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Abstract Coupled with intricate regional interactions,
the provincial disparity of energy-resource endowment and
other economic conditions in China have created spatially
complex energy consumption patterns that require analyses
beyond the traditional ones. To distill the spatial effect out
of the resource and economic factors on China’s energy
consumption, this study recast the traditional econometric
model in a spatial context. Several analytic steps were
taken to reveal different aspects of the issue. Per capita
energy consumption (AVEC) at the provincial level was
first mapped to reveal spatial clusters of high energy
consumption being located in either well developed or
energy resourceful regions. This visual spatial autocorrela-
tion pattern of AVEC was quantitatively tested to confirm
its existence among Chinese provinces. A Moran scatter-
plot was employed to further display a relatively
centralized trend occurring in those provinces that had
parallel AVEC, revealing a spatial structure with attraction
among high-high or low-low regions and repellency
among high-low or low-high regions. By a comparison
between the ordinary least square (OLS) model and its
spatial econometric counterparts, a spatial error model
(SEM) was selected to analyze the impact of major
economic determinants on AVEC. While the analytic
results revealed a significant positive correlation between
AVEC and economic development, other determinants
showed some intricate influential patterns. The provinces
endowed with rich energy reserves were inclined to
consume much more energy than those otherwise, whereas
changing the economic structure by increasing the
proportion of secondary and tertiary industries also tended
to consume more energy. Both situations seem to underpin

the fact that these provinces were largely trapped in the
economies that were supported by technologies of low
energy efficiency during the period, while other parts of the
country were rapidly modernized by adopting advanced
technologies and more efficient industries. On the other
hand, institutional change (i.e., marketization) and innova-
tion (i.e., technological progress) exerted positive impacts
on AVEC improvement, as always expected in this and
other studies. Finally, the model comparison indicated that
SEMwas capable of separating spatial effect from the error
term of OLS, so as to improve goodness-of-fit and the
significance level of individual determinants.

Keywords per capita energy consumption, economic
growth, energy endowment, spatial autocorrelation, spatial
econometric model

1 Introduction

The world has witnessed the awesome growth of China’s
economy since 1978, when the country started its nation-
wide economic reform and opening-up to the global
economy. This spectacular growth is, however, under-
scored by an equally unprecedented consumption of
energy. In 2001 for the first time China’s demand for
primary energy outpaced its energy production. In 2010,
China’s energy consumption finally took over the top
position from the United States, with a record of 22.52
billion toe (tons of oil equivalent) slightly surpassing the
amount (21.70 billion toe) consumed by the US (Pao et al.,
2012). Although China has rather abundant energy
resources, its per capita energy resources and consumption
have been far less than the world average due to its largest
population in the world. As one of the biggest economies
in the world, China apparently needs to reconsider its
energy policy and adopt new energy management
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strategies to sustain its future development. To achieve
these goals, plausible contributing factors for energy
consumption must be evaluated, and major determinants
need to be identified.
It is a generic consensus that energy consumption is

directly related to economic growth as well as energy-
resource endowment. This relationship in China has been a
major concern in both the policy sector and the academic
society (Yuan et al., 2008). Most studies on this issue were
conducted from the perspective of co-integrating
relationships between energy consumption and economic
explanatory variables (Cheng, 1999; Yang, 2000; Hon-
droyiannis et al., 2002; Soytas and Sari, 2003; Jumbe,
2004). Although the conclusions drawn from the above
and many other studies not cited here provide some insight
into the complex interaction between energy consumption
and economic growth, they are unanimously based on total
energy consumption rather than per capita energy
consumption, which is a more appropriate indicator of
the true demand for primary energy in a given region.
Furthermore, the multiplicity of influencing factors and
their regional disparities as well regional interactions
complicate the energy issue in China. Among these
important factors is energy resources endowment, which

has long been neglected in the equation, and thus needs to
be considered in further studies.
In this paper, we intend to examine the issue under the

situation of asymmetrical distribution between energy
endowment and per capita energy consumption in China.
By geo-visualizing the 2008 energy consumption,
reserves, and GDP in a per capita sense (Figs. 1–3), we
found out that high per capita energy consumption was
clustered in both the east coastal region and northwestern
China, with the former being the most developed areas
having a high energy demand to sustain their economic
growth, and the latter being rich in energy resources. In
contrast, low per-capita energy consumption is seen to be
concentrated in the middle and southwest provinces, which
typically are neither well developed nor energy rich. On
the other hand, there is an obvious division line separating
the “high-consumption north” from the “low-consumption
south” (Fig. 1). Results from the above visualization
analysis seem to lead to a plausible hypothesis: the
distribution of per capita energy consumption in China is
significantly correlated with two primary factors, economic
development level and energy resource. To confirm this
intuitive observation, the Pearson correlation coefficients
of both per capita energy consumption and per capita GDP

Fig. 1 Spatial distribution of per capita energy consumption (ton/per person) by province (2008)

356 Front. Earth Sci. 2015, 9(2): 355–368



as well as per capita energy resource reserves were
produced, resulting in an R2 of 0.6302 for the former and
0.3531 for the latter, both at a 0.05 significance level.
Although the above spatial data visualization and simple

Pearson correlation analysis are useful for establishing the
research hypothesis, this hypothesis is still subject to
formal confirmatory analysis. In the rest of this paper, we
establish spatially-aware econometric models to test the
aforementioned relationships and, more importantly, to
explore the spatial effect of economic factors and energy-
resource endowment on the distribution pattern of per
capita energy consumption in China. The research goal is
to answer two specific questions: to what degree the
consumption is caused by these factors after their spatial
interaction is accounted for, and whether spatial neighbor-
hood exercises significant impacts on contiguous regions.
The procedure of achieving this goal will be arranged as
follows. The variables and data for empirical analyses are
introduced in Section 2, which is followed by an

exploratory spatial data analysis to estimate the degree of
spatial autocorrelation for per capita energy consumption
at a provincial level. A comparative analysis to select a
spatial econometric model for testing the listed determi-
nants of per capita energy consumption is provided in
Section 3. The section that follows presents the analytic
results and their discussion. The last section concludes by
summarizing some theoretical evidence and proposing
suggestions for differential policy making about energy
use and development in China.

