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Abstract Landslides are among the most serious of
geohazards in the Xi’an Region, Shaanxi, China, and are
responsible for extensive human and property loss. In
order to understand the distribution of landslides and
assess their associated hazards in this region, we used a
combination of frequency analysis, logistic analysis, and
Geographic Information System (GIS) analysis, with
consideration of the spatial distribution of landslides.
Using the GIS approach, the five key factors of surface
topography, including slope gradient, topographic wetness
index (TWI), height difference, profile curvature and slope
aspect, were considered. First, the distribution and
frequency of landslides were considered in relation to all
of the five factors in each of three sub-regions susceptible
to landslides (Qin Mountain, Li Mountain, and Loess
Tableland). Secondly, each factor’s influence was deter-
mined by a logistic regression method, and the relative
importance of each of these independent variables was
evaluated. Finally, a landslide susceptibility map was
generated using GIS tools. Locations that had recorded
landslides were used to validate the results of the landslide
susceptibility map and the accuracy obtained was above
84%. The validation proved that there is sufficient
agreement between the susceptibility map and existing
records of landslide occurrences. The logistic regression
model produced acceptable results (the areas under the
Receiver Operating Characteristics (ROC) curve were
0.865, 0.841, and 0.924 in the Qin Mountain, Li Mountain
and Loess Tableland). We are confident that the results of
this study can be useful in preliminary planning for land

use, particularly for construction work in high-risk areas.
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1 Introduction

Landslides and debris flow are among the most hazardous
consequences of heavy rainfall in mountainous regions
(Xu et al., 2010; Liu et al., 2012; Tang et al., 2012; Yune et
al., 2013). In such areas, a landslide can occur rapidly with
little warning and exert heavy impulsive loads on objects
in their paths (Keefer et al. 1987; Iverson. 1997; Cui et al.,
2012). Landslide prediction models can be classified as
advanced prediction or simple prediction models (Dai et
al., 2002; Guzzetti et al., 2006, 2008). The advanced
prediction model, which is also known as landslide
assessment, is generally based on long-term factors
(formation background) (Dai et al., 2001); a simple
prediction model is generally based on short-term factors
with immediate effects (factors causing geo-hazards
directly). Although advanced prediction is an assessment
of probability and cannot precisely predict the times of
landslide occurrences, it can provide information regarding
the areas that are prone to landslides, as well as provide an
early warning reference for engineering and construction
(Cui et al., 2013). Many methods have been used to assess
landslides, including expert evaluation, statistical methods,
and mechanical approaches (Dai et al., 2002; Fell et al.,
2008; Xu et al., 2012). The statistical method is the most
widely used approach used for landslide assessment. This
method can overcome the subjectivity of expert evaluation

Received January 6, 2014; accepted May 18, 2014

E-mail: rockfans09@163.com

Front. Earth Sci. 2015, 9(3): 449–462
DOI 10.1007/s11707-014-0474-3



and the demanding geotechnical data requirements of
mechanical approaches and has produced successful
results (Dai et al., 2001; Guzzetti et al., 2006; Kayastha,
2012; Xu et al., 2013). However, statistical results are
largely dependent on the quality of data and the analysis
method used (Dai et al., 2002; Ermini et al., 2005). Data
may originate from terrain factors, geological factors,
precipitation factors, seismic factors, and/or human
activity factors. The methods of analysis commonly used
include regression analysis (Bai et al., 2010, 2011), neural
network analysis (Ermini et al., 2005), discriminatory
analysis (Nandi and Shakoor, 2010), and fuzzy logic
analysis (Kayastha, 2012). Causative factors such as soil
strength and depth of the water table cannot be measured
cost-effectively on a regional scale. Therefore, the
mapping of landslide susceptibility using GIS technology
has become an important tool among these methods, as it
enables the rapid assessment of an area with limited
resources, in which only landslide inventories, and
topographical and geological maps are required for this
method.
The city of Xi’an and its surroundings in Shaanxi

