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Abstract Sea surface temperature (SST) is an important
variable for understanding interactions between the ocean
and the atmosphere. SST fusion is crucial for acquiring
SST products of high spatial resolution and coverage. This
study introduces a Bayesian maximum entropy (BME)
method for blending daily SSTs from multiple satellite
sensors. A new spatiotemporal covariance model of an
SST field is built to integrate not only single-day SSTs but
also time-adjacent SSTs. In addition, AVHRR 30-year SST
climatology data are introduced as soft data at the
estimation points to improve the accuracy of blended
results within the BME framework. The merged SSTs,
with a spatial resolution of 4 km and a temporal resolution
of 24 hours, are produced in the Western Pacific Ocean
region to demonstrate and evaluate the proposed metho-
dology. Comparisons with in situ drifting buoy observa-
tions show that the merged SSTs are accurate and the bias
and root-mean-square errors for the comparison are 0.15°C
and 0.72°C, respectively.

Keywords sea surface temperature (SST), Bayesian
maximum entropy (BME), remote sensing, data fusion

1 Introduction

Sea surface temperature (SST) is an important geophysical
parameter for various applications such as monitoring
climate change (Smith and Reynolds, 2003) and recon-
structing meso-scale and small-scale dynamics (Li et al.,
2001a; Isern-Fontanet et al., 2006; Chao et al., 2009;
Tandeo et al., 2014). In addition, SST is also a key input
parameter for oceanic and atmospheric models such as the

Ocean General Circulation Model (Yamamoto and Hirose,
2007). Satellite observation is a major source for obtaining
the global distribution of SST, which can be derived from
either microwave (MW) or infrared (IR) radiometer
observations (Li et al., 2001b; Zhou et al., 2012). However,
the SST data produced from IR and MW sensors have
different characteristics and accuracies. IR SSTs have
considerably high spatial resolutions (normally approxi-
mately 1 km). However, they are vulnerable to various
atmospheric contaminants such as cloud cover and high
concentrations of aerosols (Guan and Kawamura, 2003),
resulting in spatial discontinuity and significant missing
data rates. In contrast, MW SSTs are comparatively
resistant to clouds and aerosols, thus offering high spatial
coverage. However, MW SSTs have lower resolutions
(approximately 25 km), and cannot be retrieved in coastal
regions.
In view of the highly complementary characteristics of

IR and MW SST products, several SST fusion methods
have been proposed (Kawamura, 2004; Alvera-Azcárate et
al., 2005; Reynolds et al., 2005; Sakaida et al., 2005;
Kawai et al., 2006; Wang and Xie, 2007; Chao et al., 2009;
Donlon et al., 2012; Li et al., 2013b). Among them, the
Objective Analysis (OA), Optimum Interpolation (OI) and
VARiational (VAR) methods are the most commonly used
algorithms for blending SSTs. In addition, there are
alternative SST fusion methods such as Bayesian Max-
imum Entropy (BME) and Data INterpolating Empirical
Orthogonal Functions (DINEOF). The OI method can
smooth the fine characteristics of SST products in space,
thus limiting its application near the coast (Li et al.,
2013b). In addition, it is necessary for a priori information
about the error statistics of input data, which is often poorly
known (Bennett, 2002). The VAR algorithm applies the
same mathematical principle used by OI (Lorenc, 1986)
but uses different numerical implementation. Like OI, one
disadvantage of the VAR algorithm is the background error
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variances and the observational error covariances are
difficult to ascertain and somewhat subjectively specified
(Li et al., 2013b). DINEOF merely employs a single data
source and cannot acquire accurate high-resolution merged
SSTs in equatorial regions because of year-round cloudi-
ness. The BME method is a modern spatiotemporal
geostatistical technique based on a sophisticated mathe-
matical theory of space-time interpolation. BME has been
successfully applied to merge remotely sensed data such as
Ozone (Christakos et al, 2004), Leaf Area Index (LAI) (Li
et al, 2013a) and SST (Li et al, 2013b). It can integrate less
precise and uncertain “soft” data and express them as
probability distributions or uniform distributions. There
are two major advantages to this feature: first, we can
integrate not only exact measurements (“hard data”) but
also soft data with uncertainty explicitly expressed, which
greatly contributes to accurately predicted results. Second,
when blending data of different spatial observation scales,
an error model linking data of different spatial resolutions
can convert data of coarse resolution to corresponding soft
data of fine resolution, which can then be integrated in the
BME framework. As a result, the scale issue due to
discrepancies in spatial resolutions is solved and the
uncertainty caused by the scale issue is effectively taken
into account (Lee et al., 2008). The successful application
of the BME method in producing 8-day average SSTs
provides a certain confidence in extending the BME
method to produce daily SST products. Compared with 8-
day IR SSTs, daily IR SSTs have considerably lower
spatial coverage. To overcome this drawback, the BME
method used in Li et al. (2013b) must be optimized to
produce daily SST blending data. The primary goal of this
study is to produce spatially complete, accurate daily SST
products by merging various satellite SSTs using the BME
fusion method. To achieve this goal, a new spatiotemporal
covariance model of the SST field is introduced and time-
adjacent SST information is imported to improve the
spatial coverage. In addition, AVHRR 30-year SST
climatology data are also added as new background a
priori knowledge to improve the fusion accuracy. The
study area and data used in this study are introduced in
Section 2. In Section 3, the proposed methodology is
briefly presented. Section 4 shows the merging experi-
ments and validation results. Finally, discussion and
conclusions are presented in Section 5.