2 Variables and data

2.1 Selection of variables

In this study, per capita energy consumption (AVEC) at the
province level was chosen as the dependent variable. It is
formally defined as

AVEC ¼ The  aggregated  amount  of   energy  consumption  of   province

Population  of   province
: (1)

Fig. 2 Spatial distribution of per capita energy reserves (ton/per person) by province (2008)
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There are five explanatory variables to be used in the
study: i.e., per capita GDP, per capita energy resource
reserves, industrial structure, marketization, and technolo-
gical progress.

2.1.1 Per capita GDP (AVGDP)

AVGDP is a common indicator of economic growth and
indicates the wealth of the people in a region. Due to the
economic growth and increasing urbanization in the past
decades, more and more energy resources in China are
being consumed (Zhang et al., 2012). A rough observation
can be made that areas with higher income demand more
energy to sustain their economic growth, and less
developed regions tend to consume fewer energy
resources. In China, it is fairly plausible to hypothesize
that this explanatory variable is positively correlated with
per capita energy consumption.

2.1.2 Per capita energy resource reserves (AVES)

Aggregated energy reserves are usually used to reflect
energy resources endowment in a region. AVES were
defined as energy endowment for the purposes of this
study. To measure the energy endowment of each province
on the same scale, different kinds of energy must be
standardized in the aggregation. Different energy reserves
were converted into the form of a standard coal equivalent
by adopting the conversion factors (Table 1) from the
China Energy Statistical Yearbook 2010. Data for
hydraulic electricity is not available and not included in
the analysis.
Per capita energy reserve is defined as the ratio of

standardized energy reserves to population in each
province. A visual inspection of the charted statistics
(Fig. 2 vs. Fig. 1) reveals that energy-rich provinces (e.g.,
Inner Mongolia and Shanxi) seem to exhibit high AVEC,

Fig. 3 Spatial distribution of per capita GDP (CNY/per person) by province (2008).

Table 1 Conversion factors from the physical unit of other energy forms to its coal equivalent

Energy Average low calorie value Conversion factor/(kgce/kg)

Raw coal 20,908 kJ /(5,000 kcal)/kg 0.7143

Crude oil 41,816 kJ /(10,000 kcal)/ kg 1.4286

Natural gas 38,931 kJ /(9,310 kcal)/ kg 1.3300

Data source: “China Energy Statistical Yearbook 2010”, 1 kgce = 7,000 kcal = 29,307 kJ
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suggesting the existence of a functional relationship
between the abundance of energy resources and the level
of AVEC in China. This will be verified with the model.

2.1.3 Industrial structure (secondary industry, SI; and
tertiary industry, TI)

The concept of industrial structure to be used here is
defined as the relative contribution of secondary and
tertiary industries to the total industrial output. The
secondary sector weighs significantly in the increase of
energy consumption. In China’s case, the hypothesis that
secondary industry is positively related to AVEC needs to
be verified. In recent years, the industrial structure at the
provincial level has experienced uneven changes, all with
development of the tertiary industries. The tertiary share
grew gradually year by year, which was attributed to the
higher added values of goods and services as well as the
retreat of the secondary industries. As the tertiary share
goes up, the industry has to rely on much more energy to
support the development. This is the reason why Shanghai,
Beijing, etc., with extremely high proportions of tertiary
industries, have been reported to consume enormous
amounts of per capita energy. It is thus reasonably
hypothesized that increasing the share of tertiary industries
may contribute to an increase of per capita energy
consumption.

2.1.4 Marketization (MKT)

The Chinese economies have been undergoing the process
of marketization, and the energy economy is no exception.
Energy price undoubtedly has a direct and important
impact on energy use, and most literatures attributed
China’s inefficient use of energy to its energy pricing
system (e.g., Fisher-Vanden et al., 2006). The price of
energy was fully state-controlled in China until the
beginning of economic reform in late 1978. After the
initiation of the two-tiered pricing system in 19821, prices
set by central planning were gradually replaced with
market-mediated prices. In the early 1990s, for almost all
goods, the market replaced the planned economy as the
primary means of allocation. However, price reform in
energy sectors (e.g., coal and crude oil), which had long
been heavily subsidized by the central government, lagged
behind. In 1990, approximately 46% of coal and 80% of
crude oil was still plan-allocated (Garbaccio, 1995).
Therefore, using energy price as an indicator to reflect
the market mechanism is probably inappropriate, as it
sometimes cannot lead to believable conclusions. Besides,
marketization is a complicated process that can hardly be