Province, China are subjected to frequent landslides. This
has led to the continuous and repeated destruction of
houses, buildings, roads, waterworks, and waste disposal
infrastructure in several districts of the city and surround-
ing areas (Li, 1992). For example, a storm with heavy
rainfall on September 12‒17, 2011 resulted in the largest
landslide of the current decade along the edge of the
tableland, and caused destruction of houses and roads, and
the loss of 32 lives. Therefore, accurate landslide
assessment has always been a key concern to the regional
government. As early as the 1980s, the Geology Environ-
mental Monitoring Station had installed a ‘‘geo-hazard
inventory detail’’ in this region in order to monitor
landslide activity for the purpose of making future
predictions.
Unfortunately, passive mitigation measures have not

been very successful in preventing landslides. There are
two reasons for the failure of landslide prevention; firstly,
the measures taken were based on past landslides and the
areas that were potentially vulnerable to landslides in the
future were not considered. Some of the catastrophic
landslides occurred in places that were considered to be
safe over several decades. Secondly, the late recognition of
the fact that landslides might not only be triggered by
precipitation but can also be triggered by human activity
has been a contributing factor. The practice of modifying
slopes for construction and other engineering activities is
unavoidable because of terrain limitations in the area.
However, these activities made the slopes steeper and even
more susceptible to landslides. This makes the develop-
ment of landslide susceptibility mapping an important
means of predicting landslides and examining the effects of
human activity.

In order to reveal the general characteristics of landslides
and to assess their potential distribution, it is important to
statistically analyze the areas in which landslides have
occurred and where there is trend to slope failure. In this
study, the logistic regression method is used to predict the
potential areas of landslide occurrences, and ROC curve
analysis is applied to select the best-fitting model for
predicting their potential distribution in the Xi’an Region.
Based on these results, the potential distribution is mapped
in the study area. Field investigations on the regional
topography, as well as the existing literature on the subject
were reviewed with respect to landslide occurrences. On
these bases, a GIS-based probabilistic analysis approach
was developed and applied to evaluate landslides and
associated hazards in this region.

2 Area setting

The Xi’an Region, located in central Shaanxi, is a rift basin
between the Qin Mountain to the south and a loess plateau
to the north (Fig. 1). This rift basin lies between latitudes
33°39′30"N to 34°45′00"N and longitudes 107°39′00"E to
109°49′00"E (Fig. 1). It spans a large area of the Wei River
Basin and parts of the Qin Mountain with a total area of
about 10,106 km2. The mean altitude is 1,027 m, with an
altitude range from 228 m near Lindong (Wei River Basin)
in the east to 3,772 m near Zhouzhi (Qin Mountain) in the
west (Fig. 1). The Wei River is the main watercourse from
west to east and has several dozen tributaries originating
from the Qin Mountain from north to south (Fig. 1).
Tectonically, the region is situated at the junction of the
Erdos, Ganqing, South China, and North China Blocks.
This tectonic setting has resulted in a series of Quaternary
thrust faults forming in this region (Li, 1992), including the
North Qin Mountain fault, Li Mountain fault, and the
Guanshan fault. This indicates that the geological setting of
this area is highly complex.
The region can be divided into four geomorphic units

according to their topographical and geological features:
Qin Mountain (A: Proterozoic and mesozoic granite
gneiss), Li Mountain (B: pre Cambrian metamorphic
rocks and covered by Quaternary loess), Loess Tableland
(C: covered by Malan, Lishi and Wucheng loess) and Wei
River Plain (D: Quaternary fluvial sediments and deposit)
(Fig. 2).
The Qin Mountain zone, which occupies 50.2% of the

region, runs along a west-east axis with a decrease in
altitude along this axis. In addition, the north slopes are
steeper than the south slopes. Several streams originate
from this range and flow from north to south; these streams
have gradually eroded the mountains and created the
rolling topography characteristic of this region. The
average slope of the Qin Mountain in this region is
27.8°, with a range from 76.9° to 12.8°. The Qin Mountain
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uplift is located at the footwall of the Qin North normal
fault zone. The valley is primarily V-shaped and deeply
eroded with a slope of more than 35°. This mountain range
is primarily composed of Proterozoic and Mesozoic granite

gneiss with a highly weathered rock surface. Colluvial
derived from these units cover the slopes, which are
subject to frequent shallow landslides and other mass
movement processes triggered by precipitation (Peng et al.,

Fig. 1 Landform characteristics of the Xi’an Region (left) and landform cross-section (right); (a) A‒A′ cross-section; (b) B‒B′ cross-
section.

