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Abstract Solid particles, particularly urban surface dust
in urban environments contain large quantities of pollu-
tants. It is considered that urban surface dust is a major
pollution source of urban stormwater runoff. The storm-
water runoff washes away urban surface dust and dissolves
pollutants adsorbed onto the dust and finally discharges
into receiving water bodies. The quality of receiving water
bodies can be deteriorated by the dust and pollutants in it.
Polluted waters can be purified by wetlands with various
physical, chemical, and biologic processes. These pro-
cesses have been employed to treat pollutants in urban
stormwater runoff for many years because purification of
treatment wetlands is a natural process and a low-cost
method. In this paper, we reviewed the processes involved
during pollutants transport in urban environments. Parti-
cularly, when the urban stormwater runoff enters into
wetlands, their removal mechanisms involving various
physical, chemical and biologic processes should been
understood. Wetlands can remove heavy metals by
absorbing and binding them and make them form a part
of sediment. However, heavy metals can be released into
water when the conditions changed. This information is
important for the use of wetlands for removing of
pollutants and reusing stormwater.

Keywords wetlands, heavy metal, stormwater runoff,
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1 Introduction

There are many kinds of pollutants on the urban surface,
when the precipitation happens and runoff is formed,
pollutants can be dissolved and washed away and finally
discharged into receiving water bodies (Taebi and Droste,

2004). It is considered that urban stormwater runoff is one
of the most prevalent sources of water quality impairment
in aquatic ecosystems (USEPA, 1996). Combined with
increasing population and water scarcity and rapid
urbanization and industrialization, the degradation of
aquatic ecosystems has generated increasing interest in
the controlling pollution and reusing of urban stormwater
(Thurston, 1999; Ngabe et al., 2000; Fletcher et al., 2008).
The pollutants in urban stormwater are the barrier to reuse
it. So, it is very important to knowledge of the basic
pollution processes of urban stormwater runoff.
Among the various non-point sources, urban stormwater

runoff is an important source of pollution because it may
contain abundant heavy metals such as Cu, Pb, Zn, As, Hg,
Cr, and Cd (Makepeace et al., 1995; Sriyaraj and Shutes,
2001). The heavy metals in urban stormwater runoff
mostly come from the particulate matter within the surface
water systems caused by atmospheric transport and local
human activities including resuspended road dust, vehicle
emissions, industrial discharges, heating systems, building
deterioration, and other anthropogenic activities (Al-
Khashman 2004; Faiz et al., 2009; Mulligan et al., 2009;
Apeagyei et al., 2011; Khairy et al., 2011). Kinds of heavy
metals within stormwater runoff are discharged directly
into natural water bodies, these non-biodegradable metals
will accumulate in the aquatic environment, causing both
short-term (e.g. acute toxicity) and long-term (e.g.
carcinogenic damages) adverse effects on human life and
other organisms (Wu and Zhou, 2009; Khairy et al., 2011).
These adverse effects can be enlarged through taking
contamination of drinking water and food (Cheng et al.,
2002; Terzakis et al., 2008; Eckley and Branfireun, 2009;
Luo et al., 2009; Wu and Zhou, 2009). For example,
cadmium can lead to tissue damage and cellular death
(Méndez-Armenta and Ríos, 2007). Furthermore, some
metals like chromium (VI) are thought to be toxic to
organisms such as plants and animals (Richard and Bourg,
1991).
Sedimentation can be taken as one of the principal
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removal mechanisms of heavy metals in water (Reinelt and
Horner, 1995; Walker and Hurl, 2002). Sedimentation of
suspended solids in water can be influenced by particle
size, hydrologic regime, flow velocity, and residence time
(Reinelt and Horner, 1995). Wetlands with residence and
purification function can eliminate the negative impacts of
urban stormwater runoff, because there are dense vegeta-
tions and suspended particles (USEPA, 1995). They can
serve as a natural purifier for urban stormwater runoff and
allow pollutants to be removed from the water by
sedimentation or filtration process. For example, Walker
and Hurl (2002) found that when the stormwater runoff
passed through the wetland, contaminant (Zn, Pb, and Cu)
concentrations on sediment decreased 57%, 71% and 48%,
respectively. However, some heavy metals such as Cr and
As are remained relatively constant or increased. There-
fore, this contradiction calls for investigating the removal
mechanisms of heavy metals of urban stormwater runoff in
wetlands.
The main purpose of this paper is to provide a review on

the concentration of heavy metals in urban environment
and their removal mechanisms in wetlands receiving urban
stormwater runoff, depending on literatures and practical
working experiences. Figure 1 illustrates the processes
involved heavy metals transport in urban environments.
It’s very important to understand the basic mechanisms
and processes that control the metals removal by wetlands.
The knowledge of these can increase the probability of
success of the treatment wetland application and the
optimization of remediation technologies fitting for
polluted wetland can be achieved.