measured by one or two single variables. A comprehensive
description of this process would require too many
variables and an extremely complex model beyond
management. With all relevant variables being included
in the model, on the other hand, high collinearity is likely
to become a serious issue. It is therefore necessary to adopt
a well-established comprehensive index that can reason-
ably reflect the moderating mechanism of the market. Due
to the lack of existing research in the methodology of
measuring marketization in China, the present study
adopted the indicator of marketization published in the
“NERI INDEX of MKT of China’s Provinces 2009
Report”, an authoritative work compiled by a group of
Chinese economists (Fan et al., 2009).
Under market conditions, the equilibrium between

supply and demand is presumably controlled by the
invisible hand, the market, which leads to the effective
allocation of energy resources. A higher degree of market
development is assumed to enhance energy efficiency,
hence resulting in decreasing per capita energy consump-
tion. Common knowledge tells us that if the mechanism of
the market works, excessive energy consumption will be
restrained. Although some previous studies found that
marketization in China showed no significant effects on
energy consumption (e.g., Zhang et al., 2013), it is still
worth reexamining.

2.1.5 Technological progress (R&D input, RD; and number
of R&D Personnel, PS)

The relation of technological progress with energy
consumption has been regarded as a research hotspot in
the field of energy economics. Generally speaking,
technological progress can benefit technical and procedural
improvement in manufacturing, which in turn contributes
to less consumption of energy. Some scholars in the field of
energy economics hold the opposite viewpoint, however,
which is known as the rebound effect of energy
consumption. This term was first applied narrowly to the
direct increase in demand for an energy service whose
supply has increased as a result of improvements in
technical efficiency in the use of energy (Khazzoom, 1980;
Khazzoom and Miller, 1982). Since then, the rebound
effect has been more widely construed. Technological
progress could improve energy efficiency but would also
simultaneously push the economy to grow further,
resulting in new energy demand. As a net result, the
saved energy by technological progress may offset the
increased amount caused by rapid economic growth.
Bosetti et al. (2006) recognized that R&D investment as
an important factor played a major role when modeling
technical change in climate models. R&D investment was

1) Two-tiered pricing in the 1980’s of China refers to a system under which scarce commodities could be obtained by a part of someone or enterprises with
rights at a lower level supported by the government and by the rest at a at market level.
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the main driver of climate-friendly technical change that
eventually affected energy efficiency, which contributed to
the decrease of energy consumption. Their subsequent
research helped us understand how knowledge spillovers
could be produced across regions, how much and at what
cost technological improvement could increase energy
efficiency via R&D investment, and what energy policies
were able to diffuse energy-saving technologies (Bosetti et
al., 2007). Fisher-Vanden et al. (2004) maintained that the
scale of formal R&D operations could be measured by
R&D expenditure and/or R&D personnel. For this study,
R&D expenditure was adopted as the primary indicator of
technological progress, in order to verify its influence on
per capita energy consumption. The size of R&D
personnel is also examined in the model. If the estimated
coefficients of both indicators point to the same direction, a
robust conclusion is deemed to be reached.

2.2 Data sources

Data for the variables described above were acquired from
the China Energy Statistical Yearbook, China Statistical
Yearbook, and China Statistical Yearbook on Science and
Technology, which were compiled by the National Bureau
of Statistics of China and published by China Statistics
Press. We used the cross-sectional data of year 2008 for 30
mainland Chinese provinces, autonomous regions, and
municipalities; Tibet is excluded from our analysis due to
data deficiency in this region. Data for all of the variables
are logarithmically transformed to avoid possible hetero-
skedasticity.

3 Spatial dependence and spatial
econometric models

3.1 Exploratory spatial data analysis (ESDA)

The increased availability of spatially referenced data and
the sophisticated capabilities for data visualization, rapid
retrieval, and manipulation in geographic information
systems (GIS) have created a demand for new techniques
for spatial data analysis of both an exploratory and
confirmatory nature (Anselin and Getis, 1992). ESDA is
a group of statistical techniques that can be used to
interactively visualize and explore data where space
matters for discovering interesting spatial patterns (Anse-
lin, 1995). It is also used to produce hypotheses and
generate model results and diagnostics. This paper
employed ESDA as a preliminary procedure to examine
the level of spatial dependence existing among data
records and generate spatially-explicit hypotheses for
further testing. The Moran statistic is hereby chosen to
characterize spatial dependence and heterogeneity of both
the dependent variable and the explanatory variables
among China’s provinces.

3.1.1 Selection of spatial weight matrix

Spatial statistics integrate space and spatial relationships
directly into their mathematical models through a spatial
weights matrix. A spatial weights matrix quantifies the
spatial relationships that exist among the spatial entities
(e.g., provinces in this case) under investigation.
The spatial weights matrix adopted in this paper is based

on the rook rule, in which only the first-order contiguity
sharing a length (not a point) of boundary is considered in
the model. Let Lij denote the length of share boundary,
between spatial units i and j, then these so-called rook
contiguity weights are defined by

wij ¼
1, Lij > 0,

0, Lij ¼ 0:

(
(2)

3.1.2 Spatial autocorrelation

Spatial autocorrelation is an effective measure of how
spatial objects of similar values locate with each other in a
given region. The provincial data to be used in this study
are examined for spatial autocorrelation using Moran’s I
statistical tests and the geographical visualization of the
index. Hereby we are interested in both the global and local
autocorrelation patterns of data distribution among pro-
vinces. A global test is performed by constructing a Moran
scatter plot (Anselin et al., 1996), in which the slope of the
regression line directly corresponds to Moran’s I. The
statistical significance of any finding about spatial
autocorrelation is based on a permutation test. Global
Moran’s I is formally expressed as (Moran, 1950)

