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Abstract An analysis of a 20-year summer time
simulation of present-day climate (1989‒2008) over
China using four regional climate models coupled with
different land surface models is carried out. The climatic
means, interannual variability, linear trends, and extremes
are examined, with focus on precipitation and near surface
air temperature. The models are able to reproduce the basic
features of the observed summer mean precipitation and
temperature over China and the regional detail due to
topographic forcing. Overall, the model performance is
better for temperature than that of precipitation. The
models reasonably grasp the major anomalies and standard
deviations over China and the five subregions studied. The
models generally reproduce the spatial pattern of high
interannual variability over wet regions, and low varia-
bility over the dry regions. The models also capture well
the variable temperature gradient increase to the north by
latitude. Both the observed and simulated linear trend of
precipitation shows a drying tendency over the Yangtze
River Basin and wetting over South China. The models
capture well the relatively small temperature trends in large
areas of China. The models reasonably simulate the
characteristics of extreme precipitation indices of heavy
rain days and heavy precipitation fraction. Most of the
models also performed well in capturing both the sign and
magnitude of the daily maximum and minimum tempera-
tures over China.

Keywords regional climate model, interannual variation,
trend, extremes

1 Introduction

Along with the development of global climate observa-

tional systems and the rapid expansion of high perfor-
mance computer techniques, interest in climate numerical
modeling has been steadily increasing since the 1980s.
Regional climate models (RCMs) have been increasingly
used to produce climate change information at the regional
scale due to higher resolution and better representation of
key physical processes than global climate models (GCMs)
(e.g., Liang et al., 2004a, b, 2012; Liu et al., 2013). Since
the RCMs can accurately describe regional details in
surface climate characteristics such as topography and
land-use distribution, the RCMs have shown promise in
better capturing smaller climate system information and
variation than GCMs. As a result, a number of RCMs have
been developed and recognized as efficient and necessary
tools for studying regional climate (Feng and Fu, 2006;
Giorgi et al., 2012). RCMs were originally developed and
applied in the simulation of regional climate by Dickinson
et al. (1989) and Giorgi (1990). Since then, significant
attention has been focused on RCMs development and has
been applied in regional climate modeling more frequently.
China is located at East Asia and is greatly influenced by

the typical monsoon climate. The particular geographic
environment, complexity of vegetation distribution, and
significant land use and cover changes due to intensive
human activities makes the East Asian monsoon the most
vigorous and influential of all the monsoon circulations
(Zhao, 2013). Therefore, this region has very large climate
variability on seasonal, interannual, decadal, and even
centurial timescales (Feng and Fu, 2006). In recent years,
people and governments are paying more attention to
climate change. As both society and the economy continue
to develop, future policy dictates a greater need for further
study of regional climate modeling. These climate changes
make it necessary for the development of RCMs that
correctly model the East Asian Monsoon System. How-
ever, accurate prediction of China’s climate is challenging
due to complex surface characteristics and multiscale
physical processes.
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Systematic studies are needed to quantify uncertainties
in regional climate changes, to identify the sources of those
uncertainties, and ultimately to reduce them.
In China, regional climate modeling began in the 1990s.

At that time, the research was focused on case studies and
sensitivity experiments (Fu et al., 1998; Tang et al., 2003).
In recent years, the long term climate simulations over
China and East Asia using different RCMs have been
widely documented. These experiments provided valuable
information on mean climate states simulation (Feng and
Fu, 2006; Gao et al., 2011; Hu and Wang, 2011; Zhao,
2013), future climate change projection (Hu et al., 2012;
Liu et al., 2013), and extreme climate events prediction
(Feng et al., 2011; Hu et al., 2013). The Regional Climate
Model Inter-comparison Project (RMIP) for Asia was
started in 2000 (Fu et al., 2005) to identify model errors in
simulating the East Asian climate. Phase I and II results
have shown that most of the RCMs can basically reproduce
the spatial distribution and the annual variation of the
temperature and precipitation over East Asia (Fu et al.,
2005; Feng and Fu, 2006, 2007).
To better understand the regional climate change over

China, an analysis of the present-day climate simulations
conducted by four RCMs is conducted and compared with
observations through the 1989‒2008 summer months . The
main objects in this study are to evaluate the model
performance for precipitation and temperature, and to
analyze the regional climate change signal over China as
affected by the different modeling systems and land use
models. The analysis presented here, including climatic
means, interannual variability, linear trends, and extremes,
mostly focuses on precipitation and near surface air
temperature over China as a whole and five subregions.
In addition, the 850 hPa air circulation is presented in order
better assess the model behavior. Section 2 describes the
model and experiment designs, and the simulation results
are discussed in Section 3. The summary and discussion
are given in Section 4.