2 Study area and data description

2.1 Study area

The study area is part of the west-central Pacific Ocean (see
Fig. 1). The air-sea interactions over the west-central
Pacific Ocean have a remarkable impact on the short-term
climate variations over China; when the SST of Western

Pacific Ocean in winter is unusually warmer than normal,
the result is drought in northern China and floods in
southern China. Colder SSTs tend to do the opposite, so it
is important to improve the accuracy and spatial resolution
of SST products in the west-central Pacific Ocean area. To
assure computing efficiency, we split the entire study area
into six sub-regions of equal size.

2.2 Data

2.2.1 Satellite data

MODIS SSTs, AVHRR SSTs, AMSR-E SSTs, TMI SSTs,
and AVHRR climatology data in 2006 are used in this
study. The MODIS SSTs are provided by the Ocean Color
website (available online at http://oceancolor.gsfc.nasa.
gov/, Brown et al., 1999). The AVHRR SSTs and
climatology data are obtained from the US National
Oceanographic Data Center and GHRSST (available
online at http://pathfinder.nodc.noaa.gov, Casey et al.,
2010), and the time span of the climatology data is from
1982 through 2008. The AMSR-E SST (Wentz and
Meissner, 2000) and TMI SST (Gentemann et al., 2004)
data are both produced and provided by Remote Sensing
Systems (available online at http://www.remss.com/). The
specifications of these satellite SSTs are shown in Table 1.
The data are typically provided with quality flags, so we

select those SSTs with the most restrictive flags. To
eliminate outliers, we calculate the standard deviation (SD)
for each SST and remove any SSTs that are more than 3
SDs from the mean. To optimally utilize daytime retrievals,
two continuous steps are performed. First, we use the
simple empirical model of diurnal warming developed by
Gentemann et al. (2003) to remove the warming of
AVHRR and TMI retrievals. Second, we adjust the
MODIS and AMSR-E daytime data through regression
against the revised AVHRR and TMI retrievals, respec-
tively.

Fig. 1 The study area of this study (10°S – 40°N, 100°E – 180°
E).
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2.2.2 In situ data

The in situ data used in our study are the drifting buoy SST
measurements collected and processed by the Atlantic
Oceanographic and Meteorological Laboratory (http://
www.meds-sdmm.dfo-mpo.gc.ca). These are measure-
ments obtained at a depth of 0.3 m during four daily
observations at 0:00, 6:00, 12:00, and 18:00 UTC. To
minimize the possible diurnal warming of in situ SSTs, we
select the minimum value of the four observations as the
daily in situ SST. The in situ SSTs of the same day
belonging to the same grid square are then averaged.

2.2.3 MW_IR OI SST

The operational Optimally Interpolated (OI) SST daily
products used for comparison with the merged SSTs are
provided by remote sensing systems (http://www.remss.
com/measurements/sea-surface-temperature/oisst-descrip-
tion). These products are blended together using the OI
scheme described in Reynolds and Smith (1994) with
microwave and IR data. The SSTs are frequently referred
to as MW_IR OI SSTand their spatial resolutions are 9 km.