2 Heavy metals pollution in urban
environment

Solid particles that accumulate on impervious surfaces in
urban environments are generally defined as “urban
surface dust,” which does not stay in place for a long
time. Due to the wind and human activities, they are easily
re-suspended back into the atmosphere with a large
number of pollutants. Precipitation may wash away
urban surface dust and form surface runoff, carrying a
mass of pollutants, which can dissolve in surface runoff
and in receiving water bodies (e.g. metal ions) and become
an important component of the suspended particles due to
adsorption (Vermette et al., 1991; Ferreira-Baptista and
Miguel, 2005).

2.1 Heavy metals concentration in urban surface dust

The mean concentrations of heavy metals in urban surface
dust worldwide are listed in Table 1, while the concentra-
tions are slightly similar in cities of China than that in cities
abroad. However, they are much higher than their back-

ground values in soil of China (Table 1). It can be sure that
urban surface dust contains large quantity of heavy metals,
which will result in potential hazard of receiving water
bodies and human beings.

2.2 Heavy metals concentration in urban stormwater runoff

A number of investigators have studied the characteristics
of urban stormwater runoff, therefore, many data have
been collected. The most comprehensive study, the
Nationwide Urban Runoff Program (NURP), had been
accomplished in the early 1980s by the United States
Environmental Protection Agency (USEPA, 1983;Taebi
and Droste, 2004). An urban runoff pollution loading
factor (event mean concentration (EMC)) was produced
from the results of NURP (Taebi and Droste, 2004).The
EMC of a pollutant can be calculated by the division of the
total pollutant mass to the total runoff volume in that event
and catchment (Eq. (1)) (Ma et al., 2011). It is described by
the following equation:
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whereM is the total mass of pollutants over the entire event
duration (g); V is the total volume of flow over the entire
event duration (m3); t represents time (min); Ct is the
concentration of a pollutant (mg/L); Qt is the variable flow
(m3/min); and Δt is a discrete time interval (min), Δt =
(ti+1 – ti – 1)/2. The EMC was computed for the entire
runoff duration of each event.
Table 2 contains an overview of heavy metals mean

values of the EMCs for urban surface runoff, which
include raw roof runoff and road runoff. From Table 2, it
may be found that heavy metals mean values of EMCs in
runoff, not only in road runoff but also in roof runoff, are
more or less lower in China than in other cities around
world. Generally, heavy metals in roof runoff are slightly
higher than in road runoff, but heavy metals in roof runoff
are greatly higher than in road runoff in China. The runoff
which contents heavy metals mean values of EMCs is in
the order of roof runoff>road>>rainfall.
Some investigators study the dissolution characteristics

of urban surface dust in different aqueous media, which are
deionized (DI) water (Joshi et al., 2009; Murakami et al.,
2008, 2009), acidified DI water (Li et al., 2008c;
Murakami et al., 2008; 2009; Joshi et al., 2009) and river
water (Joshi et al., 2009). Joshi et al. (2009) studied metals
dissolution characteristics in these three aqueous media.
This study clearly indicated that dissolution of metals from
surface dusts can be influenced by the solution pH in
receiving waters. If the rain is becoming acidic, it is likely
to leach out large number of dissolving metals from the
surface dust. Murakami et al. (2008; 2009) employed
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artificial road runoff water (road dust leachates) to obtain
percolating water from the soakaway sediment to discuss
on relationship between the sorption behavior of heavy
metal species and the water quality of road runoff. There
should be a method that will suggest that the surface dust
leachates could be regarded as valid and representative to
mimic surface runoff water, which has similar chemical
parameters (e.g. heavy metals, DOC and pH) of surface
dust leachates with these in dissolved phase of actual
surface runoff water.
On the basic of analysis above, stormwater runoff from

urban impervious surfaces often contains significant
amounts of heavy metals. Because metals do not degrade
naturally, high concentrations of them in stormwater runoff
flow into receiving waters and can result in pollution in the
aquatic environment at levels that are toxic to organisms in
surrounding environments. As the limit of time and space

of rainfall, there should simulate surface runoff with
surface dust leachate to study the pollutants removal
process in future.

