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Abstract The response of the agro-ecological system to
the environment includes the response of individual crop’s
physiologic process and the adaption of the crop commu-
nity to the environment. Observation and simulation at the
single scale level cannot fully explain the above process. It
is necessary to develop cross-scale agro-ecological models
and study the interaction of agro-ecological processes
across different scales. In this research, two typical agro-
ecological models, the Decision Support System for Agro-
technology Transfer (DSSAT) model and the Agro-
ecological Zone (AEZ) model, are employed, and a
framework for effective cross-scale data-model fusion is
proposed and illustrated. The national observed data from
36 different agricultural observation stations and historical
weather stations (1962-1999) are employed to estimate
average crop productivity. Comparison of the two models’
estimations are consistent, which would indicate the
possibility ofcross-scale crop model fusion.

Keywords DSSAT model, AEZ model, data-model
fusion, agro-ecological system

1 Introduction

The agro-ecological system is very complex, given that its
response to and interaction with environmental changes
occur in multiple scales, which can be exemplified by the
response of the physiologic process of individual crops to
micro-environmental changes and the adaptation of the
crop community to regional and global climate changes.
Observation and simulation at a single level cannot fully
explain the dynamic response and adaption of the agro-
ecological system, especially the interaction between its
different levels. Therefore, we must quantitatively express

the crop physiologic process and the regional system
adaption and then integrate the two processes for a more
comprehensive and accurate assessment of the effect of
climate change on agro-ecological systems.
Previous studies on the estimation of crop productivity

over a large area can be grouped into two categories: crop
dynamic models and agriculture ecological productivity
models. Crop dynamic models, such as the Decision
Support System for Agro-technology Transfer (DSSAT)
(Jones et al., 2003) model, simulate the basic ecological
mechanisms of physiology and the course of crop growth
and development. These models required very detailed
input data under homogeneous site conditions. However,
complete, reliable, and site-specific primary data are often
unavailable, thus preventing the successful and confident
application of the DSSAT model. This condition is
particularly true for soil, climate, and plant genetic data
(Jones et al., 2003). Agriculture ecological productivity
models, such as the agro-ecological zone (AEZ) model
(Fischer et al., 2008), focus on more simplified bio-
physiologic crop simulations. This model considers the
restrictions of soil and topography on the production of
crops concerned and maximizes the available data. The
result of this model can reflect the average productive
potentialities of a given crop in a given region for a number
of years. Therefore, the AEZ method is suitable for
simulations at regional, national, and global scales.
Necessarily, the model pays less attention to the specific
dynamic processes of crop growth.
Considerable effort has been exerted to extend the

application scale and scope of the site-specific crop
dynamic model. Geographical Information System (GIS)
technology has been employed to generate spatial input
data for the DSSAT model (Thornton et al., 1997; Seidl et
al., 2001; Heinemann et al., 2002; Timmermann et al.,
2002). In addition, researchers have used remote-sensing-
based models that assimilate the time series vegetation
index of multiple years, such as the Normalized Difference
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Vegetation Index and the Leaf Area Index, into the
dynamic model to calibrate the crop yield prediction
(Prevot et al., 2003; Liang et al., 2004; Dente et al., 2008;
Fang et al., 2008). The Bayesian parameter estimation
method has been employed to establish the spatial
distribution of different input parameters. For example,
Iizumi et al. (2009) and Tao et al. (2009) used the Markov
chain Monte Carlo (MCMC) technique to estimate the
parameters for a large-scale crop model. Jiang et al. (2009)
applied the Windows Bayesian inference using Gibbs
Sampling (Lunn et al., 2000), a statistical software for the
MCMC method, to examine the effects of soil, topo-
graphic, and climate variables on maize yield. However,
GIS-based or remote sensing-based up-scaling methods do
not consider uncertainty in parameter selection and
calculation. The MCMC is computationally expensive,
thus limiting its implementation in each grid-cell over a
large area.
In this paper, we focus on the complementary features