3 Methodology

3.1 The BME method

As one of the modern spatiotemporal geostatistics
techniques, BME does not make any of the restrictive
assumptions of conventional interpolation techniques
(Christakos et al., 2004). In the BME context, the SST
data are continuous at pixel scale. Under the hypothesis
that various adjacent SST observations are available, the
nonlinear mean estimation x̂k,mean of SST at the estimation
point (x, y) at time t can be calculated from Eq. (1):

x̂k,mean ¼ !dxkxkf �ðxk xSoft,xHardj Þ, (1)

where f �ðxk xSoft,xHardj Þ is the posterior probability density
function (PDF) that is consistent with the adjacent SST
observations available. xSoft and xHard denote the soft and
hard values of the adjacent grids, respectively. The soft

data are measurements with errors that cannot be ignored
and are always described in the form of probability
functions or intervals of values, whereas the hard data are
exact measurements with negligible errors.
The posterior PDF at the estimation point is updated

from the prior PDF through the application of the
operational Bayesian conditionalization rule when hard
and soft data are involved. The prior PDF is obtained by
maximizing the entropy under the constraint of general
knowledge bases of the SST field. General knowledge
bases typically include space-time statistics (such as
multiple-point, nonlinear, and high-order statistics), phy-
sical laws, primitive equations, and governing relation-
ships; this study utilizes the mean and covariance moment
of the SST field. The BME’s action principle of choice is
the expected information maximization in light of the
general knowledge bases. To maximize the expected
information, we essentially maximize the corresponding
entropy function. With the general knowledge and
maximum entropy theory, we can obtain the exact form
of the general knowledge-based PDF.

3.2 Error model linking different spatial scales data

This study utilizes the approach described by Lee et al.
(2008) to account for the error caused by different spatial
scales.
X(s) and Z(s') are both spatial random fields (SRFs). X(s)

is a local-scale SRF representing the spatial distribution of
the variable X centered at s, and Z(s') is defined as the
average of X(s) over a 2-D spatial domain A centered at s'.

Zðs0Þ ¼ !
�2As0

d�X ð�Þ= As0j jj j: (2)

To analyze the relationship between the local scale X(s)
and the A-scale Z(s'), a new spatial random field Yðs,s0Þ is
defined:

Yðs,s0Þ ¼ X ðsÞ – Zðs0Þ: (3)

When the spatial random field is homogeneous and the
mean trend is removed, the expected value of Yðs,s0Þ, i.e.,
EðYðs,s0ÞÞ is zero.
The variance describing the uncertainty associated with

the observation scales can be written as

Table 1 Specifications of the satellite derived SST products used in this study.

SST data Spatial range Spatial resolution /km Time range Temporal resolution /hours

MODIS SST

100° E–180° E,
10° S–40° N

4

2006

12

AVHRR SST 4 12

AMSR-E SST 25 12

TMI SST 25 12

AVHRR climatology data 4 24
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where �2X is the variance of the SRF X(s) and CX is the
covariance between X(s') and X(s). Therefore, we can
obtain a probabilistic soft datum χs for the local scale X at
point s given a A-scale observed value ζ at point s':
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�
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Y

�
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�
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�
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(5)

Because IR SSTs have a higher resolution and can reflect
the details of SST spatial features, we regard them as hard
data. MW SSTs are transformed to corresponding soft data
with a Gaussian probability distribution using the error
model described above. In addition, we introduce AVHRR
climatology data into our method to acquire soft data at
estimation points, and these soft data are also expressed in
the form of a Gaussian probability distribution. The means
are the exact values of the climatology data and the SDs are
equal to 3 SDs of climatology data. The primary goal of
using AVHRR climatology data is to define the preliminary
pattern of the SST field in the estimation regions and
improve the accuracy of the merged SSTs.

3.3 Trend analysis

According to the BME method, the spatial estimation
process operates on de-trended data. It is essential to
quantify and remove large-scale effects prior to investigat-
ing the autocorrelation structure of the data (Spadavecchia
and Williams, 2009). Therefore, we must conduct an SST
field trend analysis and remove the trend before modeling
the covariance function.
The SST distribution is represented by the spatiotem-

poral random field

SSTðs,tÞ ¼ SSTðs,tÞ þ SSTanoðs,tÞ, (6)

where s represents space and t represents time. SSTðs,tÞ is
the space-time mean trend of the SST, and it can be
calculated from the BMElib package (Yu et al., 2007) by
using a moving window average of SSTðs,tÞ data with an
exponential space/time filter. The residual field SSTanoðs,tÞ
is homogenous in space and stationary in time.