Moran’s  I ¼
n
Xn
i¼1

Xn
j¼1

Wij Yi – Y
� �

Yj – Y
� �

Xn
i¼1

Xn
j¼1

Wij

Xn
i

Yi – Y
� �2 , (3)

where n represents the number of provinces in this study; if
provinces i and j share a common border, then wij= 1,
otherwise wij = 0. Yi and Yj are the data values in provinces
i and j, respectively. In a standardized form, index I has a
value range of [‒1, 1]. A positive and significant value of
Moran’s I indicates the existence of spatial autocorrelation,
whereas zero represents complete randomness, and
negative values denote the tendency of spatial hetero-
geneity.
The disaggregated nature of spatial autocorrelation can

be investigated using the local Moran’s I (i.e., Ii) (Anselin,
1995), which provides an indication of the relationship
between deviations (zi) from the mean Y (or μ) and a
weighted average of values that are neighbors to i. This
weighted average is treated as spatial lags of i and

expressed as
Xn
j¼1

wijzj, where wij is the element in the
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spatial weights matrix W corresponding to paired province
(i, j). The local Moran’s I is defined as

Ii ¼ zi
Xn
j¼1

wijzj, (4)

where wij is in row-standardized form while
zi ¼ ðYi –�Þ=δ, and δis the standard deviation of Yi. The
local spatial autocorrelations can be examined using the
Moran scatter plot, which provides four kinds of informa-
tion about data points according to their quadrant location
in the plot: (I) high-high (HH), indicating a high-value
province being surrounded by high-value neighbors; (II)
low-high (LH), signifying a low-value province being
surrounded by high-value neighbors; (III) low-low (LL),
denoting a low-value province being surrounded by low-
value neighbors; (IV) high-low (HL), representing a high-
value province being surrounded by low-value neighbors.
Situations (I) and (III) are associated with positive forms of
spatial autocorrelation, whereas (II) and (IV) with negative
spatial autocorrelation.

3.2 Spatial econometric models

To cope with the spatial effect of the energy consumption
data recorded for individual provinces, three different
spatial econometric models are tested and compared in this
study: the spatial lag model, the spatial error model, and
the spatial Durbin model. The spatial lag model is designed
to single out the spatial dependence of per capita energy
consumption among paired neighboring provinces,
whereas the spatial error model is used to examine the
significance of errors that are caused by simply being
located next to another province. Instead of constraining
spatial effects to either the dependent variable or the error
term, the spatial Durbin model aims to examine spatial
autocorrelation in all variables (Anselin, 2003).

3.2.1 The spatial lag model

Anselin (1988) provided a maximum likelihood method
for estimating the parameters of the spatial econometric
model, as it combines the standard regression model with a
spatially lagged dependent variable, analogous to the
lagged dependent variable model of time-series analysis.
We will refer to this model as a spatial lag model (SLM),
which takes the following form.

y ¼ �Wyþ X β þ ε

ε e Nð0,�2InÞ
, (5)

where y is an n�1 vector of dependent variables, X
represents the usual data matrix containing explanatory
variables, and W is a known spatial weight matrix, hence a
first-order rook contiguity matrix. Parameter ρ is the
coefficient on the spatially-lagged dependent variable, Wy,

and parameters β denote the coefficients of exogenous
variables to be estimated.

3.2.2 The spatial error model

Anselin (1988) also provided a maximum likelihood
estimation method for a spatial autoregressive error
model, where disturbance exhibits spatial dependence.
This model is referred to as the spatial error model (SEM)
and expressed as

y ¼ Xβ þ �

� ¼ lW�þ ε

ε e Nð0,�2InÞ
, (6)

where y is an n�1 vector of dependent variables, X
represents the usual data matrix containing explanatory
variables, and W is a known spatial weight matrix.
Parameter l is the coefficient on the spatially correlated
errors analogous to the serial correlation problem in time
series models. Parameters β reflect the influence of the
explanatory variables on variation in the dependent
variable y.

3.2.3 The spatial Durbin model

One shortcoming of the spatial lag model and the spatial
error model is that spatial patterns may be explained not
only by a spatially lagged dependent variable or spatially
correlated error terms, but also by spatially lagged
independent variables, at the same time (Manski, 1993).
The spatial Durbin model incorporates both spatially
lagged variables and is advocated by LeSage and Pace
(2009).
The spatial Durbin model is similar to the spatial lag

model, except that the spatially weighted vector of
explanatory variables is also included. The model reads
as follows:

y ¼ �Wyþ X β þWX �þ ε

ε e Nð0,�2InÞ
, (7)

where θ is a spatial parameter vector that needs to be
estimated.
The spatial Durbin model for cross-sectional data can be

verified via a Bayesian spatial regression method to see if it
should be simplified to either a spatial lag model or a
spatial error model (LeSage and Pace, 2009). In this
analysis, we first conducted a model comparison between
spatial lag and spatial error specifications and then used the
Bayesian method to further test if the winning model is
better than the spatial Durbin model. In addition, LeSage
and Pace (2009) state that building one or more spatial
regression specifications to test whether or not spatial
spillovers exist may lead to erroneous conclusions. Instead,
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they propose new approaches to measure the direct and
indirect spatial spillover impacts in response to changes in
the explanatory variables.