3 Heavy metal removal mechanism in
stormwater wetland

When the urban stormwater runoff, agricultural runoff, and
other wastewaters enter or pass through wetlands, various
pollutants are removed by several physical, chemical, and
biologic processes. More recently, wetlands which have
the potential for water-quality improvement are exploited
for the treatment of different kinds of wastewaters (Walker
and Hurl, 2002; Gopal and Ghosh, 2008; Yeh, 2008;
Lizama et al., 2011). To understand the basic processes of
the removal, even the potential applications, knowledge of

Fig. 1 Flow diagram illustrating the processes involved during pollutants transport in urban environments
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benefits and limitations of wetland treatment systems are
extremely helpful for designing constructed wetlands to
improve the water quality.

3.1 Physical removal processes

In natural or constructed wetlands, there are many
processes like filtration, adsorption, plant uptake and
chemical transformation in the removal of heavy metals
from water (Walker and Hurl, 2002), however, sedimenta-
tion with suspended particles has long been recognized as
the primary process in the removal of heavy metals from
stormwater runoff (Mays and Edwards, 2001). In practice,
wetlands have been considered most often for the
treatment of urban stormwater runoff (Reinelt and Horner,
1995; Thurston, 1999). They will be significant benefits
and low cost of purifying water and supplying the
groundwater (Shutes, 2001; Liang and Wong, 2003).
This purification is depended on the reduction of
suspended particles, nutrients and heavy metals. Once
heavy metals enter into a wetland, whether the water is
stagnant or mobile, a number of removal processes may
occur (Zoppou, 2001). Heavy metals in wetlands tend to be

combined with suspended particles and more easily with
the finer particles. So it is considered that heavy metals in
wetlands may be transported from water to the sediment or
biota or vice versa, which can be easily filtered and
accumulated in wetlands (Walker and Hurl, 2002).
Sedimentation rate of suspended particles depends on

water flow rate in wetlands. The roots and floating plants
will make surface water typically move very slow or calm
through wetlands. Through a variety of physical, chemical
and biochemical processes, roots and floating plants
ultimate contribute to purification of wastewater by
sedimentation (Khan et al., 2009). Particles are more or
less dense than water, sedimentation will happen only after
floc formation (Yao and Gao, 2007). Sedimentation rate is
proportional to the particle settling velocity and water
residence time in wetlands (DeBusk, 1999). In the process
of floc formation, suspended particles may also be
combined with other types of fine particles like heavy
metals which will be removed from water. In wetland
ecosystems, flocculation is influenced by pH, concentra-
tion of suspended particles, ionic strength and microorgan-
ism concentration (Droppo et al., 1997; Matagi et al., 1998;
Sheoran and Sheoran, 2006). Sedimentation is rather than a

Table 1 Mean concentrations of heavy metals in urban surface dust

City
Mean concentrations of heavy metals/(mg$kg–1)