2 Description of models, simulations, and
observations

2.1 Model description

We analyzed present climate simulations performed by
four RCMs coupled with land surface models. The models
include: 1) RegCM4-CLM, a new version of the RegCM
regional climate modeling system, which added the option
to use the Community Land Model, version CLM3.5
(Giorgi et al., 2012); 2) WRF-CLM, TheWeather Research
and Forecasting model version 3 coupled with CLM3.5
(Subin et al., 2011); 3) WRF-NOAH, The Weather
Research and Forecasting model version 3 coupled with
NOAH, which is one of the default options of the land
surface model in WRF; and 4) RSM-NOAH, the National

Centers for Environmental Prediction (NCEP) Regional
Spectral Model (RSM) coupled with NOAH.
The RegCM model is a community-based, compressi-

ble, hydrostatic, and primitive-equation model originally
developed by Giorgi et al. (1993a, b) and then augmented
and discussed by Giorgi and Mearns (1999) and Pal et al.
(2007). The WRF model is a fully compressible and non-
hydrostatic model with terrain following pressure coordi-
nate and Arakawa C-grid, which has been widely used for
regional climate modeling (Katragkou et al., 2015). The
NCEP RSM (Juang et al., 1997; Yhang and Hong, 2008)
model is a primitive equation model using the sigma-
vertical coordinate, and has been extensively applied to
dynamic downscaling and operational short-range fore-
casting. The spectral representation of the RSM is a two
dimensional cosine and sine series, and it is applied to the
difference between the full field and the time-involving
background global analysis field. The CLM3.5 land
surface model (Oleson et al., 2008) is a state-of-the-art
land surface scheme representing land surface processes in
the context of climate simulations. The land component of
the Community Climate System Model (CCSM) (Collins
et al., 2006) and earlier versions of CLM3.5 have also been
coupled to other regional climate models (Steiner et al.,
2009; Tawfik and Steiner, 2011). The Noah Land Surface
Model (LSM) has a long history of development through
multi-institutional cooperation and has been widely used
by the National Centers for Environmental Prediction
(NCEP) in operational weather and climate predictions.
The development efforts have improved the model
performance in both offline (Chen et al., 2007) and
coupled modes (Ek et al., 2003).
Table 1 shows the physical process and land surface

parameterization for the four models. The differences
between the models are attributed to model dynamics and
land surface process.

2.2 Experiment design

Figure 1 illustrates the model computational domain. It
covers the whole of China with horizontal grid cells of
223�167 in the east-west and north-south directions. The
models use a 30 km horizontal grid spacing by the Lambert
conformal map projection centered at (35°N, 108.5°E).
The models include 28 vertical layers with the top at 50
hPa. The buffer zones are located across 12 grids along
each of four domain edges. Outlined also in Fig. 1 are five
subregions (Northeast China, North China, Yangtze River
Basin, South China, and Northwest China) over which
detailed result analysis are presented. These regions have
been identified with distinct climate regimes and precipita-
tion characteristics in both the annual cycle and interannual
variability (Liu et al., 2013; Hu et al., 2013).
The simulation period is from 15th March to 1st October

in each year, and the models run year by year from 1989 to
2008. The first 15 days in each year simulation is model
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spin-up, from which the output is not used for analysis.
Our analysis is focused on summer time (including the
three months of June, July, and August) precipitation and
temperature averaged during the 20-year period.
The four models use the same initial and boundary

conditions, which are constructed from the National
Centers for Environmental Prediction/Department of
Energy (NCEP/DOE) Reanalysis 2 (R2) data (Kanamitsu
et al., 2002), available every 6 hours at 2.5°�2.5° grid
spacing resolution (http://rda.ucar.edu/datasets/ds091.0/).
The R2 data include air temperature, pressure, humidity,
sea level pressure, winds, and geopotential height. The
geographical data and meteorological fields on 15th March
of each year are interpolated for the initial conditions. The
meteorological fields are interpolated every 6 hours
horizontally and vertically for the model buffer zones as
boundary conditions. The models use the same surface
vegetation and land use types by the United States
Geological Survey from satellite information. The same
driving field, simulation domain, and horizontal resolution
ensure that the model differences only come from the

model dynamics, physical parameterizations, and land
surface models. The details of the model physical
information are given in Table 1.

2.3 Observations

The daily gridded precipitation dataset (Yatagai et al.,
2009) used for validation in this study was developed by
the Research Institute for Humanity and Nature (RIHN)
and the Meteorological Research Institute/Japan Meteor-
ological Agency (MRI/JMA). The data was created by
collecting rain gauge observational data across Asia
through the activities of the Asian Precipitation Highly
Resolved Observational Data Integration Towards the
Evaluation of Water Resources (APHRODITE) project.
The up to date APHRO_v1101R2 data, released in March
2013, is the only long-term (1961‒2007) continental-scale
daily product that contains a dense network of daily rain
gauge data for Asia. The data is available at http://www.
chikyu.ac.jp/precip/, and has a regular 0.25° resolution.
Since the APHRO_v1101R2 data exists only up to 2007,

