin.

3.2 Statistical analysis

Before statistical analysis, X- and Y-variables with a range
of more than one magnitude of 10 were logarithmically
transformed to make their distributions fairly symmetrical
(Wold et al., 2001).

3.2.1 Wilcoxon rank-sum test

The Wilcoxon rank-sum test is a powerful non-parametric
test usually used when data are distributed abnormally or
when it is unsure whether data follow a normal distribution
(Hollander andWolfe, 1999). Here, it is used to analyze the
differences of air pollutant observations between different
time periods of day. As noted by He and Lu (2012), two
sets of samples need to be combined into one set and sorted
in an increasing order, and then the sum of ranks is
calculated with the following formula:
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W ¼
Xn

i¼1
Ri –

nðnþ 1Þ
4

, (1)

where n is sample size, and Ri denotes rank for ith

observation. If two populations have the same distribution,
the sum of the two sample ranks should be close to the
same value. In this study, a Z-statistic was used to compute
the approximate two-sided p-value for testing the null
hypothesis that the two distributions are at the same
confidence level. In this study, Wilcoxon rank-sum tests
were implemented in the software SAS.

3.2.2 Partial least square regression (PLSR)

PLSR is an improvement of the linear regression and the
principal component regression. PLSR can take into
account the information of X-variables and Y-variables
simultaneously and overcome adverse effects of collinear-
ity in the modeling. In this study, PLSR models were run
separately at three time periods to identify relationships of
the potential explanatory variables (i.e., X-variables
including all 20 variables of traffic, meteorology, and
distance measured here) with PM2.5 or CO measurements
(i.e., Y-variables including mass concentrations of setback
PM2.5 or CO). The principle of PLSR is detailed by Wold
et al. (2001).
Cross validation (CV) is used to identify the number of

significant PLS components. For component a, CV
(renamed as Q2) is calculated with the following equation:

Q2
a ¼ 1 –

PRESSa
SSa – 1

, (2)

where PRESSa denotes the prediction error sum of squares
of component a, and SSa–1denotes the fitted residual sum
of squares of component a–1. Generally, ifQ2

a is lower than
0.0975, the component a becomes insignificant, and then
the model refuses to introduce this component. Together
with the coefficient of determination (R2), the cumulative
CV (i.e., Q2

cum) of all extracted components can estimate
the goodness-of-fit and stabilization of PLSR. Moreover,
PLSR is better built when Q2

cum is larger than 0.5 and R2 is
closer to 1.
In order to identify the importance of variables

explaining Y (Wold et al., 2001), the variable importance
for projection (VIP) is developed with the following
equation:

VIPk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXA

a¼1
ðw2

akðSSYa – 1 – SSYaÞÞ
q

K

SSY0 – SSYA
, (3)

where k is the serial number of X-variables, K is the total
number of X-variables, A is the number of significant
components of PLSR, w2

ak is the squared PLSR weight of
kth variable of component a, SSYa – 1, SSYa is the explained
residual sum of squares of Y of component a–1 and a,
respectively, and SSY0 – SSYA is the total residual sum of

squares of Y explained by the PLSR model. The bigger the
VIP value, the more important the X-variable is.
Furthermore, a VIP value larger than 1 indicates the
most relevant factor explaining Y, and a VIP value lower
than 0.5 indicates an unimportant X-variable. The interval
between 1 and 0.5 is a grey zone where the importance
level depends on the size of the data set. In this paper,
PLSR models were constructed using the software
SIMCA-P version 11.5.

4 Results and discussion

4.1 Spatiotemporal variations of PM2.5 and CO
concentrations near the intersection

Based on mean values of four days’ observations,
Figure 2(a) illustrates one-minute sequences of PM2.5 and
CO concentrations during three time periods at roadside
and setbacks without distinguishing varied setback loca-
tions. From Fig. 2(a), three key points can be summarized.
First, concentrations of both pollutants are higher at the
roadside than at setbacks over three time periods. The
average drops are approximately 7% for PM2.5 and 44%
for CO from roadside to setbacks. Relative to a big fall-off
for CO, a moderate PM2.5 reduction likely has to do with
secondary production or high background contribution.
The different nature of such factors as transport pathway
and diffusion intensity for the two pollutants may also
contribute to a different gradient (HEI, 2010). Comparing
the gradients of pollutants concentrations observed in this
study with previous studies near major roads, both
similarities and dissimilarity exist. For example, Zhu et
al. (2002) reported a slight drop (about 10%) for mass
concentrations of total PM, but a sharp decrease (about
90%) for CO concentrations at 300 m from a freeway.
Beckerman et al. (2008) depicted a varying decay degree
of PM2.5 (20%–60%) at 500 m from two expressways.
McAdam et al. (2011) found that hourly PM2.5 was 39%
higher at 10 m from curb side than that of 30 m from curb
side, but there was no significant difference in CO levels
with increasing distance from the road. Our research is
generally consistent with near-road studies that PM2.5