3.4 Space/time covariance model

The covariance function describes variability in space and
time, and its value will typically decrease as distance
(space or time) increases (Cressie, 1992). This study uses a
composite space/time covariance model with nested
exponential and Gaussian components as shown in Eq.
(7). We select the following space/time model rather than a

space model because the former can integrate time adjacent
SSTs and produce more accurate and informative predic-
tions (Christakos and Serre, 2000; Christakos et al, 2001):

cX ðrij,τijÞ ¼ c1e
– 3rij
ar1 e

– 3τij
aτ1 þ c2e

– 3r2ij
a2r2 e

– 3τ2ij
a2τ2 , (7)

where rij ¼ sij j – sj
�
�
�
� is the spatial distance between any

pair of locations and τij ¼ tij j – tj
�
�
�
� is the corresponding

temporal distance. c1 and c2 denote the sill coefficients, ar1
and ar2 denote the spatial ranges of the fluctuation, and aτ1
and aτ2 denote the temporal ranges of the fluctuation. The
experimental space/time covariance of the SST residual is
calculated for pairs of points SSTanoðiÞ and SSTanoðjÞ at
spatial and temporal lags rij and τij, respectively. A
theoretical model for the SST covariance can then be
obtained by fitting the non-separable space/time function
described above to the experimental covariance.
The processing flow diagram of this study is shown in

Fig. 2.

4 Experimental results

Using the satellite data described above during the one-
year period of 2006, 4-km daily cloud-free SST products
are generated in the Asia-Pacific region of 10°S –40°N,
100°E–180°E.

4.1 Modeling space/time correlation structure of SST field

The parameters of the covariance model in Eq. (7) fitted to
the experimental residual SSTs are shown in Table 2, and
the corresponding model is plotted in Fig. 3. The
variabilities of SSTs in sub-regions Area01 and Area04
have greater covariance values than the other sub-regions,
and the variability of SSTs in sub-region Area06 has the
lowest covariance value. This may be because sub-regions
Area01 and Area04 are closer to land and their SSTs are
thus easily affected by the continental climate and overland
flow. In addition, the variabilities of small-range SSTs in
the nearshore areas (Area01 and Area04) are greater than
those of large-range SSTs, whereas the opposite character-
istics are revealed in the pelagic regions (Area03 and
Area06).

4.2 Validation of merged SSTs using drifting buoy
measurements

The comparison of the blended SSTs with in situ
measurements is plotted in Fig. 4(a); the total number of
in situ data points is 50,726. The bias and the root-mean-
square error (RMSE) are 0.15°C and 0.72°C, respectively.
We then use the BME method employed in Li et al.
(2013b) to produce blended SST products (hereafter called
‘pre-improved SSTs’), and their comparison results are
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plotted in Fig. 4(b). The total number of corresponding in
situ points is 45,367 because of the relatively low spatial
coverage of the pre-improved SST products (the daily
average availabilities of pre-improved products is 90.7%
compared with the full spatial coverage of the blended
SSTs using the proposed method). The bias of the pre-
improved SSTs is 0.18°C, with an RMSE 0.83°C. In
general, the proposed method provides better results in
terms of accuracy and spatial coverage compared with the
one used in Li et al. (2013b).
To demonstrate that adding AVHRR climatology data

can improve SST mapping accuracy, we recalculate the
interpolation using the same satellite SSTs without the
AVHRR climatology data. The comparison between the
interpolation results and the in situ data is plotted in
Fig. 4(c). As seen in Fig. 4(c) and Fig. 4(a), the prediction
results without AVHRR climatology data are less accurate
in terms of both bias and RMSE.
We also make a comparison between the in situ buoy

observations and the microwave plus infrared (MW_IR)
OI SST products provided by Remote Sensing Systems.
We can see in Fig. 4(d) that the bias and RMSE of the
operational MW_IR SSTs are slightly lower than the
proposed method. However, the resolution of the MW_IR
SSTs is 9 km, which is much coarser than the proposed
method (4 km). These comparison results show that this
new method not only enhances the spatial resolution of the
SST products but also maintains their accuracies.

Overall, the BME method proposed in this study can
improve merging accuracy by incorporating the AVHRR
climatology data and making the most of the soft data
transformed by the MW data along with the AVHRR
climatology data.
Because the SST patterns in these regions vary in

different times, we compare the merged results with the
drifting buoy data in four time frames and plot the
distribution of the corresponding buoy data and these
biases to assess the accuracy of the merged SSTs in more
detail. The compared results are shown in Fig. 5. The bias
and RMSE of the merged SSTs in JFM (Jan-Feb-Mar) as a
whole are relatively greater than those in the other three
time frames. The biases and RMSEs in AMJ (Apr-May-
Jun), JAS (Jul-Aug-Sep), and OND (Oct-Nov-Dec) are
comparable. The preliminary reason for greater bias and
RMSE in JFM is the lack of accurate IR SSTs; therefore,
the soft data, including microwave and climatology SSTs,
occupy a greater proportion in the fusion framework. In
addition, the accuracy of merged SSTs in the tropical
western Pacific is greater than those in other regions in all
four time periods.