Table 1 The physical parameterizations of the models

RegCM4-CLM WRF-CLM WRF-NOAH RSM-NOAH

Convection MIT-Emanuel Kain-Fritsch scheme Kain-Fritsch scheme RAS

Microphysics SUBEX WSM 3-class simple ice scheme WSM 3-class simple ice scheme CLD3

Longwave radiation CAM CAM scheme CAM scheme Chou

Shortwave radiation CAM CAM scheme CAM scheme Chou

Planetary boundary layer Holtslag YSU scheme YSU scheme MRF

Land surface CLM3.5 CLM3 NOAH NOAH

Soil thermal layers 10 10 4 4

Fig. 1 The computational domain. Outlined are five analysis regions as labeled; the shaded edge areas are the buffer zones where lateral
boundary conditions are specified.

646 Front. Earth Sci. 2016, 10(4): 644–661



the model comparison for precipitation uses the first 19-
year summer time period of 1989‒2007, and the simulation
of 2008 is only used for temperature evaluation.
The temperature data for model validation is the gridded

daily temperature dataset of the National Climate Center of
China Meteorological Administration (CN05). The dataset
is based on the interpolation from 751 observing stations in
China and comprises daily mean, minimum, and maximum
temperature (Xu et al., 2009). The data set covers the
period of 1961‒2009 over mainland China and is gridded
to a common latitude/longitude grid of 0.5°�0.5°. The
CN05 dataset shows general agreement with CRU
(Climatic Research Unit) data at the monthly scale (Xu
et al., 2009). Hong et al. (2014) compared five gridded
datasets including CN05 and found that country-wide
trends in temperature extremes are coherent among the
datasets. The CN05 dataset has been widely used in
regional climate model evaluation (Yu et al., 2010; Chen et
al., 2011; Gao et al., 2011; Guo et al., 2013; Dong et al.,
2015).
In the comparison of observations and simulations, the

simulations are interpolated onto 0.25°�0.25° resolution
for precipitation and 0.5°�0.5° resolution for temperature,
which fit the APHRO and CN05 (hereafter refers to
observation for simplicity) data respectively. All the
measurements are calculated at individual grid points and
then, when needed, are averaged over the subregions of
Fig. 1. Only land points are considered in the analysis.

3 Results

3.1 Seasonal means and biases

Figure 2 illustrates the spatial distribution of summer mean
precipitation during the period of 1989‒2007. According
to the observation data, the strong precipitation mainly
occurs over the Changjiang-Huaihe valley and parts of
Northeast China, and particularly in South China, where
the summer mean precipitation reaches 8–10 mm/day. On
the other hand, it is dry in the northern and western parts of
China in summer. As shown in Fig. 2, the models overall
capture well the main spatial patterns of precipitation in
summer, such as the main rainbelt over the Changjiang-
Huaihe valley and South China. However, there are large
differences between the models. The simulated levels of
precipitation by both RegCM4-CLM and RSM-NOAH are
generally less than those of WRF-CLM and WRF-NOAH.
Compared to the observations, the rainbelt in South China
is underestimated by the former two models, while
overestimated by the latter in intensity and magnitude.
On the other hand, the rainbelt over Changjiang-Huaihe
valley is shifted to the north in simulations by RegCM4-
CLM and RSM-NOAH. It is worth noting that the spatial
pattern of precipitation is similar between WRF-NOAH
and WRF-CLM, which decreases by latitude from south to
north, due to the two models using the same dynamical
frame and physical process parameterization schemes (See

Fig. 2 The spatial distribution of summer mean precipitation for the period 1989‒2007 (mm/day).
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Table 1). However, the WRF-CLM precipitation result is
generally greater over South China. The difference is
mainly induced by the land surface process.
Observed precipitation shows a number of topographi-

cally induced, fine scale regional features, i.e., to the
southeast of the Tibetan Plateau, over the Qilian mountains
and the Tianshan mountains. The models successfully
reproduce the strong precipitation around mountain areas
in summer. However, the simulated intensity is greater than
the observed intensity, especially in the southeastern
Tibetan Plateau, where the RSM-NOAH model simulates
a pseudo center of strong precipitation. The overestimate
of precipitation over some of the topographical chains in
the warm season is also documented by other researchers
(Giorgi et al., 2004; Feng and Fu, 2006).
Figure 3 shows the spatial distribution of normalized

bias of the summer precipitation for four models. The
normalized bias is defined as the simulations relative to the
observations (%). The western part of China overall has the
largest bias. The notable positive bias exists over most
areas of Northwest China and surrounds the Tibetan
Plateau, where the largest bias exceeds 100% for the four
models. Negative bias occurs over the Tarim and Junggar
Basin. Due to the few observation stations in the western
part of China, a large bias may exist in the observation
dataset. Han and Zhou (2012) found that the observational
dataset agrees with the stations’ data in climate mean
states, but underestimates precipitation intensity in the