levels in neighborhoods are lower than at the roadside.
However, the remarkable difference of the decreasing
PM2.5 amplitudes and CO gradients is probably because of
the different study design, field traffic volumes, and
meteorological conditions (Beckerman et al., 2008).
Second, a synchronous variation is identified at roadside
and setbacks, but it is more obvious for PM2.5 than CO,
especially in afternoon peak hours. This implies that CO is
sensitive to local traffic since it mainly comes from real-
time vehicular emissions at street scale (Hagler et al.,
2010), while PM2.5 is likely dependent more on back-
ground levels and other sources (HEI, 2010; Zhang et al.,
2014). Third, the pollution level is higher in traffic peaks
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than midday (also see Table 1), which demonstrates that
local pollution variability is more related to traffic
conditions. Moreover, the pollutant concentration is higher
in the morning than the afternoon, agreeing with findings
of field measurements of particles with different sizes in
China (Jian et al., 2012; Zhang et al., 2014).
As Table 1 shows, statistical analyses were used to

assess the differences between two sets of observations.
The Shapiro-Wilk test result as well as skew and kurtosis
with values far from zero indicate that the measured PM2.5

and CO are non-normal distributions, especially at
setbacks. As learned from the results of the Wilcoxon
rank-sum test (see Table 2), PM2.5 distributions are similar
in midday and afternoon, but different in the morning at
5% significance level. This can be explained by two
evidences below. Figure 1(b) shows that the average
relative humidity is 58%, 40%, and 46% in the morning,
midday, and afternoon, respectively. Hence, the coagula-
tion process of PM2.5 is enhanced in the morning, which
poses an inevitable influence on PM2.5 background levels
(He and Lu, 2012). In addition, traffic volumes were larger
in the morning than during midday and afternoon periods,
and there were more diesel trucks and trailers in the

morning, which would emit more particulates compared
with other vehicle types (Wang et al., 2011).
To identify the local spatial gradient of pollution

variation, we normalized the PM2.5 and CO concentrations
measured from three setbacks to the roadside based on
upwind and downwind conditions of the intersection (Fig.
2(b)). Figure 2(b) shows that mean concentrations of both
pollutants decline more at 110 m and 500 m than 330 m for
both wind directions. As seen from Fig. 1(a), different local
surroundings at the three setbacks are likely responsible for
the results. At 110 m, a sharp drop of pollutant
concentration, especially for CO, is likely because of
some sort of obstruction from trees between the roadside
and this setback. The 500 m setback is the farthest from the
intersection and beside a lake with lake breezes, which
might explain that a maximum attenuation ratio of
pollutants appears at this setback. An unobvious decline
of pollutant concentration is found at the 330 m setback.
This setback is located in an open field near a playground
that has a more homogeneous and stable atmosphere than
the other two locations, and thus is less affected by direct
traffic emission. The correlation analysis in Table 3
indicates that there are strongly positive correlations

Fig. 2 Comparison of PM2.5 and CO concentrations from the roadside to setbacks: (a) 1-min series, (b) normalized setback PM2.5 and
CO levels (�1 standard deviation) to roadside measurements. Note: PM2.5_R (or CO_R) and PM2.5_S (or CO_S) represent roadside and
setback PM2.5 (or CO) concentration, respectively. In Fig. 2(b), n indicates the number of samples at three setbacks.
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between concentrations of both pollutants with setback
distance in the afternoon period, which is opposite to the
other two time periods of day. This implies that the spatial
gradient of pollutant level may also be related to time-
based impacts of regional background or other sources.
With the factors described above, the pollution distribution
does not seem to follow an obvious distance-decay
gradient within 500 m, and a similar result was reported
for PM2.5 within 50 m of an arterial road in Shanghai
(Zhang et al., 2014). As seen from Fig. 2(b), the closer the
distance from the intersection becomes, the bigger the
standard deviation (SD) of the normalized setback

pollutant level is. This suggests that the contribution of
roadway traffic emission on the nearby pollutant level
generally decreases with the increase of distance from the
intersection. Such phenomenon is more prominent for CO
than PM2.5, further suggesting a higher sensitivity of CO to
local traffic emission. The direct contribution of traffic
emission to PM2.5 concentration near the roadway is small
through the above analysis, which coincides with previous
study results on roadside particles (Zhu et al., 2002, 2006).
Moreover, Figure 2(b) denotes a slightly bigger SD for the
normalized setback pollutant concentration downwind
than upwind of the intersection. As summarized by Zhu