Cd Cu Cr Ni Pb Zn

Riyadha) 2.3 61.7 32.5 45.0 2134.0 338.0

Madridb) Nd 188.0 61.0 44.0 192.7 476.0

Warsawc) Nd 154.3 100.3 55.7 174.0 1286.7

Ottawad) 0.4 65.8 43.3 15.2 39.1 112.5

Birminghame) 1.6 466.9 Nd 41.1 48.0 534.0

Coventrye) 0.9 226.4 Nd 129.7 47.1 385.7

Sydneyf) 4.4 147.0 83.6 27.2 389.0 657.0

Luandag) 1.1 42.0 26.0 10.0 351.0 317.0

Budapesth) Nd 351.0 235.0 326.0 894.0 1608.0

Jordani) 6.4 91.9 65.5 Nd 59.5 639.8

Xi’anj) Nd 95.0 167.3 Nd 230.5 421.6

Chongqingk) 5.0 79.4 87.3 22.2 75.6 169.7

Shanghail) 1.0 257.6 264.3 66.4 236.6 753.3

Urumqim) Nd 81.1 109.7 Nd 82.7 549.0

Baojin) Nd 123.2 126.7 48.8 433.2 715.3

Xianyango) 0.1 177.2 Nd Nd 52.7 Nd

Shenyangp) 4.4 81.3 Nd Nd 106.3 334.5

Jinhuaq) Nd 142.1 219.8 44.4 161.8 758.7

Hangzhour) 1.6 116.0 51.3 25.9 202.2 321.4

Guangzhous) 2.4 176.0 78.8 23.0 240.0 586.0

Background values in soil of China 0.1 22.6 61.0 26.9 26.0 100.0

Notes: Nd = no data available; a) Al-Raihi et al. 1996; b) Miguel et al. 1997; c) Lisiewicz et al. 2000; d): Rasmussen et al. 2001; e) Charlesworth et al. 2003; f)
Chattopadhyay et al. 2003; g) Ferreira-Baptista and Miguel, 2005; h) McAlister et al. 2006; i) Jaradat et al. 2004; j) Han et al. 2006; k) Li et al. 2006; l) Shi et al. 2010;
m) Liu et al. 2009; n) Lu et al. 2010; o) Shi and Wang, 2009; p) Li et al. 2008a; q) Li et al. 2008b; r) Zhang and Wang, 2009; s) Duzgoren-Aydin et al. 2006
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simple physical reaction. Some other chemical processes
like sorption, precipitation and co-precipitation have to
occur first, and then sedimentation becomes possible only
after suspended particles aggregate heavy metals into
particulate solids large enough to sink (Walker and Hurl,
2002). In this way heavy metals are removed from
stormwater runoff and trap in the wetland sediments,
thus protecting the ultimate receiving surface and ground-
water bodies (Sheoran and Sheoran, 2006).
Wetlands can provide highly efficient physical removal

of contaminants in the polluted water by sedimentation
(DeBusk, 1999). For example, Windom et al. (1991)
reported that an average of approximately 40%, 62%, 80%
and 92%, of the total amounts of Cu, Cd, Zn and Pb are
carried by suspended solids in rivers on the east coast of
the USA. Mulligan et al. (2009) addressed that the level of
heavy metal removal is 98.9% due to the heavy metal
combines with the suspended solids. Hares and Ward
(2004) also found a high level of removal of heavy metals
by sedimentation, filtration and bioaccumulation processes
in the high reed biomass wetlands in 39-month study.

Therefore, to some degree, the principal role in suspended
particles removal is to restrict resuspension of settled
particulate matter. Overall, sedimentation is usually con-
sidered as a reversible process, which will accumulate
particles and associate contaminants on the wetland soil/
sediment surface and release contaminants with the
environmental change (DeBusk, 1999). Sediment can
resuspension and reenters into waters due to wind-driven
turbulence and bioturbation (disturbance by animals and
humans). The heavy metal contents in water will be
increased accordingly. Thus, the turbulence should be
decreased. Removal of contaminants fromwater by wetlands
is a sustainable method of environmental management and
low cost pollution treatment approach (Shutes, 2001).

3.2 Biologic removal processes

There is other removal process-biologic removal, which is
one of the most important methods for contaminant
removal in wetlands. Plant uptake is proved to be the
most widely recognized biologic process for contaminant

Table 2 Heavy metals mean values of EMCs in runoff water

City Wastewater type
Heavy metals/(μg$L–1)

Cd Cu Pb Zn Cr Ni

Nantesa) Raw runoff 1.0 45.0 58.0 356.0 Nd Nd

Parisb)

(median)
Roof runoff 1.3 37.0 493.0 3422.0 Nd Nd

Yard runoff 0.8 23.0 107.0 563.0 Nd Nd

Street runoff 0.6 61.0 133.0 550.0 Nd Nd

Isfahanc) Urban runoff Nd Nd 278.0 342.0 Nd Nd

Genoad) Road runoff Nd 19.4 13.2 81.1 Nd Nd

Roof runoff Nd 10.0 5.1 446.7 Nd Nd

Cremonae) Road runoff1) Nd 1397.0 34.0 222.0 1.5 7.4

Road runoff2) Nd 469.0 11.0 156.0 Nd Nd

Road runoff3) Nd 826.0 18.8 260.0 7.0 Nd

Road runoff4) Nd 1683.7 19.8 528.3 8.5 10.1

Macauf) Road runoff5) Nd 13.4 10.0 43.0 Nd Nd

Road runoff6) Nd 33.3 81.0 288.0 Nd Nd

Guangzhoug) Road runoff 26.5 0.1 100.6 1.9 52.7 26.5

Road runoff 11.9 0.0 51.3 0.5 8.7 11.9

Road runoff 0.7 0.0 70.5 0.3 4.3 7.6

Rainfall 0.2 0.0 0.2 0.1 n.d. n.d.