Fig. 2 Simplified geological map of the four sub-regions in Xi’an, China.
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1992).
The Li Mountain Zone in the southeast which occupies

6.4% of the Xi’an region is fault block uplift. It belongs to
the family of tectonic uplift block mountains, with mostly
intermediate to low elevation peaks; this range is
influenced by the Li and Lintong-Chang’an faults. The
highest elevation is 1,296 m above mean sea level, which
is over 800 m above the Wei River plain. The landform has
high peaks in the central part from where streams originate
(radial distribution). The average slope is 14° with a range
of 64° to 9°. This tectonic unit is primarily composed of
pre-cambrian metamorphic rocks and the surface is
covered by Quaternary loess. Slip surfaces form easily at
the junction of rock and soil, resulting in the formation of a
debris landslide in this region.
The Loess Tableland zone which occupies 4.6% of the

Xi’an region is also located in the southeast. This zone
decreases in elevation from the southeast to the northeast.
Streams flowing along the edge of this tableland have
eroded the loess, resulting in the formation of steep slopes
and a flat tableland surface. The average slope of the loess
tablelands is 9° with a range from 61° (distributed along
the edge of the tableland) to 0°. The altitude varies from
834 m to 404 m.
Quaternary loess accounts for all of the Malan and Lishi

loess deposits. In addition, these Quaternary deposits are
fragmented in distribution, both in the gully and on the
slopes along the edge of the tableland. Because of its
relatively loose texture, metastable strength characteristics,
collapsibility, and unique jointing structure (Lei, 1991;
Liao, 2007), this material is very susceptible to instability
in this area.
The Wei River plain which occupies 38.8% of the Xi’an

region is located in the north. It is a flat landform
characterized by alluvial deposits with no landslide
occurrences.
The Xi’an Region has a monsoon-influenced climate

with a prominent peak in precipitation during summer and
a dry season in winter. During the period from May to
October, the region receives about 77 percent of its total
annual precipitation (Liao, 2007). Based on the meteor-
ological records (1980‒2010), the average annual pre-
cipitation and monthly precipitation are 584.9 mm and
53.7 mm, respectively, and the maximum annual precipita-
tion, monthly precipitation, and daily precipitation are,
1131.7 mm, 258.8 mm, and 72.3 mm, respectively. Unsur-
prisingly, 97.3% of landslide occurrences have also been
concentrated in this 6-month period (Zhao, 1993; Liao,
2007).
Warm and humid air from the southeast as well as cold

and dry air from the Mongolian Plateau influences the
regional climate, resulting in a predominantly extra-
tropical monsoon climate. A stationary cold front is
observed during autumn every year, resulting in long
periods of heavy precipitation which in turn often causes
landslides.

3 Methodology

The most commonly used multivariate statistical
approaches for predicting landslides are discriminant
analysis and logistic regression. Among the wide range
of statistical methods proposed in the assessment of
landslide susceptibility, logistic regression analysis has
been found to be one of the most reliable approaches (Dai
et al., 2002; Ayalew and Yamagishi, 2005; Guzzetti et al.,
2006; Lee, 2007; Lee and Pradhan, 2007; Bai et al., 2010,
2011; Baghem et al., 2012). The advantage of this model is
that it can be used even if the basic assumption of
normality of the variables has not been met (García-
Rodríguez et al., 2008). Altogether, logistic regression is
well suited for the analysis of a dependent variable that is
either present or absent; it is a statistical method that
predicts the probability of an event occurrence, and has
been used in various studies to predict landslides
(Piacentini et al., 2012).
Logistic regression is used to analyze the relationships

between one dependent variable and several independent
variables, creating a mathematical model that predicts the
probability of occurrence of the dependent variable. We
used logistic regression analysis in order to predict
landslide occurrence in a particular area. This method
assigns values of either 1 or 0 to each variable to analyze
the probability of a landslide occurrence, and hence, these
values correspond to landslide occurrence or non-occur-
rence, respectively.
In the case of landslide prediction, the objective of

logistic regression is to develop a best-fitting model that
describes the relationship between the dependent variable
(Y) of landslide occurrence (or non-occurrence) and the
independent variables ( X1, X2,…, Xn) of the factors that
influence landslide occurrences, such as slope angle,
aspect, topographic wetness index (TWI), height differ-
ence, and slope shape. Logistic regression returns the
probability of a positive binomial outcome in the form
(García-Rodríguez et al., 2008; Bai et al., 2010, 2011;
Baghem et al., 2012; Piacentini et al., 2012):