4 An empirical study

4.1 Exploring the spatial autocorrelation of empirical
datasets

The global Moran’s I values of per capita energy
consumption, GDP, and energy reserves measured with
the first order of the rook-based contiguity rule are reported
in Table 2. The Moran’s I indices of these three variables
were tested to be positive and statistically significant.
Specifically, the first-order spatial weight matrix of the
three indicators produced considerably high statistic values
(between 0.4 and 0.6), and their z-score tests passed a
0.001 significance level. Regions with a similar value level
were more spatially clustered than could be expected by
pure chance. This suggested that there was a regionalized
agglomeration of these three economic conditions in
China. This global concentration pattern implied that
future efforts for relationship modeling with these
indicators must take spatial autocorrelation into account.
To obtain insight into the local spatial pattern of per

capita energy consumption, a Moran scatterplot was
generated for this index (Fig. 4). A visual inspection of
the scatterplot helped uncover a non-random distribution
of per capita energy consumption among provinces. The
first quadrant (HH) contains 12 provinces and munic-
ipalities (Heilongjiang, Jilin, Inner Mongolia, Xinjiang,
Beijing, Hebei, Shanxi, Tianjin, Ningxia, Jiangsu, Liaon-
ing and Shanghai), which are either economically devel-
oped with high proportion of tertiary industrial sectors or
abundant in energy resources and dominated by heavy
industries. The second quadrant (LH) only encloses Gansu,
Shaanxi, and Henan, which are typical agricultural
provinces surrounded by energy-rich and more developed
regions. Located in the third quadrant (LL) are mostly the
comparatively underdeveloped provinces characterized
with lack of energy resources and proximate to the east
coast of China (i.e., Anhui, Hubei, Hunan, Jiangxi,
Yunnan, Guizhou, Sichuan, Chongqing, Fujian, Guang-
dong, Guangxi and Hainan). The fourth quadrant (HL)
contains only three provinces (i.e., Qinghai, Shandong,
and Zhejiang), which are characterized with high per capita
energy consumption but bordered with some provinces
located in the first quadrant.

Cross-referencing Fig. 1 and Fig. 4 may lead to an
important observation: the per capita energy consumption
at the provincial level is not randomly distributed, as the
high-value provinces tend to cluster in space. In other
words, areas with high per capita energy consumption tend
to cluster due to abundance in energy resources and lack of
advanced technologies, as in the case of northwestern
China. For different reasons from the northwest, provinces
along the east coast have a similarly high consumption,
which is sustained by the high-standard modern lifestyle
and strong purchasing power in the region. The mid-
western areas surrounding Chongqing consume less per
capita energy than the northwest and the east, seemingly
resulting from their lack of energy reserves and low
development levels. This spatial pattern of per capita
energy consumption in China seems to have been locked
by and mutually reinforced with the fixed spatial pattern of
energy endowment and industrial development. This
observation therefore seems to outline two typical cases
in China: consumption level related to level of industria-
lization, and consumption related to lifestyle. In the first
case, provinces of similar energy consumption levels tend
to produce a similar industrial structure, which has in turn
enhanced the consumption in either direction, such as the
ever-increasing high consumption level associated with
energy-rich, secondary industry based northwest provinces
and the sustained low consumption level associated with
energy-poor, underdeveloped mid-west provinces. On the
other hand, high energy consumption can also be
associated with energy-poor but well-developed regions,
as in the case of the east coastal provinces, since sustaining
high living standards and high economic outputs require
even more energy support. In either case, regions are
inclined to imitate neighboring economic and energy
consumption patterns via spatial spillovers, which we will
take into account in the econometric modeling as follows.

4.2 Confirmatory analysis with spatial econometric models

As indicated in many econometric modeling practices, the
traditional Ordinary Least Squares (OLS) regression model
often has difficulty handling data with significant spatial
autocorrelation. This model, however, was widely used as
a benchmark to provide meaningful comparisons with the
spatial econometric models. Applying the usual OLS
regressive estimation to the dataset results in a set of model
coefficients associated with individual variables, their
tested statistical significance, and model quality evaluation
statistics (Table 3).

Table 2 Moran’s I statistic tests

Variable Moran’s I p-value Mean Sd

LnAVEC 0.4170 0.0007 – 0.0388 0.1243

LnAVGDP 0.4822 0.0001 – 0.0345 0.1225

LnAVES 0.5913 0.0001 – 0.0349 0.1228
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Several important observations about the OLS regres-
sion model can be made from Table 3. First, all estimated
coefficients are statistically significant at the level of either
1% or 5%. Second, the goodness-of-fit is high (Adjusted R2

= 0.8549) and significant (p< 0.01), thus the model
provides a convincing explanation. Third, collinearity is
unlikely to be an issue among the explanatory variables, as
their calculated Variation Inflation Factor (VIF) is below
10.
In terms of relationship polarity, all explanatory

variables performed as expected. Variables having a
positive correlation with per capita energy consumption