between the DSSAT dynamic crop model and the AEZ
agriculture ecological productivity model, including such
common parameters as crop genetic adaptability. The
stability of crop genetic adaptability parameters within an
agro-ecological zone provides an intermediate setting to
estimate crop genetic adaptability parameters at the
cropping zone level using Bayesian approaches. The
availability of genetic adaptability parameters at the
cropping zone level enables the application of dynamic
crop models in each grid-cell over a large area, allowing
the comparison of the results of these two models.
We overcome the basic data constraint in DSSAT up-

scaling via data-model fusion between the AEZ database
and the DSSAT model. We overcome the constraint
involving a lack of observed crop dynamics at the grid-
cell level using both Generalized Likelihood Uncertainty
Estimation (GLUE) and MCMC at the observation site to
obtain a stable estimation of key cultivar adaptability
coefficients and by matching cultivars with the two-digit
classification of cropping zones. The GLUE and MCMC
estimations of cultivar coefficients are based on historical
observations at 36 stations distributed nationwide over 20
years (1980 to 1999). This procedure allows the estimation
of wheat production potential at the grid-cell level based on
the site-specific crop dynamic model of DSSAT. This up-
scaling estimation is implemented every year from 1962 to
1990 for both irrigated and rain-fed conditions. A
comparison between these up-scaling results and the
AEZ modeling results are highly consistent in the major
wheat production areas of China.

2 Materials

2.1 Crop models

The DSSAT model was originally developed by the

International Benchmark Sites Network for the Argo-
technology Transfer project. The model simulates the
growth and development of crops within a homogeneous
plot on a daily time step, and the crop yield is computed on
the harvest day (Jones et al., 2003). The core of DSSAT is
the cropping system model (DSSAT-CSM), which can
simulate over 20 crops and has been widely used to
simulate the collective effects of crop genetics, manage-
ment practices, weather, and soil conditions on crop
growth, development, and yield worldwide (Bannayan et
al., 2003; Lobell et al., 2005; Lobell and Ortiz-Monasterio,
2006; Timsina and Humphreys, 2006; Xiong et al., 2008).
The required input data for the DSSAT model are daily
climate data, crop management information, detailed soil
data, and the crop cultivar parameters.
The AEZ model was jointly developed by the Interna-

tional Institute for Applied Systems Analysis (IIASA) and
the Food and Agriculture Organization (FAO) (Fischer et
al., 2008). This model uses regional representations of
climate, critical soil, and geographical factors, as well as
detailed agronomic-based knowledge, to simulate land
resource availability, farm-level management options, and
crop production potentials (Fischer et al., 2008). The AEZ
model has been validated for use in agriculture resource
assessment and has been employed in numerous studies,
both regionally and globally (Fischer et al.,2008).

2.2 Data preparation

Observed daily climate data (from 1962 to 1999) from over
700 meteorological stations nationwide were employed
(provided by the Chinese Meteorological Data Center),
including minimum and maximum air temperature,
sunshine hours, precipitation, relative humidity, and wind
speed for both models. Solar radiation was calculated using
empirical global radiation models based on observed daily
sunshine hours (Pohlert, 2004).
Crop management information is critical to crop growth

simulation and varies significantly across locations.
Observation data are rarely available at the farm-level.
Given that this study focuses on potential crop productiv-
ity, ideal field management (meaning fully irrigated, well
fertilized, no pest impact) was applied. For GLUE and
MCMC estimations of cultivar coefficients at the observa-
tion stations, the observed cropping and growing calendar
was strictly followed, and the highest yield achieved was
considered the observed value of yield across the
observation years. For the up-scaling application of the
DSSAT model beyond the stations, an “automatic” sowing
setting of the DSSAT model was applied, and the sowing
period was between the maximum and minimum observed
sowing date.
The Harmonized World Soil Database (HWSD) (FAO/