Y ¼ ex=1þ ex, (1)

where, Y is the probability of a landslide occurrence in
percent; x is β0 + β1X1 + β2X2 + …+ βiXi; βi is the ith

coefficient of the logistic regression model and is Xi’s
contribution to the model; and Xi (i = 1, 2,…, n) represent
the influencing factors or independent variables of land-
slide events. Five independent variables of terrain factors
describing the slope gradient, TWI, height difference,
profile curvature, and slope aspect were evaluated.
The advantage of the logistic regression approach is that

it does not require or assume linear dependencies between
the dependent variable and the independent variables
involved. The corresponding coefficients can be estimated
through the maximum likelihood criterion, by which the
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more likely unknown factors can be estimated. In this
study, the independent variables for the geographical data
used in this study were included in the GIS environment
followed by a logistic regression analysis using SPSS, the
flowchart of landslide susceptibility analysis shows in
Fig. 3.

4 Data analysis and landslide distribution

Landslide occurrences were recorded via field investiga-
tions in this study and by the Geology Environmental
Monitoring Station of Xi’an during the period 1980–2010.
The landslide database compiled for this analysis includes
information on 278 landslides that occurred in this region
during the period 1980–2010 (Table 1, Fig. 2), including
49 landslides in the Loess Tableland, 63 landslides in the
Li Mountain, and 166 landslides in the Qin Mountain
(Table 1).
Two factors are important when conducting landslide

assessments; causal factors and modeling methods (Dai et
al., 2002). Landslides result from the relationships of
complex and sometimes unknown factors that differ by the
type of geological movement and vary according to the
physical environment. Based on field geomorphological

and geological investigations coupled with the analysis of
landslides, a general explicit phenomenon was established
to characterize landslides in the Xi’an Region. The major
features of these phenomena are (i) the sliding surfaces are
generally located at the lower boundary of the regolith,
about 2 m below the surface in the Qin Mountain, and 8‒
10 m below the surface in the Li Mountain, (ii) the
landslides in the loess tableland are primarily distributed
along the edge, (iii) landslide occurrences are primarily
controlled by topography due to the unique geology of the
loess tableland, however, the regolith landslides are
dominant in the mountain ranges. The landslide stability
is affected by the slope angle, hydrological characteristics,
potential energy, and the slope profile associated with
landform according to the landslide stability equation
(Fernandes et al., 2004; Mansouri Daneshvar and Bagher-
zadeh, 2011; Piacentini et al., 2012). Therefore, the slope
angle, hydrological characteristics (TWI), potential energy
(height difference), and the slope profile (profile curvature
and slope aspect) were selected for the analysis of the
relationship between topography and landslide occur-
rences (Fernandes et al., 2004; Piacentini et al., 2012).
These variables were used to determine the dependent
variable of occurrence or nonoccurrence of landslides
within an individual grid cell with 25 m resolution on

Fig. 3 Flowchart of landslide susceptibility analysis

Table 1 The landslide frequencies in the three sub-regions in Xi’an and their geological characteristics

Sub-region Number of landslides Geology

Loess Tableland 49 Loess deposits.

Li Mountain 63 1‒2 layers of loess on the surface, overlying mudstone and conglomerate rock.

Qin Mountain 166 Metamorphic rocks.
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1:50,000 scale topographic map. The five respective
topographical parameter sets that were constructed con-
sidering appropriate conditioning factors and sampling
strategies and are discussed below.