(LnAVEC) include per capita GDP (LnAVGDP), second-
ary industry (LnSI), tertiary industry (LnTI), and energy
endowment (LnAVES). The magnitude of the GDP effect
is somewhat expected, and the high positive elasticity of
secondary industry on energy consumption and the even
higher value for tertiary industry are also very classical.
However, the low contribution of energy endowment as
marked in the model is rather unexpected, especially after
visually comparing Fig. 1 and Fig. 2. On the other hand,
variables having a negative relationship with per capita
energy consumption include marketization (LnMKT),
research and development (LnRD), and R&D personnel
(LnPS). Intensification in those three areas seemed to
discourage energy consumption. In terms of absolute
influence, all three variables presented elasticity values
higher than energy endowment (LnAVES), thus qualifying
themselves as important factors in the OLS model.
The OLS regression assumes spatial homogeneity and

thus completely neglects possible spatial effects during its
data modeling. A spatial regression analysis was employed
to build a location-sensitive model with parameter
estimates that could fully consider the intricate spatial
effects involved in the factors determining the per capita
energy consumption pattern in China. The previously
calculated Moran’s I statistic well indicated the existence
of spatial autocorrelation among provincial data values, but
it provided no guidance for spatial model selection. Thus,
we tested three spatial models (i.e. spatial lag, spatial error,
and spatial Durbin) in sequence to determine the optimal
model specification for the data.
Following the procedure proposed by Elhorst (2010),

the model selection analysis was started by first comparing
a spatial lag model (SLM) and a spatial error model (SEM)
on the basis of two Lagrange Multiplier tests ( regular and
robust), which are preferably used in combination. Their

Fig. 4 Moran scatter plot for per capita energy consumption
(Log) by province in China for 2008

Table 3 Results of OLS regressive estimation

Variable Coefficient Std. error t-statistic Probability Tolerance VIF

Constant – 15.1988 2.1570 – 7.0463 0.0000

LnAVGDP 0.8982 0.1387 6.4761 0.0000 0.2017 4.9583

LnAVES 0.1041 0.0299 3.4768 0.0021 0.2781 3.5952

LnSI 0.8179 0.3529 2.3175 0.0302 0.2273 4.3991

LnTI 1.2129 0.3907 3.1045 0.0052 0.2199 4.5470

LnMKT – 0.6816 0.3230 – 2.1102 0.0464 0.1554 6.4330

LnRD – 0.5672 0.2404 – 2.3591 0.0276 0.8126 1.2306

LnPS – 0.2051 0.0598 – 3.4325 0.0024 0.3832 2.6097

Adjusted R2 0.8549

F-statistic 25.4169

p (F-statistic) 0.0000

Log LKHD 15.3509

AIC – 0.4901

SC – 0.1164
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spatial regressive estimates were derived using the
maximum likelihood estimation method and presented in
Table 4.
Referring back to Table 3, it is clear that both spatial

models performed much better than the OLS model. The
goodness-of-fits (R2) of the spatial models were greatly
improved from the OLS estimate, and the one from the
spatial error model (i.e., R2= 0.9113) tops the list. Two
other important indicators for model selection, the Akaike
Information Criterion (AIC) and the Schiwaz Criterion
(SC), were also improved for both spatial models from
those of the OLS model, indicating less information loss in
the modeling process. Furthermore, the results of model
coefficient tests ( the two ‘Probability’ columns in Table 4)
via maximum likelihood exhibit that both the spatial lag
and spatial error models were superior to the OLS model.
As to the comparison between the two spatial models,

both the regular Lagrange Multiplier test and its robust
version failed to reject the null hypothesis of being random
for the spatial lag model; whereas the robust LM test for
the spatial error model rejected the null hypothesis of no
spatially autocorrelated error term at a 10% significance
level, suggesting spatial error specifications to be a better
candidate for this dataset. This outcome is also supported
by AIC and SC tests, as their values for the spatial error
model are further lower than those for the spatial lag model
(Table 4).
Based on the preliminary result from above, we

proceeded to compare the spatial error model to the spatial

Durbin model for the dataset. The SDM modeling results
are reported in Table 5. All explanatory variables except
LnAVES are significant at the 0.01 or 0.05 level. Amid the
spatially lagged explanatory variables, W*LnAVES,
W*LnSI, and W*LnTI are significant at the 0.05 level.
Although the goodness-of-fit value (R2= 0.9384) is greater
than that of the SEM result ( 0.9113), it should be noted
that the spatial parameter, ρ, did not pass the significance
test, which renders it to be hardly different from zero,
indicating that the spatial Durbin model does not provide a
good fit to the data. In order to further verify this outcome,
the Bayesian spatial regression model test, proposed by
LeSage and Pace (2009) for small data samples, was
performed with 1200 simulations for both SDM and SEM.
The resultant posterior probability was 0.9989 for SDM
and 0.0011 for SEM. Therefore, the true model for the
dataset in this study is the spatial error model.
Comparing the model estimates of SEM to those from

OLS, it is rather interesting to see the effect of spatial errors
in the dataset being captured by the spatial error term (l).
With a significance level of 0.0059, the amount of
explanatory contribution (‒0.6754) that the spatial error
effect accounts for is equivalent to that of marketization (‒
0.6892). Apparently, the improved R2 is the direct result of
the removal of spatial errors in the modeling process. This
removal also resulted in a correction in the coefficient
estimates for individual explanatory variables. While all
seven coefficients retain the same direction as in the OLS
model, their values are unanimously adjusted to various