Table 1 Basic statistics for minute samples of PM2.5 and CO concentrations with time periods and locations

Time periods Mean SD Range Skew Kurtosis Shapiro-Wilk test

W P<W

PM2.5_R Morning 62.29 20.17 63.23 – 0.52 – 1.07 0.88 0.000

Midday 51.81 13.06 39.45 – 0.72 – 0.83 0.85 0.000

Afternoon 56.75 19.06 55.91 0.18 – 1.66 0.87 0.000

PM2.5_S Morning 58.16 18.59 59.97 – 0.39 – 1.04 0.90 0.001

Midday 48.67 13.85 41.98 – 0.80 – 0.79 0.83 0.000

Afternoon 51.78 19.72 54.11 0.31 – 1.64 0.84 0.000

CO_R Morning 0.76 0.28 1.55 – 0.31 0.25 0.95 0.044

Midday 0.56 0.16 0.87 0.83 2.17 0.95 0.045

Afternoon 0.65 0.13 0.48 0.14 – 0.87 0.96 0.138

CO_S Morning 0.52 0.20 0.88 – 0.12 – 0.67 0.95 0.049

Midday 0.29 0.14 0.45 0.72 – 1.00 0.85 0.000

Afternoon 0.30 0.15 0.43 0.60 – 1.20 0.84 0.000

Note: PM2.5_R (μg/m3) and PM2.5_S (μg/m3) indicate PM2.5 concentrations at the intersection and setbacks, respectively; CO_R (ppm) and CO_S (ppm) indicate CO
concentrations at the intersection and setbacks, respectively. Mean and SD denote average value and standard deviation, respectively; Range is a measure of variation;
Skew and Kurtosis are used to identify an asymmetrical distribution or not. Shapiro-Wilk test (i.e., normal distribution test) is presented with theW statistic and p-value
(i.e., P<W) for each group of pollutant variable. The statistical calculation is implemented in the software of Statistical Analysis System (SAS). The number of samples
is 387, 371, and 382 in morning, midday, and afternoon periods, respectively.

Table 2 Wilcoxon rank-sum test for minute samples of setback PM2.5 and CO concentrations with time periods

Time periods Sum of scores Expected Wilcoxon statistic P< Z

PM2.5_S Morning 2066 1566 2066 0.000

Midday 1675 2175

Morning 1989 1566 1989 0.000

Afternoon 1752 2175

Midday 2391 2525 2391 0.357

Afternoon 2659 2525

CO_S Morning 2208 1566 2208 0.000

Midday 1533 2175

Morning 2249 1566 2249 0.000

Afternoon 1492 2175

Midday 2889 2525 2889 0.012

Afternoon 2161 2525

Note: PM2.5_S (μg/m3) and CO_S (ppm) indicate setback PM2.5 and CO concentrations, respectively. Wilcoxon rank-sum test for setback PM2.5 and CO concentrations
between different time periods is given with some key indicators, where the p-value (i.e., P< Z) indicates significance degree. The statistical calculation is implemented
in the software of Statistical Analysis System (SAS). The number of samples is 387, 371, and 382 in morning, midday, and afternoon periods, respectively.
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et al. (2006), the altered direction of the wind thus is vital
to be taken into account to accurately estimate near-
roadway pollutant exposures.
In summary, the PM2.5 and CO concentration patterns

near the intersection depend on the time of day or variables
associated with time of day. The joint effect of many
factors causes different levels of pollutants at the varied
setbacks of the intersection.