Yangtze River Basin and overestimates precipitation
frequency over the western part of China. Therefore, the
deficiency of data is one of the possible reasons for the
overall large biases in the western part of China. The large
differences also exist over South China, where the WRF-
CLM and WRF-NOAH models overestimate precipitation
by about 50%, while the RegCM4-CLM and RSM-NOAH
underestimate by about 40%. In general, the WRF-CLM
simulates the largest amount of precipitation, while the
RSM-NOAH simulates the least among the four models.
The model performance for summer mean precipitation in
this study agrees with other model results (Fu et al., 2005;
Feng and Fu, 2006, 2007; Gao et al., 2011; Wang and Sun,
2013).
Figure 4 shows the 850 hPa wind fields and moisture

flux for the 19-year summer mean simulations. On the East
Asian continent, the southwestern and southeastern
monsoons prevail in the summer time, which transport
abundant water vapor northward from the Bay of Bengal
and the Western Pacific, respectively. The monsoon brings
plentiful precipitation to South China, then to Changjiang-
Huaihe, and later to North China. The simulated flow and
moisture flux are generally comparable with other model
results (Feng and Fu, 2006; Zhao, 2013). The four models
all simulated the westerly winds over the Indian sub-
continent and the southwesterly flow in southeast China, as
well as in the East China Sea and Japan. However, obvious
bias exists between the models. TheWRF-CLM andWRF-

Fig. 3 Normalized bias (%) of summer precipitation for the period 1989‒2007.
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NOAH simulated southwesterly flows are much stronger
and shift to the south, with weaker westerly winds in the
low latitudes than the other two models. Therefore, the
simulated transferred southerly winds from the South
China Sea to middle China are weaker, but to the southeast
are stronger. This corresponds to a weaker southeasterly
monsoon but a stronger southwesterly monsoon by WRF-
CLM andWRF-NOAH. For moisture transport at 850 hPa,
the WRF-CLM andWRF-NOAH simulated much stronger
moisture flux transport from the northern part of the
southwesterly flow from the Bay of Bengal to the central
part of eastern China, which has a significant effect on the
precipitation simulations for both the location and
intensity. As a result, the precipitation is overestimated in
southeast China by WRF-CLM and WRF-NOAH. As
discussed above, the main difference between the four
models lies in the more strongly simulated southwesterly
flow and moisture flux transported to southeast China by
WRF-CLM and WRF-NOAH, with the weaker moisture
flux in the western Pacific by RegCM4-CLM and RSM-
NOAH. This is the main reason for the simulated
precipitation bias of RCMs in the summer.
Overall, the models successfully simulated the main

spatial patterns of the summer mean surface air tempera-
ture over China during the 20-year period of 1989‒2008
(Fig. 5). The models capture well the south-north gradient

in temperature and also the topographically induced
regional detail, which is of the same scale in the
observations and simulations. Similar to the observations,
the simulated temperature gradually decreases by latitude
in the eastern part of China, where the terrain is flat. Due to
the complex terrain conditions over the western part of
China, there is obviously a temperature gradient in the
areas where the terrain is steep. A cold center occurs in
Tibetan Plateau both in observations and simulations,
while it is warm in the Tarim, Junggar, and Sichuan Basins.
The models also capture well the cold temperatures
induced by small mountains, such as the Tianshan and
Qilian mountains. In general, the WRF-CLM appears
characterized by a predominant warm bias of a few
degrees, while a small cold bias exists in RSM-NOAH and
more mixed biases are found in RegCM4-CLM.
As shown in Fig. 6, the normalized bias has obvious

differences between the models. Over the north of the
Changjiang-Huaihe valley, the RegCM4-CLM and WRF-
NOAH models simulate negative bias, while the WRF-
CLM and RSM-NOAH results are positive. In South
China, the models have a negative bias except for WRF-
CLM. All the models show large cold bias along the
Kunlun Mountains and the Himalayas in the west. Overall,
the bias is larger in the west of China than in the east for all
the models. Two factors could be adduced to explain the

Fig. 4 The simulated spatial distributions of wind (m/s, vectors) and moisture flux (g/(cm$s), shaded) at 850 hPa in summer for the
period 1989‒2008.
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Fig. 5 The spatial distribution of summer means surface air temperature (°C) for the period 1989‒2008.