Table 4 Spatial error model and spatial lag model via Maximum Likelihood

Variable
Spatial error model Spatial lag model

Coefficient Std. error Probability Coefficient Std. error Probability

Constant – 15.8360 1.5871 0.0000 – 14.9938 1.8528 0.0000

LnAVGDP 0.8587 0.0918 0.0000 0.8810 0.1235 0.0000

LnAVES 0.1118 0.0213 0.0000 0.0988 0.0267 0.0002

LnSI 0.9719 0.2572 0.0002 0.7889 0.3023 0.0091

LnTI 1.3437 0.2947 0.0000 1.2116 0.3337 0.0003

LnMKT – 0.6892 0.2251 0.0022 – 0.6745 0.2757 0.0144

LnRD – 0.5134 0.1858 0.0057 – 0.5854 0.2080 0.0049

LnPS – 0.1626 0.0464 0.0005 – 0.2152 0.0529 0.0000

l – 0.6754 0.2451 0.0059

ρ 0.0673 0.1208 0.5777

R2 0.9113 0.8909

Log likelihood 17.0559 15.4696

AIC – 18.1117 – 12.9393

SC – 6.9022 – 0.3285

LM-err 1.2031 0.2727

Robust LM-err 2.7154 0.0994

LM-lag 0.4817 0.4877

Robust LM-lag 1.9940 0.1579
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degrees. When spatial errors are absent, it appears that the
contribution from secondary and tertiary industries is more
emphasized, whereas the effects of GDP and technological
progress are suppressed, and the rest remains about the
same. Of particular interest to us was the energy
endowment variable (LnAVES). Its contribution gained
slight improvement but remained very low. Overall, this
might be a more realistic structure of China’s energy
consumption in relation to the seven factors that were
examined in this study.

4.3 Discussion

Further analyses of the modeling results from the
aforementioned error-based spatial econometric model
(SEM) revealed five primary findings about the effects of
economic and energy resource factors on both the
structural and the spatial patterns of China’s energy
consumption.
1) Economic growth is still the most important impetus

for the increase in per capita energy consumption. As
indicated by its spatial distribution (Fig. 1), eastern China
consumed a relatively high share of energy to support its
fast economic growth. We can expect that as the reform
and opening-up further intensify, per capita energy
consumption undoubtedly will keep going up with the
increasing living standard. Although the energy consump-
tion level in the middle and southwest areas was
comparatively low, with the rise of central China and
further implementation of the Great Development of the

West program, these areas will catch up with the east
region in energy demand and consumption. This combined
energy consumption trend will lead to a much greater
energy pressure or even a crisis for China in the future.
2) Although energy endowment seemed to visually

cluster in a pattern similar to energy consumption in China
(Figs. 1 and 2), its estimated elasticity coefficient (0.1118
in Table 4) indicated a rather low weight in the model. This
is especially evident when compared to the GDP variable
(Figs. 1 and 3) and its model coefficient (0.8587 in Table
4). The downgraded relationship between energy endow-
ment and energy consumption might have been caused by
the dual consumption patterns in China. On one hand,
areas with abundant energy reserves are inclined to
consume more energy resources, as evident in such
provinces as Inner Mongolia, Shanxi, and Ningxia.
These provinces sought to accelerate their economic
growth but were tied up with traditional modes of
production with considerably low energy efficiency,
leading to a net result of “high endowment and high
consumption”. On the other hand, many well-developed
but energy-poor provinces along the east coast, such as
Shandong, Jiangsu, Zhejiang, Shanghai, Fujian, and
Guangdong, also scored high in energy consumption,
forming a “low endowment and high consumption” cluster.
The opposite effects of these two clusters obviously
cancelled each other, making the actual leverage of energy
endowment very low across all of China. The relationship
requires a more complex methodological design than a
wholesome regression for analysis.

Table 5 Bayesian spatial Durbin model results

Variable Coefficient Std. error Probability

Constant – 34.3880 9.8296 0.0015

LnAVGDP 0.7362 0.1597 0.0000

LnAVES 0.0479 0.0392 0.1065

LnSI 1.3590 0.5777 0.0115

LnTI 2.1128 0.7415 0.0040

LnMKT – 0.8375 0.3877 0.0175

LnRD – 0.5062 0.2455 0.0215

LnPS – 0.2672 0.0684 0.0010

W*LnAVGDP 0.2159 0.3986 0.2915

W*LnAVES 0.2068 0.1284 0.0485

W*LnSI 1.8033 0.8863 0.0225

W*LnTI 2.8150 1.4140 0.0225

W*LnMKT – 0.1568 0.7592 0.4115

W*LnRD 1.6507 1.1632 0.0735

W*LnPS – 0.1922 0.3008 0.2535

ρ – 0.2720 0.2978 0.1825

R2 0.9384
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3) Industrial structure was again proven to be a major
factor in the whole picture of China’s energy consumption.
Both secondary and tertiary industries placed heavy
weights on the national energy consumption pattern. The
recent internal change of China’s industrial structure was
characterized by a significant movement of secondary
industries to the mid-west region from the east coastal
areas, where more tertiary sectors grew to fill the
vacancies. The net outcome is, while the share of
secondary industries goes down nationally, there is no
apparent potential to further lower its absolute number.
Spatially speaking, the high energy-consuming and low
value-added secondary industrial sectors that were moved
to the energy-rich Midwest further pushed up energy
demand in these provinces. Since the Midwest is
simultaneously a nationally designated storage of energy
reserves for the future, the region is surely under an
incredible pressure. The increased share of tertiary
industries in the east coast, on the other hand, are supposed
to be high value-added with low energy input, but the
results of this paper revealed the opposite. Namely, the
dominance of tertiary sectors in the eastern provinces has
led to a higher level of energy consumption, an observation
similar to the viewpoint of Yuan and Qu (2009). In spite of
great efforts being made to alleviate the continuous energy
pressure through industrial restructuring, eastern China
seems to still face the challenge of improving energy
efficiency in its economic growth.
4) China’s marketization since 1978 seems to have