IIASA/ISRIC/ISSCAS/JRC, 2009) was employed for both
models. The soil profile parameters required by DSSATare
quite specific, and data gaps occur between HWSD
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contents and the DSSAT requirements. To fill the gaps, we
consolidated other soil databases, such as ISRIC-WISE
(Batjes, 2009). We also conducted conversion calculations
based on empirical formulas given in the literature
(Rawls et al., 1982; Baumer and Rice, 1988; Ritchie
et al., 1989; Gijsman et al., 2002, 2007). The global digital
elevation map and the derived slope distribution database
are linked to the FAO/United Nations Educational,
Scientific, and Cultural Organization digital soil map of
the world.
The genetic adaptability coefficients in the DSSAT

model quantitatively summarize the processes through
which a particular genotype responds to environmental
factors. If the local or new cultivars have not been
previously applied with the crop model, the genetic
coefficients should be estimated and then evaluated with
reference to the independent observation data before the
application of the crop model. We use both the GLUE
module (He et al., 2010) in the latest DSSAT model and
our MCMC code to estimate the cultivar coefficients.
Detailed definitions and applications of GLUE andMCMC
are presented in Sect. 3.
Table 1 lists the genetic coefficients of the DSSAT-

Wheat model in DSSAT (Jones et al., 2003). P1D, P1V,
and P5 determine the timing of phonological events, such
as anthesis date and maturity date. G1, G2, and G3 control
the yield-related outputs, such as grain yield, biomass, etc.
PHINT is not included in the procedure because its value is
similar across different cultivars, and it influences both the
phonological development and yield. PHINTwas assumed
to be 95 for all cultivars.

3 Methodology

The operational steps for the up-scaling of the DSSAT
model are as follows: 1) estimation and validation of
genetic adaptability coefficients at 36 observation stations
using GLUE and MCMC procedures; 2) reclassification of
cropping zones based on the spatial relationship between
observed cropping practices at the observation stations and
the two-digit classification of the cropping zones; 3)

simulation of the annual wheat yield dynamics using the
DSSATmodel with genetic coefficients remaining stable in
each of the reclassified cropping zones, under the historical
climate conditions from 1962 to 1999; and 4) comparison
and cross-validation of the results of DSSAT up-scaling
and the AEZ model.

3.1 Wheat cultivar coefficients estimation

Proper parameter estimation would ensure the accuracy of
model prediction (Makowski et al., 2002). The key
modeling parameters for the up-scaling of the DSSAT
model are the crop cultivar coefficients. The GLUE (Beven
and Binley, 1992) and MCMC (Hastings, 1970; Brooks,
1998) methods are becoming increasingly popular for
model parameter estimation (Campbell et al., 1999). The
popularity of GLUE can be largely attributed to its
conceptual simplicity, relatively ease of implementation,
and its capability to handle different error structures and
models without major modifications to the method itself
(Blasone et al., 2008). The MCMC would be more
accurate than GLUE (He et al., 2010) but considerably
more time consuming and difficult to implement.
The main principle of GLUE is to separate the parameter

space by generating a large number of parameter values
from the prior distribution. Likelihood values are calcu-
lated for each parameter set using field observations. We
then calculate probabilities: an empirical posterior dis-
tribution of the parameters. For each sample value of
cultivar coefficients, we run DSSAT and then assess the
performance of the sample based on its corresponding
likelihood value (i.e., by closeness to the observed flowing
day and yield) and thus, its probability. Finally, we select
the cultivar coefficient values of maximum probability.

3.2 Cropping zone reclassification

The cropping zone system defines the land use units in
AEZ based on climate, soil, and terrain characteristics
relevant to specific crop production. In this study, we
assumed that cultivar coefficients in each (two-digit)
cropping zone are stable and are represented by the
coefficients estimated in the observation station within the
cropping zone. Given that 36 wheat observation stations
and 42 cropping zones are included, with some zones
having more than one station, we must reclassify the
readily defined cropping zones in the AEZ setting to
identify suitable matches between the sub-cropping zones
and the cultivars at the observation stations.
The major reclassification steps are as follows: 1) If a

station is present in a sub-cropping zone, the cultivar
coefficients of the sub-cropping zone are the same as those
of the station; 2) If no station is present in a zone, the
closest suitable cultivar station is chosen for that zone; and
3) If more than two stations are in one sub zone, the zone is
divided based on the county boundary and then reclassified

Table 1 Genetic coefficients of wheat for the DSSAT model (Jones et

al., 2003)

Code Definition

P1D Photoperiod response

P1V Days, optimum vernalizing temperature,
required for vernalization

P5 Grain filling (excluding lag) phase duration

G1 Kernel number per unit canopy weight at anthesis

G2 Standard kernel size under optimum conditions

G3 Kernel filling rate during the linear grain filling stage
and under optimum conditions

PHINT Phylochron interval between successive leaf tip appearances
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to the closest suitable stations, so that observed data can be
fully utilized. The original cropping zones and the
reclassified cropping zones are presented in Fig. 1.