Fig. 6 Normalized bias (%) of summer temperature for the period 1989‒2008.
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large bias over the western areas. First, the stations are
sparse, so the uncertainties of the observational data may
be larger in this region (Xu et al., 2009). Second, the bias
may be attributed to the complex terrain, which reduced
the model performance in temperature. For all of the
models, the normalized bias achieves ‒50% (‒8°C) to
‒30% (‒4°C) along the Kunlun Mountains and the
Himalayas, while less than �20% (2°C) over the east
part of China. In contrast, the RSM-NOAH model has an
obviously warm bias by 30%‒50% (4°C‒8°C) over the
Tibetan Plateau, this bias may be caused by the model
physics parameterization. In general, the model perfor-
mance for temperature over China is comparable to other
model results (Fu et al. 2005; Feng and Fu, 2007; Zhang
et al., 2007; Gao et al., 2011; Hu and Wang, 2011).
The simulated precipitation and temperature bias, and

the temporal and spatial correlations in every sub-region
are statistically computed and shown in Table 2 and
Table 3. The model bias is defined as the difference
between the 19 year (20 year) summer average simulated
precipitation (temperature) and the observational dataset.
All the models overestimate the summer mean pre-

cipitation in Northeast, North, and Northwest China, while
underestimate it in South China (Table 2). In the Yangtze
River Basin, the WRF-CLM and WRF-NOAH have a
positive bias of 1.7 mm/day and 1.6 mm/day, respectively.
However, the RegCM4-CLM and RSM-NOAH results
show a negative bias of 0.3 mm/day and 0.6 mm/day,
respectively. Due to the large amount of precipitation in
the Yangtze River Basin (5.5 mm/day) and South China

(7.2 mm/day), though the bias is larger than the other three
regions, the relative difference is smaller. Overall, the
WRF-CLM and WRF-NOAH systematically simulate
greater precipitation than the other two models. For
temporal correlations, the WRF-CLM (0.76) and WRF-
NOAH (0.68) results are obviously better than that of
RegCM4-CLM (0.18) and RSM-NOAH (‒0.22) in
Yangtze River Basin, while the RSM-NOAH results are
worst in North and South China. On the other hand, the
temporal correlations are comparable in Northeast (0.55‒
0.73) and Northwest China (0.57‒0.67) among the four
models.
Due to the complex terrain over China, the precipitation

and temperature not only vary in temporal, but also have
obviously large difference in spatial correlations. The
spatial correlation could partly reflect the model perfor-
mance for the spatial pattern of precipitation and
temperature. As can be seen in Table 2, the spatial
correlations simulated by WRF-CLM (0.54) and WRF-
NOAH (0.50) are much higher than that of RegCM4-CLM
(0.14) and RSM-NOAH (‒0.24) in Yangtze River Basin,
while the correlations are comparable with the models in
other subregions. Overall, the simulated spatial correla-
tions are higher in dry regions (Northeast (0.71‒0.87),
North (0.50‒0.77), and Northwest China (0.71‒0.83)) than
that of wet regions (Yangtze River Basin (‒0.24‒0.54) and
South China (0.15‒0.31)).
All the models show positive bias for temperature over

most areas of the domain, except for WRF-NOAH results
in Northeast (‒0.3°C) and Northwest (‒0.1°C) China,

Table 2 The bias, temporal and spatial correlations for summer mean precipitation between the simulations and observations dataset during the

period 1989‒2007 in subregions

Northeast China North China Yangtze River Basin South China Northwest China

Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R

OBS 3.0 3.0 5.5 7.2 0.7

RegCM4-CLM 0.7 0.70 0.71 1.1 0.41 0.50 ‒0.3 0.18 0.14 ‒3.0 0.56 0.31 0.6 0.63 0.76

WRF-CLM 2.0 0.55 0.76 0.9 0.58 0.61 1.7 0.76 0.54 ‒0.3 0.58 0.15 1.2 0.58 0.71

WRF-NOAH 1.8 0.73 0.87 0.8 0.61 0.77 1.6 0.68 0.50 ‒1.1 0.63 0.20 0.2 0.67 0.83

RSM-NOAH 0.6 0.60 0.87 0.9 ‒0.07 0.63 ‒0.6 ‒0.22 ‒0.24 ‒3.3 0.25 0.24 0.4 0.57 0.73

Table 3 The bias, temporal and spatial correlations for summer mean near surface temperature between the simulations and observations dataset

during the period 1989‒2008 in subregions

Northeast China North China Yangtze River Basin South China Northwest China

Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R Bias Temp. R Spatial R

OBS 19.3 22.4 25.1 26.0 16.8

RegCM4-CLM 0.0 0.85 0.96 0.3 0.46 0.96 0.3 0.60 0.95 0.4 0.60 0.93 0.2 0.84 0.99

WRF-CLM 1.2 0.81 0.95 2.1 0.76 0.95 2.3 0.67 0.92 1.8 0.56 0.93 2.7 0.77 0.99

WRF-NOAH ‒0.3 0.95 0.96 1.0 0.68 0.96 0.5 0.72 0.97 0.8 0.64 0.98 ‒0.1 0.79 0.99

RSM-NOAH 2.4 0.83 0.64 1.6 0.55 0.80 0.9 0.57 0.93 0.6 0.28 0.91 2.1 0.65 0.95
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which have small negative bias (Table 3). Among the four
models, the WRF-CLM (1.2°C‒2.7°C) simulated bias is
the largest, while the RegCM4 (0.0°C‒0.4°C) result is the
best. All the models well simulate both the temporal and
spatial correlations for temperature in all subregions,
which are rather better than that of precipitation, implying
that the model performance is better for temperature than
for precipitation.