4.3 Spatial-temporal evolution of Kuroshio Current
revealed by merged SSTs

In addition to the improvement of spatial coverage, another
objective of merging SSTs is preserving the fine-scale

Fig. 2 Flowchart of the BME blending method proposed in this study.
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Table 2 Parameters of space–time covariance model of different sub-regions

Area c1/°C
2 c2/°C

2 ar1/km ar2/km aτ1/days aτ2/days

Area01 0.32 0.19 104 832 10 32

Area02 0.23 0.21 152 1040 13 45

Area03 0.14 0.19 200 1340 25 67

Area04 0.35 0.14 104 792 10 28

Area05 0.24 0.21 112 924 25 60

Area06 0.11 0.17 200 1400 25 72

Fig. 3 The spatiotemporal covariance model of different sub-regions as a function of the spatial lag (s-Lag) and the temporal lag (t-Lag).
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spatial pattern of IR SST products, which can clearly reveal
the small-scale spatial and temporal ocean structures
associated with ocean currents and upwelling (Li et al.,
2001c). To demonstrate the potential ability of merged
SSTs in revealing the spatial-temporal evolution of small-
scale structures, we plot a Hovmöller diagram (Fig. 7) of
the PN section (Fig. 6) in the East China Sea. The PN
section is the typical cross-section of the Kuroshio
Current’s principle axis in the East China Sea and has
become one of the most important sections used to study
the spatial-temporal evolution of the Kuroshio Current.
Figure 7(a) shows the Hovmöller diagram plot using the
merged SSTs and Fig. 7(b) provides a reference plot using
the MW_ OI SST products. Clearly we can see the spatial-
temporal evolution of SSTs in the PN section, and the
characteristics shown by these two pictures are almost
identical. In addition, we calculate the local variance of the
merged SSTs and MW_OI products to evaluate these

abilities of showing the fine-scale spatial pattern. A greater
local variance reveals a finer spatial pattern. The local
variance of merged SSTs is computed within a 25�25
moving window and the local variance of the MW_OI
product is computed within a 9�9 moving window that
covers nearly the same area as the former one. The result is
shown in Fig. 8, and we can see that the local variance of
the merged SSTs is a bit greater than that of the MW_OI
SSTs, which means that the merged SSTs can capture finer
spatial patterns.

5 Discussion and conclusions

This study employed a BME method to produce SST
products with a spatial resolution of 4 km and a temporal
resolution of 24 hours. Within the framework of the BME,
we constructed a space/time covariance model of an SST

Fig. 4 Comparisons between in situ buoy observations and merged SSTs using different fusion methods: (a) the proposed BMEmethod;
(b) existing BME method; (c) the proposed BME method without using AVHRR climatology data; (d) operational MW_OI SST product.
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Fig. 5 Comparisons between merged SSTs and in situ buoy observations and the corresponding spatial distribution of the data in (a)
JFM, (b) AMJ, (c) JAS, and (d) OND.
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field rather than a space covariance model to integrate
more SSTs. We also introduced AVHRR 30-year climatol-
ogy data as soft data in the estimation points. The results
showed good performance in acquiring merged SSTs with
high accuracy and spatial coverage. An evaluation using
drifting buoy SST observations showed a bias of 0.15°C
and an RMSE of 0.72°C. Furthermore, the accuracy of the
merged SSTs was evaluated in different times and showed
that the bias and RMSE in JFM was a bit greater than those
in the other three time frames. To evaluate the merged
SSTs’ ability to capture fine spatial patterns, a Hovmöller

diagram of SSTs in the PN section of the East China Sea
was plotted, and the local covariances of the merged SSTs
and MW_OI SST products were compared and showed
good results. We did not attempt to make any prior
assumptions and objectively specified the parameters,
except for the determination of the space/time covariance
model because the model fitting approach was based on
visual inspection. In addition, we did not include in situ
SSTs, even though they were highly accurate, because it is
difficult to eliminate the error caused by different spatial
scales of in situ observations and satellite SSTs. If this
issue can be resolved, the accuracy of merged SSTs may be
further improved.
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