4 Results analysis

4.1 GLUE and MCMC simulation comparison

An intuitive evaluation of GLUE results was conducted by
running linear regression calculations between the esti-
mated results and the observed values across all 36
observation stations (Fig. 2). The R2 of the anthesis day for
winter wheat and spring wheat are 0.95 and 0.76,
respectively. The R2 of the maturity day for winter wheat
and spring wheat are 0.94 and 0.78, respectively. These
results suggest that the DSSAT model performs well for
wheat. Table 2 further indicates that all slope coefficients
are significantly different from zero. More importantly, the
coefficients are reasonably close to 1 (indicating that the
simulated value is equal to the observed value), the latter
being particularly valid for the coefficients of winter wheat.
GLUE generally performs better for winter wheat than for

spring wheat. In terms of winter wheat, the departure of the
slope coefficients from 1 is low for the anthesis day, the
maturity day, the grain weight, and the yield.
The relative accuracy of the GLUE and MCMCmethods

for genetic coefficient estimation is evaluated using the
Relative Absolute Error (RAE, in percent, Eq. (1)),
measures the departure between the observed (Obs) and
the simulated (Simu) values.

RAE ¼ Obs – Simuj j
Obs� 100%,

(1)

In the MCMC runs, two likelihood values for the
anthesis day and the wheat yield are calculated for each
year. Initial genetic coefficient values refer to the hand-
calibrated values calculated with the Genotype Coefficient
Calculator (GENCALC) module (Hunt et al., 1993). The
statistics of the coefficients’ posterior distributions are
calculated using the samples only after a burn-in of 10000
runs. Finally, the parameter values were sampled randomly
from the 95% credible interval of each posterior distribu-
tion and only the last 10000 iterations were chosen for
reliable results. The mean value was then chosen as the
result.

Fig. 1 Reclassified cropping zone map of China based on observation stations. (a) denotes the original cropping zones, (b) denotes the
reclassified cropping zones, and the blue points stand for the observation stations
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In the GLUE method, 7000 samples were randomly
generated for estimation. Two independent procedures are
used for the DSSAT implementation: 1) the initial
estimation of the phonological development parameters
and then that of the growth parameters, with the likelihood
values computed for each observation; and 2) the
calculation of the probability of each parameter set, after
which the set with the maximum probability is chosen.
The RAE values of the anthesis day (DOY, the maturity

day (DOY), and the wheat yield (kg/ha) are calculated
(Table 3, Fig. 3). The average RAE shows that both

methods work equally well. For winter wheat, the average
RAE for the anthesis day is 4% versus 6.5%, for maturity
day is 2.4% versus 4%, and for grain yield is 14.2% versus
16.7%. Although the performance of the DSSAT model for
spring wheat is not so effective, both methods failed to
capture the character of the anthesis day and the yield; the
RAE values are 10.4% versus 11.6% and 28.4% versus
33.6%, respectively. These results indicate that MCMC
performs slightly better than GLUE both for winter wheat
and spring wheat, but the method is considerably more
difficult to implement and significantly more computa-

Fig. 2 Comparison between the observed and the GLUE-simulated results (27 winter wheat stations; 9 spring wheat stations)
nationwide ((a) and (c) refer to the anthesis day, whereas (b) and (d) denote the maturity day), DOY refers to day of the year

Table 2 Linear regression of simulated versus observed results, slope coefficients and standard errors

Wheat type Anthesis day Maturity day Yield Unit wt. Grain

Winter wheat Slope 0.951 0.943 0.931 0.842

(S.E.) (0.011) (0.013) (0.056) (0.039)

Spring wheat Slope 0.746 0.748 0.888 0.913

(S. E.) (0.035) (0.033) (0.042) (0.038)
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tionally expensive than GLUE. For application across 36
observation stations, GLUE is more suitable.