4.1 Slope gradient

Field surveys show that the slope gradient is one of the
most important topographical factors influencing landslide
occurrences. In general, a higher slope gradient corre-
sponds to a high possibility of slope failure. In addition, the
gradient affects the infiltration and runoff rates as well as
the thickness of the regolith layer and other parameters
(Montgomery and Dietrich, 1994; Fernandes et al., 2004).
Its value may be calculated from the DEM by the
inclination computational method using a 3�3 moving
window. As a result, the values of the slope angles are
divided into classes in increments of 5° (i.e., 0°–5°, 5°–
10°,…, 70°–75°, and> 75°) (Fig. 4).
Figure 4 indicates the density of landslide distribution in

slopes of each of the three regions. Correlation analysis
revealed that the highest density of landslides (51.81%)
was in the slope range of 25°‒40° (Fig. 4(a)) in the Qin
Mountain, while 49.21% of landslides occurred in the
slope range of 15°‒25° (Fig. 4(b)) in the Li Mountain, and
69.39% of landslides occurred in the slope range of 20°‒
40° (Fig. 4(c)) in the loess tableland. Meanwhile,
frequency distributions of landslides indicate that the
probability of landslide occurrence increased with slope
angle up to a point particularly at slopes above 25° in the
Qin Mountain, 15° in the Li Mountain, and 20° in the
Loess Tableland. At lower slope gradients, the density of
landslides is low because the terrain is gentle and covered
with thick colluvium and/or residual soils which require
higher water levels to initiate slope failures. Meanwhile, at
very high slope gradients, the density of landslides is also
low because the terrain is very steep with a small amount of
colluvium. The most common slope range varies from 28°
in the Qin Mountain to 22° in the Li Mountain and 29° in
the Loess Tableland.

4.2 Slope aspect

The aspect of a slope can influence moisture retention and
vegetation cover, which then affects soil strength and
landslide occurrences. It also affects the infiltration and
runoff rates (Wieczorek et al., 1997). Aspect can be defined
as the slope direction which identifies the downslope
direction of the maximum rate in change of elevation
(Fernandes et al., 2004) and calculated in compass degrees
(from ‒1 to 360), based on the surface tools in ARCGIS.
Zero, 90, 180, and 270 degrees indicate north, east, south,
and west, respectively.
Within the sub-regions, the majority of landslides

occurred on the northeast slopes of the Qin Mountain
(68.07%), on the northwest and southeast slopes of the Li

Mountain (42.6%), and on the northwest and southwest
slopes of the Loess Tableland (40.82%). Analyses of
landslide frequency distributions reveals that slope angles
in the range 0°‒45° in the Qin Mountain, 135°‒180° in the
Li Mountain, and 180°‒225° in the Loess Tableland
correspond to high probabilities of landslide occurrences
(Fig. 5). This distribution phenomenon was primarily
affected by the orientation of the mountain ranges; the Qin
Mountain runs from west to east, while the Li Mountain
and loess tableland run from the SE to the NW.

4.3 Topographic Wetness Index (TWI)

The topographic wetness index, developed by Beven and
Kirkby (1979) within the runoff model, affects the spatial
distribution of soil moisture by influencing the ground-

Fig. 4 Frequency distribution of landslides in different classes of
slope gradients in the three sub-regions of Xi’an. LSA grid (%):
percent of each grid affected by landslides; Grid (%): percentage of
grids in the domain; FR: percent of total grids affected by
landslides; (a) Qin Mountain; (b) Li Mountain; (c) Loess
Tableland.
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water flow as it follows surface topography. It can be
defined as:

TWI ¼ lnðα=tan βÞ, (2)

where, α is the local upslope area draining through a
certain point per unit contour length, and tan β is the local
slope. Some studies have indicated that landslides are
primarily distributed along slopes with high TWI and
gradients, because a high TWI encourages water collection
and hence higher soil moisture (Yilmaz, 2009; Regmi et
al., 2010). This consequently reduces the strength of rock
and soil on the slope (Yilmaz, 2009). TWI was calculated
using the raster calculation tools.
The highest frequency of landslides in each sub-region

occurred in the TWI classes of 4‒6 (50%) in the Qin

Mountain, 4‒6 (46%) in the Li Mountain, and 4‒6
(46.94%) in the Loess Tableland, indicating that the
highest TWI does not correspond to the greatest landslide
activity. The frequency distributions indicate that the
highest probabilities of landslide occurrences are linked
with intermediate values of TWI. TWI values lower than 4
are present in steep and rocky regions, whereas the values
higher than 7 correspond to relatively flat and gentle
topography (Yilmaz, 2009) (Fig. 6).