4.2 Identification of influencing factors on PM2.5 and CO
concentrations at setbacks

PLSR modeling of setback PM2.5 and CO concentrations
was carried out at a 5-min scale so as to better understand
the complex interaction of pollutant concentration varia-
tion with variables of interest. The results of observed and
predicted PM2.5 and CO standardized values (i.e.,
logarithmically transformed values) at three time periods
are presented in Fig. 3, in which all the models constructed
are significant at the 5% level. R2 values for PM2.5 and CO
models reach 0.9 or so at most time periods, indicating that
the models explain about 90% of PM2.5 or CO variation.
For PM2.5, the model established was the most accurate in
the morning, followed by the afternoon, and the least

accurate in midday with an R2 of 0.69. This could be
explained by the idea that a less varied background PM2.5

level and relative stable meteorological factors in the
morning may be more accurately represented by local
modeling, while in the midday and afternoon, the PM2.5

modeling has an increasing randomness due to frequently
varied meteorological conditions and emissions from
various regional and nearby sources with the increase of
human activities. A weak model built for the midday data
also likely resulted from a rapid decline of local traffic flow
but a rising impact of meteorology and other uncertain
factors. In contrast, all CO models are well built with less
fluctuation among the time periods. The midday model is
slightly better than models of other time periods. It can be
interpreted that the rapid decline of local traffic emission
leads to a small range of CO measurements and little
contribution from other sources because of a big attenua-
tion rate of CO with distance. Nevertheless, all Q2 values
are greater than 0.5, demonstrating the reliability of the
PLSR model for assessing the impacts of measured factors
on both pollutants.
Based on the well-constructed PLSR models, variable

importance for the projection (VIP) was calculated to test
the importance of each factor explaining PM2.5 and CO

Table 3 Pearson correlations between influencing factors and setback PM2.5 and CO concentrations

PM2.5 CO

Morning Midday Afternoon Morning Midday Afternoon

DS - 0.75 - 0.38 0.90 – 0.15 – 0.05 0.77

AT – 0.20 - 0.32 0.68 0.61 0.54 0.67

RH - 0.62 0.34 - 0.3 - 0.89 – 0.16 - 0.50

WS – 0.23 0.55 0.58 0.02 - 0.55 0.52

RWD - 0.64 - 0.55 0.91 – 0.21 0.35 0.91

DT - 0.69 0.20 0.08 - 0.85 - 0.46 – 0.16

AP 0.88 – 0.08 - 0.49 0.79 0.64 - 0.29

PCMUV 0.41 – 0.04 0.29 0.05 0.13 0.32

LDV 0.18 0.27 0.16 – 0.18 – 0.14 0.20

MDV 0.20 – 0.10 0.23 0.04 – 0.13 0.26

HDV – 0.17 0.09 0.17 0.04 – 0.13 0.12

ADEW 0.01 - 0.46 0.59 – 0.04 0.67 0.69

ADWE 0.27 – 0.12 0.00 – 0.01 0.04 0.04

ADSN 0.26 - 0.38 0.11 0.17 0.64 0.22

ADNS 0.23 - 0.40 0.21 0.01 0.19 0.24

AD 0.32 - 0.54 0.42 – 0.00 0.58 0.53

QLEW 0.09 - 0.33 0.50 0.02 0.64 0.60

QLWE 0.53 – 0.19 0.10 0.01 0.00 0.15

QLSN 0.30 – 0.22 0.13 0.08 0.21 0.21

QLNS 0.15 – 0.04 – 0.02 – 0.14 0.27 0.04

Note: The bold denotes the significance at 5% level (2-tailed). DS indicates setback distance from the intersection; RWD indicates relative wind direction as defined
earlier; ADEW, ADWE, ADSN, and ADNS indicate average delay of the link from east to west, west to east, south to north, and north to south, respectively; QLEW,
QLWE, QLSN, and QLNS indicate queue length of the link from east to west, west to east, south to north, and north to south, respectively. Other variable abbreviations
are defined in Fig.1.
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variations (see Fig. 4). On the whole, both PM2.5 and CO
are strongly dependent on meteorology factors and setback
distance from the intersection since most of them have VIP
values bigger than 1. Several traffic factors show
observably important effects on the pollutant concentra-
tions, but the majority get VIP values around 0.5, showing
less contributions. However, those features mentioned
above vary with traffic periods and two pollutants.
Together with Pearson correlation coefficients in Table 3,
the impacts of factors on the pollutants are discussed
below.
DS always stands in the first group (VIP bigger than 1)

with prominent influence on PM2.5 in all periods, and its

interaction with CO gradually increases from morning to
afternoon. The two pollutants have different dispersion
features, and thus different distance-gradient patterns
during the day. From Table 3, correlations of DS with
both pollutants are negative in the morning and midday,
indicating distance decay effects as also reported by HEI
(2010). But it becomes positive in the afternoon, which
shows the effects of other sources on field measurements
(Zhang et al., 2014).
Among the meteorological factors, air temperature (AT)

has a strong positive correlation with pollutant levels for
most of the time periods. The field campaign was carried
out in sunny days with strong sunlight, and therefore it is