Shanghaih) Roof runoff7) 6.0 36.0 44.0 688.0 14.0 Nd

Roof runoff8) 6.0 33.0 36.0 1129.0 11.0 Nd

Roof runoff9) 6.0 28.0 47.0 1035.0 14.0 Nd

Shanghaii) Road runoff 4.0 0.1 0.1 1.0 0.3 0.3

Nanjingj) Road runoff 0.8 0.1 40.4 0.5 Nd Nd

Notes: Nd = no data available; n.d. = not detected; 1–4) stand for the 4 storm events during 26/09/2007, 24/10/2007, 22/11/2007 and 30/01/2008, respectively. 5) and 6)
stand for the 2 storm events during 21/06/2005, 17/08/2005, respectively. 7–9) stand for roof types of concrete, aluminum and glass, respectively. a) Legret and Pagotto,
1999; b) Gromairemertz et al. 1999; c) Taebi and Droste, 2004; d) Gnecco et al. 2005; e) Papiri et al. 2008; f) Huang et al. 2006; g) Gan et al. 2007; h) Chang et al. 2009;
i) Wang and Li, 2009; j) Li et al. 2009
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removal in wetlands (DeBusk, 1999). Meanwhile the
plants absorb some of the pollutants directly in water. The
plants can supply oxygen to the microorganisms within the
wetland around the rhizosphere.

3.2.1 Metals mobility in the rhizosphere

As an important interface of soil and plant, rhizosphere
plays an important role in the wetland system. Under
reducing condition, many of the metal pollutants are
associated with carbonates and sulfides in the sediments.
However, wetland plants can oxidize the sediments in the
rhizosphere through the transfer of oxygen downwards
(Moorhead and Reddy, 1988; Quan et al., 2007). This
oxidation can remobilize the metal pollutants, thus
resolving the metals in sediment in wetlands and
increasing the content of them in surface water (Lacerda
et al., 1993; Weis and Weis, 2004). Plants increase the
amount of iron oxyhydroxides in the sediments through
oxidation of the rhizosphere to retention of metals in
wetlands (Otte et al., 1995). This process is strongly
dependent on season. It is believed that plants affect the
biogeochemical dynamics of wetland sediments via
evapotranspiration-induced advection, which increases
the loading of dissolved pollutants into the rhizosphere
(El-Shatnawi and Makhadmeh, 2001).
There is combination of intense microbial activity in

wetland sediments with the oxygen released by plant roots,
which creates both anaerobic and aerobic zones, hence both
reductive and oxidative reactions take place simultaneously
in the interface of soil and plant (Sobolewski, 1999). These
processes are composedmostly of Fe andMn hydroxides and
other coprecipitated metals, and are often referred to as “iron
plaque.” Some other metals are released from the anoxic
sediments and accumulated in the oxidized rhizosphere
(Doyle and Otte, 1997). Their concentrations can reach 5–10
times than that in the surrounding sediments (Sundby et al.,
1998). A notable characteristic of roots of some wetland
plants is the emergence of metal-rich rhizoconcretions or
plaque on the roots (Weis and Weis, 2004).
Heavy metal remobilisation may be caused by the

excretion of plant exudates (Xu and Jaffé, 2006). For
example, root exudates significantly change in species and
quantity under heavy metal stress (Dong et al., 2007). Root
exudates can activate heavy metals in soil, and enhance their
bioavailability by dissolving (Xu et al., 2006). The presence
of microbial symbionts can affect the accumulation of metals
in wetlands such as mycorrhizae (Weis and Weis, 2004).
Mycorrhizae provide an interface between the roots and the
soil. They can increase the absorptive surface area of root
hairs (Meharg and Cairney,1999).

3.2.2 Metals uptake by plants

Wetlands are highly productive systems and support

globally large biodiversity (from microorganisms to
mammals). There usually contain a large number of plants.
MacFarlane et al. (2003) and Weis and Weis (2004)
showed that metal accumulation in plants is element- and
plant-specific. They found the level of accumulation in
leaves change on the basis of the metals. Some heavy
metals like Zn can be accumulated in leaves. The
concentrations in leaves are relevant to the concentrations
in sediment around the plant. However, lead levels in
leaves are different, which accumulate in roots and shoots
(Weis and Weis, 2004). Deng et al. (2004) investigated that
the concentrations of Pb, Zn, Cu and Cd accumulate by
many perennial wetland plants. The results showed that
metal accumulation is differed among tissues of wetland
plants, which are mostly accumulated in root tissues, and
then in their shoots. Many factors include metal concen-
trations, pH, temperature and nutrient levels in the
surroundings can influence metal accumulation in wetland
plants. There are two kinds of heavy metals accumulated
into plants, which are essential micronutrients such as Zn,
Ni, Cu, andMn, and non-essential toxic heavy metals, such
as Cd, As, Hg and Pb (Kabata-Pendias and Pendias, 2001;
Papoyan et al., 2007). Essential micronutrients are basic
components of plants, they are also potentially toxic heavy
metals as high content. However, if plants absorb the
non-essential toxic heavy metal via the transport systems,
which are not only toxic for plant growth but also can limit
the uptake of essential micronutrients (Kabata-Pendias and
Pendias, 2001; Papoyan et al., 2007).
The transfer ability of pollutants from root to above-