3.2 Interannual variability

Figure 7 shows the interannual variations of precipitation
and temperature in five subregions in summer. The
increase of climate variability has important societal and
economic impacts since it is difficult to adapt to changes in
extremes (Giorgi et al., 2004; Duffy et al., 2006). The
values of interannual variation were computed by first
calculating the anomaly at each grid cell and then
averaging it over all the land grid points of the regions.
As can be seen, most of the models can reasonably
reproduce the interannual variation of the precipitation and
temperature in all subregions. Using the 1989–2007 time
period as a baseline, both the observations and simulations
show large interannual variations in precipitation. For
example, in Yangtze River basin, the observed precipita-
tion indicates that certain years are drier (2005‒2006) or
wetter (1997–1998) than the 19-year summer mean
climatological average. However, these wet and dry
anomalies do not occur simultaneously in all subregions.
In contrast, the observed precipitation is wetter (2005‒
2006) and drier (1997‒1998) in South China, but the
simulations are consistently like that in Yangtze River
basin. However, there are large differences between the
models in North China and Yangtze River Basin. Overall,
the simulated interannual variation of the temperature is
better than that of precipitation. The differences are smaller
for temperature between the models. In Northeast and
Northwest China, the simulations agree well with the
observations. In general, the WRF-CLM andWRF-NOAH
simulate better interannual variations of precipitation and
temperature compared with observations from those of
RegCM4-CLM and RSM-NOAH. The model performance
for interannual variability in the warm season may be
mainly affected by the local and mesoscale land surface
and convective processes (Christensen et al., 2001; Giorgi
et al., 2004; Steiner et al., 2009).
The temporal standard deviation was computed for each

grid cell to describe the spatial pattern of interannual
variability for precipitation and temperature. In summer,
the primary source of interannual variability over China is
the East Asian Summer monsoon, which affects precipita-
tion by varying the amount of moisture advected into the
region. The interannual variability of summer mean
precipitation (Fig. 8) shows that locations of high
interannual variability generally agree well with locations
of high summer mean precipitation (Fig. 2). The models

overall reproduce the observed spatial pattern of high
interannual variability over the Yangtze River basin and
South China, and low variability over the dry regions in the
northwest and the Tibetan Plateau. In addition, the models
well simulate the center of the larger variability over the
mountains in Tianshan, Qilian, and the Himalayas.
However, there are obvious differences between the
models. In wet regions, the WRF-CLM and WRF-
NOAH simulated interannual variabilities are greater
than observations, while the RegCM4-CLM and RSM-
NOAH results are smaller. In northern China (i.e., in the
Tarim Basin of Xinjiang) and the Northeast, the simulated
interannual variability is larger than observations.
The observed interannual variability of summer-mean

near-surface temperature is higher in north China,
especially in the east of Inner Mongolia, and decreases
gradually from north to south by latitude (Fig. 9). The
RegCM4-CLM and WRF-CLM models can well repro-
duce the spatial distribution and magnitude of the
interannual variability. The WRF-NOAH simulated inter-
annual variability coincides with observations in the
eastern part of China, but is higher in the Tibetan Plateau.
The RSM-NOAH simulates excessive variability in the
Tibetan Plateau, the Northeast, and the Yangtze River
Basin, which coincide with locations of large temperature
bias (Fig. 6).

3.3 Trends

In this section, the simulated climatic trends of summer
precipitation and temperature are compared to the
observations. The linear trend is defined as a least square
fit line to the 19 (20) years of the precipitation
(temperature). A good model performance for climatic
trends can also enhance the confidence in the model’s
ability for internal variability (Giorgi et al., 2004). The
spatial distribution of the linear trend of observed and
simulated summer precipitation during the period 1989–
2007 is shown in Fig. 10. The observation illustrates a
negative trend (drying) over Northeast and Northwest
China, and the Yangtze River basin, with a positive trend
(wetting) over North and South China. All the models well
capture the dominantly negative trends over the northern
part of China except for WRF-CLM, which gives a larger
negative trend in the Yangtze River basin and shifts to the
north. The models agree with the positive trend over South
China except for RSM-NOAH, which simulates an almost
negative trend over China. On the other hand, the positive
trends are better simulated by WRF-CLM and WRF-
NOAH, implying that they are essentially controlled by the
model dynamics. Overall, the RegCM4-CLM best simu-
lates the spatial pattern and magnitude of the linear trend
for summer precipitation.
Figure 11 shows the observed and simulated near

surface air temperature linear trend during the period
1989–2008. The observed temperature trend is positive
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Fig. 7 Interannual variations of summer means precipitation (left column) and temperature (right column) averaged over the 5
subregions of Fig.1.
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over Northeast China and the western part of China,
including Xinjiang, Qinghai, and Gansu, while in other
regions, the trend is small. Similar to the observations, all

the models simulate a positive trend over the northern part
of China, but the spatial patterns are different, i.e., the trend
simulated by WRF-CLM is smaller over the Northeast but

Fig. 8 Interannual variability of summer means precipitation (mm/day).