Fig. 3 Standardized PM2.5 and CO observations vs. PLSR predictions at three time periods (n denotes the number of samples).
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likely that an increase in secondary PM2.5 is transformed
by co-pollutants (e.g., O3, NOx, and SO2) as the AT rises.
This is also reported by Jian et al. (2012), that the
atmospheric process was responsible for the positive
relation of the AT with roadside submicron particles,
which might also act on the increase of CO concentrations.
Contrary to the AT, relative humidity (RH) is negatively

related to PM2.5 or CO in most periods. Recently,
researches also reported that traffic-related air pollutants
(e.g., PM2.5, ultra-fine particles, and other particles with
smaller size) were inversely proportional to RH (Yli-
Tuomi et al., 2005; Yao et al., 2007; Jamriska et al., 2008;
Farrell et al., 2014). These results differ from typical
regional environment studies, and a possible reason is
related to the complex traffic environment. For example,
PM2.5 originates from not only exhaust emissions but also
road dust, brakes, and tires in addition to other mechanical
sources (Yli-Tuomi et al., 2005; HEI, 2010). It is not
difficult to understand that RH could increase the surface
wetness of particles and thus suppress the road dust
generation. Meanwhile, these multiple-source-based parti-
cles can also grow by coagulation and/or condensation of
gases with the increase of RH, and then easily be deposited
near the road rather than diffusing to neighborhoods. High
RH also likely changes the local photophysical and
photochemical reaction between CO and other air
pollutants, especially in our experimental days with high
solar radiation and warm weather, and thus causes a loss of
CO. For example, Jia and Xu (2014) reported that in the
gas phase of secondary organic aerosol formation, the
decrease of CO with the increase of RH can mainly be
explained by the uptake of glyoxal into the wall or the
aerosol phase.
As can be seen from Fig. 4, the effects of wind speed

(WS) and relative wind direction (RWD) are significant
and gradually increase from morning to afternoon. As
shown in Table 3, the correlation of WS with the pollutants

has different values and signs over the day, suggesting that
WS plays an unstable role of diluting or increasing
pollutant concentrations. RWD is significantly correlated
to PM2.5 or CO (at 5% level) in almost all time periods, but
the sign varies between positive and negative. In the
morning traffic peak period, both WS and RWD are
negatively correlated with setback pollutants most of the
time. This result indicates that the high wind speed is
effective for diluting and reducing high concentrations of
the pollutants, which is similar to previous near-road
pollution exposure studies (Hagler et al., 2010; Buonanno
et al., 2011; Jian et al., 2012; Farrell et al., 2014). In
addition, there are emission sources from the campus
direction (northeast of the intersection in Fig. 1(a))
increasing the pollution levels of all setbacks, and the
Xin-Feng-Jin highway lying about 1000 m northeast of the
intersection may be an important source. Conversely, WS
and RWD show positive associations with the pollutants at
5% significance level in the afternoon peak, indicating that
the area downwind of the intersection is increasingly
polluted as wind speed increases. As a result, a positive
significant impact of traffic emissions on neighborhoods is
implied at the selected intersection. As Fig. 1(b) shows,
wind speed gradually weakens from morning to afternoon.
A higher wind speed plays a role in diluting high
background levels of the pollutants in the morning,
whereas in the afternoon, all the setback locations are
dominated by the breeze which brings more pollution with
the increase of local traffic volumes. In midday, the
reversed sign of WS (or RWD) correlated with PM2.5 and
CO depends on different formations of the two pollutants.
The correlation of PM2.5 is positive with WS, but negative
with RWD. This further indicates the influence of the
highway emission source from the campus direction, and
higher wind speed benefits a long-distance transport of
particles to the field measurement site. In contrast, CO is
mainly affected by local traffic emission, and lower wind

Fig. 4 Variable importance for the projection (VIP) of PM2.5 and CO models at three time periods (in order of VIP from largest to
smallest values based on morning results). Note: All the variable abbreviations are consistent with the definitions in Table 3.
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speed is in favor of its dispersion to the neighborhood,
which is due to its high decay ratio with distance, unlike
PM2.5 with the long-distance transport feature.
Dew temperature (DT) is an indicator linking the AT

with RH and is found to be negatively correlated to the
pollutants, especially CO, similar to the relation of both
pollutants with RH. It can be concluded that DT represents
more information of RH although it also reflects the
characteristics of the AT. One interesting finding from this
study is that the correlation of air pressure (AP) with both
pollutants varied over time periods. As Jian et al. (2012)
said, AP strongly affects the levels of pollutants in the way
of formation, growth, movement, or dispersion, and the
underlying mechanism is complex. Additionally, AP is
mixed with the AT, RH, and DT, which have a complex
causal relationship.
Traffic factors also explained the pollutant concentration