ground is dependent on plant species, metals, and physical
conditions, for eample pH, redox potential (Eh), and
temperature (Weis and Weis, 2004; Reboreda and Caçador,
2007). Besides, other factors, such as sediment organic
matter content, grain size, nutrients, microbial biomass,
and the other ions concentrations may also influence
metals uptake by wetland plants (Dong et al., 2007;
Reboreda and Caçador, 2007). In the future, more research
attention should go to mechanisms of metal transfer from
intermittent wetting and drying wetland soils/sediments to
vegetation, as well as their spatial and temporal dynamics.

3.3 Chemical removal processes

Besides, there are a series of chemical processes which
referred to the removal of heavy metals in wetlands.

3.3.1 Sorption

Sorption is regarded as the most important chemical
removal process in wetland soils/sediments, which can
remove many contaminants by short-term retention or
long-term immobilization. Sorption is a group of processes
that transfer ions (molecules with positive or negative
charges) from the solution phase (water) to the solid phase
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(soil/sediment). These processes include adsorption and
precipitation reactions (Sheoran and Sheoran, 2006).
Heavy metals in sediments are adsorbed to the solid

particles by either cation exchange or adsorption. Malan-
drino et al. (2006) reported that clays with high cation
exchange capacity and high specific surface area can
remove pollutants from aqueous solutions. Some research-
ers found that the inorganic matter with high adsorption
capacity which usually use as sorbents for the removal of
metals from various waters due to particularly abundant
and inexpensive (Celis et al., 2000; Alvarezayuso and
García-Sánchez, 2003; Malandrino et al., 2006). Heavy
metal pollution adversely affects in the soil/sediment is
long-term because they are being strongly adsorbed by the
organic matter or clay. Besides, this harmful effect may last
hundreds of years or more, while they will remain as
metals, although changes in their speciation or valence
state may take place with the time and the sediment
conditions change (Groudev et al., 1999; Wieβner et al.,
2005; Kalavrouziotis and Koukoulakis, 2009). Many
wastewater and runoff contain cations, including ammo-
nium ion (NH4

+) and most trace metals, such as Cu2+,
Zn2+, Pb2+, Ni2+ and Cd2+. The capacity of soils/sediments
for retention of these cations generally increases with
certain substrates such as clay colloids and organic matter
content, which refer to as cation exchange capacity (CEC)
(Locke et al., 1997).
Adsorption represents a stronger binding force than

cation exchange. Metal ion adsorption on both non-specific
and specific sorbents depends upon the medium, as this
medium affects the solubility of metals in solution, as well
as the metals binding sites onto medium surface (DeBusk
et al., 1996; Gevao et al., 2000; Zouboulis et al., 2004).
According to St-Cyr and Campbell (1996), metals like
Zn can combine with Fe through absorption and co-
precipitation, and thus, if these mobilized metals come near
the iron compounds formed on the plant roots, they
become adsorbed on the root surface. More than 50% of
the heavy metals can be easily adsorbed onto particulate
matter and sediment in wetland (Yao and Gao, 2007).
Studies suggested that there is competition for organic
adsorption sites among Fe, Cu, Zn and Mn, for example,
iron and Cu appear to be more strongly adsorbed than Zn
and Mn (Tam and Wong, 1996). The adsorption of metals
has changed along with the fluctuation of pH in water
(Machemer and Wildeman, 1992; Sheoran and Sheoran,
2006). Some experiments showed that competitive adsorp-
tion among metals increases the mobility of metals, which
highly depend on sediment properties such as CEC and
particles surface area (Seo et al., 2008; Oh et al., 2009).
Their works showed that Pb in the multimetal adsorption
column lose its adsorption capacity significantly as the
result of competition with other metals.
Infiltration of rainfall is an attractive practice not only to

attenuate excessive flow during storm events but also to
reduce the content of pollutants and even sustain ground-

water resources (Boller, 1997). Heavy metals in storm-
water runoff cause by rainfall are in colloidal, particulate,
and dissolved phases (Rangsivek and Jekel, 2005).
Removal processes of heavy metals in soil/sediment and
other media are known to be related to the speciation of
metals (Almas et al., 2006). For example, Murakami et al.
(2008; 2009) suggested that sediment in infiltration
facilities act as sorbent during infiltration the road runoff.
They found that Cu predominantly exists as organic
compounds and carbonates in road dust leachates, whereas
some heavy metals (e.g., Mn, Zn, and Cd) are found to
exist in the form of ions and carbonate.