4.2 Cross-model validation

Figures 3 and 4 present the average potential wheat yields
from 1962 to 1990, as estimated by the AEZ model and by
the up-scaled DSSAT model under irrigated (Fig. 3) and
rain-fed (Fig. 4) conditions. Maps with the same color-
labeling scheme are produced with a resolution of 10 km�
10 km. Figures 3 and 4 show quite similar spatial
distribution patterns of wheat yield. This finding is

especially valid in the main production regions of the
North China Plain and the lower reach of the Yangtze River
basin, where the presence of a sufficient number of
observation stations guarantees the accuracy of the results.
In contrast, the availability of only one observation station
in the northern end of the north-east region results in a
lower level of yield from the up-scaled DSSAT model
compared with the level produced by the AEZ model. In
addition, the DSSAT model does not fully incorporate the
effect of slope azimuth and gradient, whereas the AEZ
model considers these constraints on crop yields. This
difference causes higher yield estimation in hilly areas of

Fig. 3 Average yields (1962 to 1990) on irrigated land, AEZ (a) and up-scaled DSSAT (b)

Table 3 RAE comparison of wheat simulations using GLUE and MCMC

Wheat type Station
Anthesis day Maturity day Yield

MCMC GLUE MCMC GLUE MCMC GLUE

Winter wheat AHHF 4 6.5 2.4 4 14.2 16.7

Spring wheat FJLH 10.4 11.6 3.7 5.1 28.4 33.6

Zhan TIAN et al. Estimating potential wheat yield based on cross-scale data-model fusion 369



the south-west region than that estimated by the AEZ
model. Notably, the AEZ model does not perform
effectively under the rain-fed conditions in the north-
eastern region. Further fusion work is required to improve
the performance of the two models.

5 Conclusions and discussion

In this paper, we propose a novel procedure to up-scale one
of the most popular site-specific crop dynamic models,
DSSAT, directly with the data-model fusion method. The
procedure makes the direct application of DSSAT at the
regional level feasible.
The major steps employed are as follows: 1) We apply

both GLUE and MCMCmethods to establish the empirical
posterior distribution of crop cultivar coefficients based on
a likelihood measure of distance between the model-
predicted outcomes and the multi-year observations.

Multiple tests indicate that both methods produce stable
genetic adaptability parameters. 2) We reclassify the
cropping zones of the AEZ model to identify the best
match between the observation stations and the cropping
zones. This match maximizes scarce crop cultivar data and
consequently improves the accuracy of model estimations.
The discovery of reliable recorded data from additional
observation stations in some specific regions will sig-
nificantly improve the performance of both DSSAT up-
scaling and the AEZ model. 3) We simulate annual wheat
yield dynamics using the DSSAT model with genetic
adaptability coefficients remaining stable in each of the
reclassified cropping zones under the historical climate
conditions from 1962 to 1999. The comparison of the
estimated yields reveals consistency between the up-scaled
DSSAT model and the AEZ model, especially in such
major cropping areas as the North China Plain and the
lower reach of the Yangtze River basin. However, in the
north-east and south-west regions, where wheat is not a

Fig. 4 Average yields (1962 to 1990) on rain-fed land, AEZ (a) and up-scaled DSSAT (b)
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major crop, the departure between DSSAT up-scaling and
AEZ becomes evident. This difference can be attributed to
a lack of observation stations in the north-east (where
wheat cultivation is rare) and the lack of full consideration
for the effect of slope azimuth and gradient in the hilly
areas of the south-west.
A further model of fusion work should include: 1) the

improvement of the performance of the AEZ model to
enable it to adapt the cultivar coefficient map and other
cultivar information produced by the DSSAT up-scaling
procedure, and 2) the simplification of the up-scaling
procedure of the DSSAT model. To save computing time,
the up-scaling procedure must adopt the best crop rotation
regimes produced by the agro-climatic assessment of the
AEZ model.
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