4.4 Profile curvature

This represents curvature in the vertical plane parallel to
the slope direction (Wilson and Gallant, 2000). It measures
the rate of change in the slope, and therefore, influences the
flow velocity of water draining across the surface. This in
turn influences erosion and the movement of sediments

Fig. 5 Frequency distribution of landslides in different slope
aspect classes in the three sub-regions of Xi’an. LSA grid (%):
percent of each grid affected by landslides; Grid (%): percent of
grids in the domain; FR: grids affected by landslides as a
percentage of all grids; (a) Qin Mountain; (b) Li Mountain; (c)
Loess Tableland.

Fig. 6 Frequency distribution of landslides in different TWI
classes in the three sub-regions of Xi’an. LSA grid (%): percent of
each grid affected by landslides; Grid (%): percent of grids in the
domain; FR: grids affected by landslides as a percentage of all
grids; (a) Qin Mountain; (b) Li Mountain; (c) Loess Tableland.

Jianqi ZHUANG et al. Landslide distribution, landslide assessment 455



(Kayastha, 2012). Profile curvature can be calculated by
subtracting the mean value of the DEM from the true value
of the DEM using a moving window of 3 � 3 points.
Positive values indicate convex–upward surfaces and
negative values indicate convex–downward surfaces,
while a value of zero indicates that the slope is planar
(Wilson and Gallant, 2000). Therefore, the values of
curvature were classified into three classes of surfaces, that
is, concave, planar, and convex.
Within the three sub-regions of interest, landslide

occurrences are abundant at locations with convex
(40.96%) and concave surfaces (36.75%) in the Qin
Mountain, planar surfaces (42.86%) in the Li Mountain,
and convex (40.82%) and planar (34.70%) surfaces in the
Loess Tableland. Frequency ratio values greater than 1 are
present at concave and convex surfaces in the Qin
Mountain, concave surfaces in the Li Mountain, and
convex surfaces in the Loess Tableland; these surfaces are
more susceptible to landslide occurrences (Fig. 7).

4.5 Height difference

Height difference is a measure of the potential gravitational
energy of the landslide. In general, an increased height
difference corresponds to an increased possibility of failure
due to an increase in the sliding force (Fernandes et al.,
2004). It can be calculated by subtracting the minimum
value of the DEM from the maximum value of the DEM
using a moving window of 3 � 3 points.
Within the three sub-regions, the majority of landslides

occurred in the height difference range of 50‒90 m
(45.18%) in the Qin Mountain, 10‒70 m (87.30%) in the
Li Mountain, and 10‒30 m (44.90%) in the Loess Table-
land (Fig. 8). Frequency ratio analyses revealed that
landslide frequencies increase proportionately with the
height difference in the Qin and Li Mountains, but the
frequency began to drop off at height differences
exceeding 60 m. This is because the land with height
differences exceeding this value are generally used for
terraced cultivation.

4.6 Construction of prediction model

The logistic regression model estimates coefficients for
each of the parameters using the mean and maximum
likelihood method instead of the least squares method that
is normally used in linear regression (Ayalew and
Yamagishi, 2005; Lee, 2007; Lee and Pradhan, 2007; Bai
et al., 2011). The precision of maximum likelihood
increases with sample size. However, in order to construct
a dataset with homogeneous cells to find out the presence/
absence of landslides, an equal number of points free from
the DEM map were randomly extracted from the whole
dataset and used in the “training” phase of the LR analysis
(García-Rodríguez et al., 2008; Yilmaz, 2009).
The five aforementioned parameters were selected for

performing the logistic regression. The established rela-
tionships between landslides and the various influencing
topographic factors are listed as follows; x1 is slope
gradient, x2 is profile curvature, x3 is height difference, x4 is
slope aspect, x5 is TWI.
In this model, the GIS software was used for the

processing and management of data related to individual
factors, while statistical analysis by logistic regression was
performed using SPSS after exporting the data to suitable
exchange formats. The methodology used for the logistic
regression model is based on quantitative variables;
however, it is also possible to use qualitative variables in
the model by creating layers of binary values (dummy
variables) for each class of an independent qualitative
parameter (Lee and Min, 2001; Dai and Lee, 2002; Ayalew
and Yamagishi, 2005).
The logistic regression model was constructed using the