Fig. 9 Interannual variability of summer means surface air temperature (°C).
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larger in Ningxia and Shaanxi, while the trend simulated
by RSM-NOAH is smaller over the western part of China.
Over South China, WRF-CLM predicts a small negative

trend, while RSM-NOAH is positive; the other two models
simulate relatively small positive trends, which agree well
with the observations.

Fig. 10 Linear trend of summer time precipitation for the period 1980‒2008 (mm/day/decade).

Fig. 11 Linear trend of summer time near surface air temperature for the period 1980‒2008 (°C/decade).
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3.4 Extremes

Climate extremes have large negative impacts on society
and ecosystems. Analysis of simulated climate extremes
can lead to better understanding the model performance
and is useful to estimate the future changes in the
frequency and intensity of extreme events over China,
under the background of global warming. The indices of
heavy rain days R25 (identified as the number of days with
precipitation lager than 25 mm/day in summer) and heavy
precipitation fraction R95t (identified as the fraction of the
summer total precipitation due to events exceeding the
1989‒2007 95th percentile %) are selected to identify the
summer time extreme precipitation, while T2max (daily
maximum temperature at 2m height) and T2min (daily
minimum temperature at 2m height) are used for extreme
temperatures.

3.4.1 Extreme precipitation

The observed R25 shows that heavy precipitation mainly
occurs over South China and Changjiang-Huaihe valley,
and the R25 value is about 6‒10 days in summer over these
areas (Fig. 12). Overall, the models generally well capture
the special characteristics of R25, i.e., larger in the
southeastern coast but smaller inland, to the northwest.
The simulated R25 has a pseudo large center in the eastern
part of the Tibetan Plateau corresponding to the numerical
point storms, especially for the RSM-NOAH model. This

problem was also found for all the earlier models, in which
a false heavy precipitation center was always simulated in
the eastern Plateau (Feng and Fu, 2006; Jiang et al., 2012).
Also, the simulated R25 is larger than observations over
the Qilian and Tianshan mountains. For the subregions,
both the observed and simulated R25 are small in
Northwest China. In Northeast and North China, the
models overestimate R25 by 2‒4 days for WRF-CLM and
WRF-NOAH, and 1‒3 days for RegCM4-CLM and RSM-
NOAH. In the Yangtze River Basin and South China, the
WRF-CLM and WRF-NOAH overestimate R25 by 4‒6
days while RegCM4-CLM and RSM-NOAH underesti-
mate R25 by 2‒3 days.
Figure 13 displays the spatial distribution of observed

and simulated heavy precipitation fraction (R95t). The
observation shows that R95t is about 20%‒28% over the
eastern monsoon region of China, while about 10%‒15%
over the western part of China in summer. The models well
simulate the special patterns of R95t. In the western part of
China, the simulated R95t is close to observations since the
heavy precipitation events are rare. However, in the Tarim
Basin, the WRF-NOAH simulated R95t is obviously lower
than observations. In the eastern part of China, the WRF-
CLM and WRF-NOAH simulated R95t is slightly larger
than observation by 2%‒4%. On the other hand, the
RegCM4-CLM simulated R95t is about 8% higher than
observations over the Yangtze River Basin and North
China. RSM-NOAH is 4% lower over North China and
4%‒8% lower over the northeastern and southeastern parts
of China.

Fig. 12 Special distribution of heavy rain days (R25) for the period 1980‒2007.
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3.4.2 Minimum and maximum temperatures

Figure 14 shows the observed and simulated summer
means T2max and T2min over China during 1989‒2008. The
observed T2max shows a warm center in the Tarim Basin
and a cold center in the Tibetan Plateau. The models can
well reproduce the observed spatial pattern of T2max. The
magnitude of T2max is well simulated by RegCM4-CLM,
while the WRF-CLM has a warm bias of 2°C‒5°C over the
Tarim Basin and the eastern part of China. The WRF-
NOAH result shows a similar pattern to WRF-CLM, but
the warm bias is smaller. The RSM-NOAH model
systematically underestimates the T2max over most part of
China for 3°C‒6°C.
The summer mean T2min spatial distribution is similar to

T2max. The general spatial patterns are reproduced by the
models, though there are some large differences. The
WRF-CLM result has a warm bias of 2°C‒4°C over
southern China, the Tarim Basin, and the Tibetan Plateau.
The WRF-NOAH result is similar to the observations but
colder on the Tibetan Plateau. By contrast to T2max, the
RSM-NOAH seems to systematically overestimates the
T2min over China by 2°C‒5°C.
In general, the RegCM4-CLM ability to simulate T2max

and T2min is the best, while the RSM-NOAH is the worst
among the four models. Compared to mean temperatures
(Fig. 5), the differences between models and observations
are larger for T2max and T2min.