variation over time. In the morning, traffic factors fall far
behind meteorological factors and DS, and catch up
slightly in the other two periods (Fig. 1 and Table 3). As
dominant vehicle types (seen from Fig. 1(b)), passenger
cars and medium-utility vehicles (PCMUV) are signifi-
cantly correlated with the pollutants (particularly PM2.5) in
the morning and afternoon traffic peaks. Traffic volumes of
other vehicle types have less contribution to the pollutant
concentration, but they highlight a relative importance in
midday compared with other periods. We also find from
the figures and tables that the pollution variation at
setbacks is closely related to traffic conditions on some
segments as well as time periods. But most traffic variables
have low VIP, even less than 0.5, suggesting that they are
not important and can be ignored. For instance, the average
delay and queue length from north to south along
Cangyuan Rd., i.e., ADNS and QLNS, are identified as
unimportant. It is interpreted that during the entire day
there is almost no congestion in this direction with an
indistinct data fluctuation, and thus unobvious correlations
with the pollutants are observed in Table 3. The weak role
of LDV (i.e., various buses) is also observed in PLSR
models, which demonstrates the advantage of PLSR
compared to conventional regressions, i.e., effectively
overcoming colinearity between LDV and PCMUV.
In summary, the joint effect of spatial location,

meteorological factors, local traffic variables, and other
uncertain sources plays a crucial role in street-scale
variations of PM2.5 and CO concentrations, which is in
accordance with previous studies on roadside air pollutants
(McAdam et al., 2011; Jian et al., 2012). Moreover,
different variables are found having different effects on
both PM2.5 and CO concentrations, and the impact of the
same variable varies dramatically among time periods. The
regular or irregular impacts of factors on air pollutants have
preliminarily pointed to the subtle associations of these
factors with pollutants in intersection microenvironments,
although further work is needed to quantify such results in

much more detail. In addition, the importance of localized
factors in understanding spatiotemporal patterns of air
pollutant levels around road intersections has been high-
lighted in this study, which can help decision makers to
take effective measures to relieve the daily health risk in
these microenvironments in the future by delineating
proper setback requirements to certain land use types and
implementing certain design elements.

5 Conclusions

Based on field measurements of PM2.5 and CO concentra-
tions near a road intersection in Shanghai, China, this study
characterized minute-scale variations of the two pollutants
and provided insights into the effects of dynamic factors at
three time periods of day. Drawn from measurement data,
the decrease of average concentration is about 7% for
PM2.5 and 44% for CO from roadside to setbacks within
500 m from the intersection. Local traffic emissions are
found to have significant impacts on the setback pollution
level, but differences are observed between the two
pollutants due to their different properties, e.g., the
transport pathway and diffusion mechanism. CO variation
is sensitive to traffic factors and distance from the traffic
source, while the secondary product and high background
concentration produced by other sources may be critical
for PM2.5 concentration. Pollutant concentrations are
higher in traffic peaks than off-peak periods and greater
in the morning than the afternoon. This is substantially
related to local traffic and micro-climate in real time.
Concentrations of both pollutants have obvious distance
decay within the first 110 m, beyond which the pattern is
not that obvious and needs further investigations. To unveil
interactions of variables of interest with pollutants at
different time periods, partial least square regressions for
setback PM2.5 and CO were established at a 5-min scale.
Results indicate that pollutant levels strongly depend on
micro-meteorology which determines the dispersion of
vehicular pollutants, followed by distance from the
intersection, and most traffic factors rank behind. The
strong joint effect of most measured variables and other
factors, such as uncertain sources and background, plays a
decisive role in variations of setback PM2.5 or CO levels.
Although we have highlighted the importance of

localized factors in understanding the air pollution pattern
near an intersection, this study still has its limitations.
More samples with full features such as periodic (e.g.,
seasonal, weekly, daily) are expected to refine the current
study. The field campaign needs to be improved by
increasing spatial sampling locations so that a detailed
spatial gradient of pollutant levels can be observed. To
verify different performances of various pollutants at fine-
time scale, future research should consider more pollutants
such as ultrafine particles, black carbon, carbon dioxide,
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and ozone. Furthermore, it should be examined whether
the results found in this paper can be extended to other sites
in future studies.
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