generated regulating effects on the use of energy. The
reduced use of energy might have resulted from market
pricing to control the flow of energy resources in a more
rational way. Regions with more advanced modes of
production are willing to pay higher prices for energy, as
their generated GDP would be more cost-effective than
less developed areas. As the model outputs indicated, this
institutional change seemed a rather significant measure to
reallocate energy resources in China, so that the western
regions may grow sustainably by exchanging their rich
energy resources for advanced, energy-efficient technolo-
gies from the eastern regions. Due to the huge regional
disparity of energy endowment and economic develop-
ment in China, the Chinese central government has over
the years implemented different market policies for
different provinces, such as strict ones to be applied to
the energy-rich yet energy-inefficient regions, aiming to
regulate the local use of energy resources and promote the
flux of energy into areas with high energy efficiency.
5) As indicated in the model, using advanced technol-

ogies to reverse the trend of low efficiency in energy use
seemed rather effective in China, making it one of the most
promising measures to avoid the possible future energy
crisis in China. This compound factor works in two ways.
On one hand, improvement of energy efficiency largely
relies on technological innovations that improve the
energy-power conversion ratio during value-added pro-

duction. A common practice in China over the last ten
years has been to import new equipment and technologies
through foreign direct investment or joint ventures for high
productivity and energy savings. On the other hand, R&D
investment in developing technologies aiming to harvest
and use such green or sustainable energies as wind power,
solar power, hydropower, and biomass energy has been
steadily increased in China, which may significantly bring
down the fossil energy use in the years to come. For
instance, the increasing expenditure on developing nuclear
power technology has proven able to extricate China from
the severe restraint of high energy demand in the future. In
spite of the recent incident of the earthquake-provoked
explosion of Japan’s Daiichi nuclear power plant, nuclear
power is still undoubtedly accepted as safe and clean
energy. The current energy reserve structure is heavily
weighted by coal and other types of fossil fuels; this
situation may hopefully be rectified by promoting nuclear
power as a national policy. Advancement in geological
science and technology also contributes to the exploration
and exploitation of new fossil energy reserves, which may
help to alleviate the nationwide energy pressure. As long as
the goal of sustaining a high GDP is maintained in the
years to come, the Chinese central government will
continue to place great emphasis on technological progress
by increasing financial input into R&D sectors and training
more R&D personnel. Combined with industrial restruc-
turing, technological progress should be treated as a critical
element to tackle China’s current and future energy issues.

5 Conclusions

This study has demonstrated the capacity of using spatial
econometric modeling in energy issue analysis to deal with
inherent spatial errors that are not resolved by traditional
statistics. This case study has revealed two drawbacks of
the traditional OLS model. First, the spillover effects of
spatial neighbors can be too complex for OLS to handle,
which may lead to degradation of modeling accuracy.
Second, with the presence of spatial autocorrelation, the
contribution of each explanatory variable can be biased
toward either overestimation, such as in this case study, or
underestimation, otherwise. The SEM-based analysis has
distilled a significant portion of model contribution as
spatial errors due to neighborhood effects and adjusted the
elasticity of each contributing factor to improve each
model’s goodness-of-fit.
Even though the analytic results from the SEM model

cannot paint an optimistic picture for the current status of
energy consumption in China, this study nevertheless
provided a suitable approach to investigating this complex
issue from an untraditional perspective, combining energy
endowment, economic factors, and spatial interaction
among regions with similar or disparate characteristics.
The primary findings of this study and their implications
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are rather profound and thought-provoking, which may
help to redirect national and provincial policy making
regarding energy consumption and energy conservation in
China.
As a whole nation, China presents a great demand in

energy for continuous economic growth; but regionally,
this situation is complicated by the dichotomy of
development stage and energy efficiency. The increasing
degree of marketization in China’s economic system seems
to have been unlocking the stagnation of energy issues by
promoting energy-technology exchanges between the
northwest and the east. Recently, the Chinese government
has furthered its energy market reform regarding energy
pricing, using it as an essential tool to adjust the demand
and supply relation for energy in the market. The modeling
results in this study suggest that future energy policy
making requires greater attention to be paid to both market
measures and government taxing in energy-rich regions, as
well as increasing investment in energy-efficient equip-
ment and management. Further and more extensive
cooperation and exchange between the east and the west
should be encouraged or even mandated, so as to speed up
the industrial restructuring process for the improvement of
energy efficiency.
Industries in China can generally be characterized with a

considerably low ratio between economic output and
energy input. As suggested by the SEM model output,
not only secondary sectors are still dominated by energy
devouring machineries, but the newly emerging tertiary
industries across the country also suffer from the inadequate
use of energy. Therefore, the solution to the energy
inefficiency issue is not as simple or straightforward as
conventional industrial restructuring for China. It is
reasonable to suggest that a more sophisticated plan of
coupling nationwide industrial restructuring with techno-
logical innovation should be considered. In China’s case,
technological progress seems to be a vital catalyst to
facilitate the transformation of the old, energy-inefficient
industries to the new, energy-efficient, and environmentally
friendly ones. Policies towards rapid adoption of renewable
energy and energy saving techniques must be made, and
R&Ds in both national research institutions and enterprises
should be encouraged. Direct transfer of new technologies
and management practices from advanced countries and
domestic independent innovations should both be empha-
sized, and only their integration can help China move away
from the seemingly doomed trajectory to the foreseen
energy crisis in near future. In addition, new energy
production and consumption must be seriously subsidized
by the local and central governments for the incubation of a
different line of energy industry aiming for better natural
resource conservation and environmental protection.
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