4 Discussion and conclusions

A 20-year summer time simulation during the periods of
1989–2008 for the regional climate of China is conducted
by four regional climate models coupled with land surface
models. Model performance is evaluated by comparing
their simulations of the means, interannual variability,
trends, and extremes of precipitation and temperature with
observations. The daily mean precipitation data during the
period 1989‒2007 and the daily mean, maximum, and
minimum near surface temperature data during the period
1989‒2008 are used for model comparison.
Overall, most of the models can reasonably simulate the

spatial pattern of summer mean precipitation and tempera-
ture. However, there are obviously differences between the
observations and model results. The WRF-CLM and
WRF-NOAH models which use the Kain-Fritsch convec-
tion scheme overestimate the precipitation in most
continental regions. Furthermore, the land surface process
has a large influence on the precipitation simulation. For
temperature, the models well reproduce the south to north
gradient over the eastern part of China, and the warm
center in Tarim, Junggar, and Sichuan Basin in the west. It
is important to emphasize that all the models captured well
the topography-induced summer time precipitation and
near surface temperature at the resolution considered.
Further analysis within the five subregions shows that

the model generally captures the rain belt in South China

Fig. 13 Special distribution of heavy precipitation fraction (R95t) for the period 1980‒2007.
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and the Yangtze River Basin, which are closely connected
with the East Asia monsoon rain belt movement in the
Indo-China Peninsula. In general, all the models over-
estimate the precipitation in Northeast, North, and North-
west China, while underestimate precipitation in South
China. In the Yangtze River Basin, the WRF-CLM and

WRF-NOAH have a positive bias, but the RegCM4-CLM
and RSM-NOAH model results are negative. In terms of
the temporal and spatial correlations of precipitation, all
the models perform well in the dry regions. The WRF-
CLM and WRF-NOAH results are obviously better than
RegCM4-CLM and RSM-NOAH in the wet regions. The

Fig. 14 The observed and simulated summer means T2max and T2min during 1989‒2008 (the top is T2max, and the bottom is T2min).
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temperature biases are generally less than �20% (2°C) in
all subregions. All the models overestimate the tempera-
ture over most of the domain, except for WRF-NOAH in
Northeast and Northwest. The good temporal and spatial
correlations indicate that the simulations agree well with
the observations. Overall, the WRF-CLM and WRF-
NOAH models simulate warmer and wetter, while
RegCM4-CLM and RSM-NOAH simulate colder and
dryer climate over large areas of China. The model
performance is better for temperature than for precipita-
tion.
The models can generally capture the major anomalies

in interannual variation of precipitation and temperature in
all subregions. Overall, the simulated interannual variation
of the temperature is better than that of precipitation for all
models. The WRF-CLM and WRF-NOAH both produce
the interannual variation of precipitation and temperature
with higher fidelity than either that of RegCM4-CLM and
RSM-NOAH. The models reproduce well the observed
spatial pattern of high interannual variability for precipita-
tion over wet regions, and low variability over the dry
regions. The WRF-CLM and WRF-NOAH show a
tendency to overestimate interannual variability of pre-
cipitation over large areas of China. All the models, except
for RSM-NOAH, capture well the spatial pattern and
magnitude of interannual variability in the temperature
gradient from south to north by latitude. The RSM-NOAH,
however, simulates excessive variability in the Tibetan
Plateau and the Yangtze River Basin, which coincide with
locations of large temperature bias. As discussed by
Christensen et al. (2001), land surface and convective
processes evidently play an important role in regulating the
simulated interannual variability of warm season surface
climate.
Most of the models can basically simulate the

dominantly negative linear trend of precipitation over
large parts of China. Noticeably, the models capture the
drying trend over the Yangtze River Basin and the
increasing precipitation trend over South China, though
the areas and magnitude differ from the observations. The
models reasonably simulate the increasing linear trend of
temperature over the north part of China, and a relatively
small negative trend in some areas. However, there are
differences between the models and observations, espe-
cially over South China. It is worth noting that the
precipitation and temperature trends are small and not
statistically significant in this study; further studies are
necessary to yield a more robust conclusion on this issue.
The models generally capture the sign and magnitude of

heavy rain days (R25). The large value of R25 occuring in
South China and the Changjiang-Huaihe valley correspond
to high precipitation in summer in these areas. The
observed and simulated heavy precipitation fraction
(R95t) are close to each other in the western part of
China due to the rare heavy precipitation events. On the
other hand, the WRF-CLM and WRF-NOAH simulate

well the R95t, while the RegCM4-CLM is higher and
RSM-NOAH is lower than observations in the eastern part
of China.
The models capture well the spatial pattern and

magnitude of the daily maximum and minimum tempera-
tures over China. The RegCM4-CLM ability to simulate
T2max and T2min is the best, while the RSM-NOAH is the
worst among the four models. The differences between
models and observations are larger for T2max and T2min than
that of mean temperature.
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