3.3.2 Precipitation and co-precipitation

The proportion of insoluble heavy metals in sediments is
one of factors that limits the bioavailability and toxicity of
heavy metals to many aquatic ecosystems. Therefore,
precipitation and co-precipitation are a major removal
mechanism of heavy metals in wetlands (Yao and Gao,
2007). There are the various treatment methods which
employed to remove heavy metals in wastewater, pre-
cipitation is the most general method of removing heavy
metals. For example, heavy metals are removed by adjust
the pH in water to the minimum solubility of heavy metals
(Zhou et al., 1999). The heavy metals adsorbed on the
precipitation can be removed by sedimentation and
filtration (Zhou et al., 1999).
Heavy metals in wetland sediments can be removed by

precipitation-adsorption phenomena (Yao and Gao, 2007).
Much of the removable fraction of potentially toxic metals
such as Pb, Zn, Cd, Cu, and As, can be co-precipitated with
pyrite, form insoluble sulfides, and become unavailable to
biota (Morse, 1994). In addition, zinc forms insoluble
sulfide and carbonate compounds, and also zinc is co-
precipitated with Fe and Mn oxides, which is also reported
to be co-precipitated in iron plaques and adsorbed on the
surface of plant roots (Otte et al., 1995; Kröpfelová et al.,
2009). Under acidic conditions, ferric hydroxide surfaces
will be positively charges and they will be negatively
charges under alkaline conditions. So there should be
conducted under acidic conditions to facilitate adsorption
and removal of cationic metals such as As, Sb, and Se, Fe
and alkaline conditions for co-precipitation of cationic
metals (e.g., Cu, Zn, Ni and Cd) (EPRI, 1990; Yao and
Gao, 2009). Heavy metals may be associated with iron and
manganese oxides as a result of precipitation and co-
precipitation phenomena.

3.3.3 Oxidation and hydrolysis of metals

Heavy metals may be released from anoxic sediments
(sinks for pollutions) when environmental conditions
change (e.g. pH, redox potential) and sediments are
exposed to air, at this time sediments can act as a source
of pollutants (van den Berg et al., 1999; Wilson and Chang,
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2000; Hartley and Dickinson, 2010). So drying and
aeration of the wetland sediment lead to falling pH and
increase mobility of heavy metals (Hartley and Dickinson,
2010). Generally speaking, it is accepted that the change of
redox potential in sediments is also one of the most major
factors controlling heavy metal mobility (Salomons and
Stigliani, 1995; Zoumis et al., 2001). With the increase of
redox potential in sediment, the oxidization rate of metal
sulfides and the degradation rate of organic matter will
increase correspondingly, which can accelerate the release
of the heavy metals adsorbed (Calmano et al., 1993).
Heavy metals may form sulphide in anoxic conditions, but
they can form more soluble sulphates under oxidized
conditions (Singh et al., 1998; Stephens et al., 2001).
Acidithiobacillus ferrooxidans are able to catalyze the
oxidation of ferrous to ferric iron under acidic conditions.
The reaction can be expressed as: 4FeS2 + 15O2 +
14H2O! 4Fe(OH)3+ 8SO4

2– + 16H+. The release of H+

ions into pore water will decrease the pH of sediment, the
resulting acid conditions affect the solubility of iron
hydroxide and then cause a secondary release of heavy
metals (Fe(OH)3 + 3H+ ! Fe3+ + 3H2O) (Küsel, 2003;
Hartley and Dickinson, 2010). Some of this release
material will be re-adsorbed onto the mobile binding
compounds. For example, with increase of redox potential
in sediment, a stable Cd compound will decrease from 65%
to 30% and form a more labile mobile form (Zoumis et al.,
2001; Kelderman and Osman, 2007; Peng et al., 2009).
Therefore, with the annual variations of water levels