Fig. 7 Frequency distribution of landslides in different profile
curvature classes in the three sub-regions. LSA grid (%): percent of
each grid affected by landslides; Grid (%): percent of grids in the
domain; FR: grids affected by landslides as a percentage of all
grids; (a) Qin Mountain; (b) Li Mountain; (c) Loess Tableland.
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entire dataset. Using the “logit” function, we calculated the
probability that each parameter contributed to landslide
susceptibility based on Eq. (1). Here, the coefficients of the
logit function are as follows;
The logit function for the Qin Mountain is

Y ¼ – 4:181þ 0:187� SGþ 0:016� PC – 0:026

� HD – 0:001� SAþ 0:240� TWI ; (3)

the logit function for the Li Mountain is

Y ¼ – 6:276þ 0:139� SGþ 0:100� PC – 0:006

� HDþ 0:005� SAþ 0:558� TWI ; (4)

the logit function for the Loess Tableland is

Y ¼ – 6:297þ 0:231� SG – 0:033� PC – 0:019

� HDþ 0:002� SAþ 0:367� TWI , (5)

where, SG is the slope gradient, PC is the profile curvature,
HD is the height difference, and SA is the slope aspect.
As shown in Table 2, a good correlation was found

between the percentage of actual landslides and their
predicted probabilities. The influencing factors, including
slope gradient, profile curvature, height difference, slope
aspect, and TWI, show a test accuracies of above 84% of
the classifications in the three models, indicating that the
model predictions are consistent with field observations.
The performance of the training dataset was judged

based on the ROC curve (Swets, 1988). The ROC curve is
a plot of the sensitivity (proportion of true positives) of the
model’s prediction versus the complement of its specificity
(proportion of false positives), at a series of thresholds for a
positive outcome. Sensitivity is the probability that a
mapping unit with landslides is correctly classified, and is
plotted on the y-axis in an ROC curve; sensitivity is the
true positive rate (Nefeslioglu et al., 2010). Specificity is
the probability that a mapping unit with zero landslide
occurrences is correctly classified; 1-specificity is the false

Fig. 8 Frequency distribution of landslides in different height
difference classes in the three sub-regions of Xi’an. LSA grid (%):
percent of each grid affected by landslides; Grid (%): percent of
grids in the domain; FR: grids affected by landslides as a
percentage of all grids; (a) Qin Mountain; (b) Li Mountain; (c)
Loess Tableland.

Table 2 Correlation between the percentage of actual landslides and the predicted probability of landslides

Predicted Percentage accuracy/%

0 1

(a) Qin Mountain Observed 0 55 8 87.30

1 10 53 84.12

Overall percentage 85.71

(b) Li Mountain Observed 0 43 6 87.75

1 4 45 91.84

Overall percentage 89.75

(c) Loess Tableland Observed 0 150 16 90.36

1 13 153 92.17

Overall percentage 91.26
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positive rate and is mapped along the x-axis of the curve.
The area under the curve represents the probability of the
landslide susceptibility value for a landslide mapping unit
calculated by the model’s exceeding the result for a
randomly chosen no-landslide-occurrence mapping unit.
The ROC curve for the model developed is indicated in
Fig. 9, and the areas obtained under the curve were 0.86,
0.84, and 0.92 in the Qin Mountain, Li Mountain, and
Loess Tableland, respectively. This confirms the robust-
ness of the constructed model.
As discussed above, the relative importance of the

independent variables can be expressed by the regression
coefficient, highlighting the causal factors and variables
that are most strongly related to the occurrence of
landslides. Among these, TWI and slope gradient appear
to be the most strongly related to slope failure occurrences
in all of the three sub-regions. However, classes such as
height difference and slope aspect in the Qin Mountain,
height difference in the Li Mountain, and profile curvature
and height difference in the Loess Tableland indicated
negative regression coefficients, suggesting that they
actually protect against landslide occurrences.
Using the regression logistic model, five classes of