(flooding), wetting and drying variations of the sediment
markedly affect the heavy metal presents seasonal release
and fixation (Zoumis et al., 2001; Hartley and Dickinson,
2010). Therefore, in the developing and constructing
process of wetlands, for decreasing the release of metal
from sediment, oxidation of sediment should be avoided
(Peng et al., 2009). These situations are very significant in
some seasonally flooding rivers. For example, in Woolston
Canal, arsenic has been removed 88% of the total from the
original sample after wetting and drying (oxygenation) in
the laboratory conditions, a substantially higher proportion
than other elements. While the removal of Fe, Ni, Zn, Cu,
Cr and Pb mobility are 39%, 29%, 16%, 13%, 5% and 5%,
respectively (Hartley and Dickinson, 2010).

3.3.4 Metal carbonates and sulfides

According to the previous researches, the heavy metals
may remove in the form of carbonates together with their
hydroxides. Suspended particles adsorb both of heavy
metal carbonates and heavy metal hydroxides and form
their components. Carbonates can be significant in initially
sinking metals. Although carbonates are less stable than
sulphides, they may be transformed to more stable forms
following the initial formation (ITRC 2003; Sheoran and
Sheoran, 2006). Most metals cations can combine with
CO3

2– and S2– forming slightly soluble carbonates and

sulfides compounds. A great amount of Cu and Mn
carbonates have accumulated in some natural wetland
sediment (Sobolewski, 1999). Water quality can be
improved through the precipitation of metal carbonates
and sulphides as decreasing the acidity of environment
waters (Sheoran and Sheoran, 2006; Cao et al., 2009).
Copper forms very insoluble compounds with sulphion,
including both cupric (CuS) and cuprous (Cu2S) sulfides
(Sobolewski, 1999). In addition, in wetlands, Cu may be
intercepted by complexation with plant litter or other
organic matters (Dulaing et al., 2006). Lead can form
insoluble compounds (e.g., PbS) under anaerobic condi-
tions.

4 Conclusions

Heavy metals in urban environments (including surface
dust, soil and waters) have adverse effects on environment
and human life health. Urban stormwater runoff is
regarded as one of the most prevalent sources of water
quality impairment in the estuaries and lakes, which
transfers pollutants from urban surface to waters. Toxicities
and bioavailabilities of heavy metals in urban stormwater
runoff are very complex and dependent on many
interrelated chemical, biologic, and physical processes.
These processes may vary over time, environment
condition and among microorganisms, plants, animals
and human beings. Using wetlands to treatment urban
stormwater runoff is an effective and low-cost manage-
ment strategy. High metal removal rates in both natural and
constructed wetlands are more than 95% for some special
heavy metals. Therefore, it’s very important to understand
the basic mechanisms and processes control the metal
removal by wetlands, which can increase the probability of
success of the treatment wetland application.
Stormwater runoff from the urban impervious surfaces

continues to be an important cause of degradation to
freshwater. The urban impervious surfaces accumulate a
large number of dry and wet deposition pollutants which
will dissolve and release heavy metals when they meet
waters. Then pollutants (e.g. heavy metals) can be removed
by physical, chemical and various biologic processes
which involve sedimentation, filtration, sorption, precipi-
tation, co-precipitation.
Under certain circumstances, more than 99% of heavy

metal entering into aquatic environment can be stored in
wetland sediments in different forms. While sediments act
as adsorbents that adsorb heavy metals from water in
wetlands. Sediments with a high heavy metal content risk
being entered into aquatic environments as well as
releasing metal ions by desorption. Hence it is very
important to study the sorption and desorption behavior of
heavy metal by wetland sediment receiving urban storm-
water runoff. However there are some barriers which are
time constraints and a lack of reproducibility that using
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actual urban runoff in sorption experiments is not practical.
Some investigators prepared artificially urban stormwater
runoff water which is artificial percolating water from
surface dust by deionised water, diluted nitric acid
deionised water or river water. In the future studies, actual
urban runoff can be mimic artificial urban runoff, which
make the urban runoff allowing the setup of a reproducible,
reliable and constraint-free experimental scheme.
Therefore, an applying knowledge of the entire

mechanism from living to non-living components of the
ecosystem can provide valuable insight into the overall
wetland function and structure. Understanding this
mechanism is surely going to be more helpful to evaluate
heavy metal removal performance of the constructed and
natural wetlands and to assess the functional integrity of
anthropogenic influenced, restored and mitigations wet-
lands and the optimization of remediation technologies
fitting for polluted wetland.
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