susceptibilities were identified and mapped; (i) very low
(0‒0.2), (ii) low (0.2‒0.4), (iii) medium (0.4‒0.6), (iv) high
(0.6‒0.8), and (iv) very high (0.8‒1). The landslide
distributions among the five classes in each of the three
sub-regions are shown in Table 3.
Figure 10 indicates the distribution of modeled landslide

susceptibilities in the Qin Mountain, Li Mountain, and
Loess Tableland. The distribution of landslide suscept-
ibility probability in the Qin Mountain indicates that the
hazards with very high probability are concentrated in
intermediate altitudes. Historical observations reveal that
76.8% of the landslides occurred within the very high and
high susceptibility classes (Fig. 10(a)). The distribution of
landslide susceptibility probability in the Li Mountain
reveals that the hazards with very high probability are
concentrated along the Wei River and the north slopes of
the mountains. Historical observations reveal that 84.2% of
the landslides occurred within the very high, high, and
medium susceptibility classes. Furthermore, the very high
class of susceptibilities which accounted for only 13.15%
of the total study area was responsible for approximately
39.7% of all observed landslides (Fig. 10(b)). Finally, with
regard to the Loess Tableland, landslides in the high
susceptibility class were concentrated along the north-east
and north-west edges of the study area and along the

Fig. 9 ROC curve. Results are described in the text. (a) Qin
Mountain; (b) Li Mountain; (c) Loess Tableland.

Table 3 Landslide distributions in different susceptibility classes

Qin Mountain Li Mountain Loess Tableland

Very low class 15.24% 15.55% 63.07%

Low class 18.24% 29.13% 19.10%

Medium class 17.44% 23.56% 8.39%

High 20.59% 18.62% 5.08%

Very high class 28.48% 13.15% 4.35%
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Fig. 10 Susceptibility map generated from the logistic regression model for the three sub-regions in Xi’an, China. (a) is the Qin
Mountain; (b) is the Li Mountain; (c) is the Loess Tableland.
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Qingyu Gully in the Bailu Tableland. Historical data
revealed that 82.9% of the landslides in this sub-region
were in the very high and high susceptibility classes.
Furthermore, the very high class which occupies only
4.35% of the total study area contains approximately
54.1% of all observed landslides (Fig. 10(c)).
Many areas selected for future construction work are

located in certain zones of the high susceptibility areas of
our model; however, no active phenomena have yet been
observed in these zones. To avoid damage from landslides,
all plans for land use should avoid any infrastructure
installation or construction activity in the very high, high,
and medium susceptibility classes. Moreover, the suscept-
ibility maps can be exported to a Keyhole Markup
Language (KML) shape, which can be opened using
Google Earth. Figure 11 indicates the KML shapes for the
landslide susceptibility map of the Qin Mountain. These
shapes are easy for the general public to read and
comprehend when planning construction projects.

5 Conclusions

This research shows the distribution of landslides and the
application of logistic regression to map landslide
susceptibility in the Xi’an Region. Five surface topogra-
phical factors, namely, slope gradient, TWI, height
difference, profile curvature, and slope aspect, were
selected to study their influence on landslide distributions
in the three sub-regions that witnessed the landslides; Qin
Mountain, Li Mountain, and Loess Tableland. The logistic
regression model revealed that the influence of these

factors and the classes responsible for the highest landslide
frequency were specific to each sub-region. According to
the regression coefficients, TWI and slope gradient have a
stronger influence on slope failure occurrences than the
other three factors in all of the three sub-regions. Since the
model was in agreement with historical observations, the
maps presented in this study can be used by local as well as
regional governments to predict the risks of future
landslides.
Landslide susceptibility can be assessed using different

methods based on GIS technology. During last two
decades or so, many research studies have focused on
addressing the difficulties in assessing landslide suscept-
ibility. However, converting susceptibility maps to a
format which can be easily understood by a non-expert
person remained a challenge, and this must be taken into
account while preparing landslide susceptibility maps
irrespective of method used.
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