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ABSTRACT: It is still a challenge to prepare a water- and polymer-based electrospun
air filter film with high efficiency filtration, low pressure drop, and good mechanical
properties. To address this issue, polyvinyl alcohol (PVA) was employed as the main
material, mixing polyethyleneimine (PEI), bamboo-based activated carbon (BAC) and
cellulose nanocrystal (CNC) to construct the air filter film by electrostatic
electrospinning. In this system, the negatively charged BAC and CNC are fixed in the
system through bonding with the positively charged PEI, showing a double adsorption
effect. One is the mechanical filtration of the porous network structure constructed by
PVA@PEI electrospun nanofibers, and the other is the electrostatic adsorption of PM2.5
on the surface of BAC and CNC. It is significant that the resulting composite air filter
displays a high filtration efficiency of 95.86%, a pressure drop of only 59 Pa, and good
thermal stability. Moreover, the introduced methyltrimethoxysilane (MTMS) endows it
with good water-resistance. Given these excellent performances, this system can
provide theoretical and technical references for the development of water- and polymer-
based electrospun air filter film.

KEYWORDS: polyvinyl alcohol; polyethyleneimine; bamboo-based activated carbon;
cellulose nanocrystals; electrospun nanofibrous film; PM2.5
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1 Introduction

With the development of industry, the harm of air
pollution (especially PM2.5) is self-evident to human
health. These regions attach great importance to the
pollution and monitors its concentration regularly [1-3].
Filtering pollutants and improving air quality have always
been the problems scholars have been working hard to
solve until pollutants are completely controlled. Currently,
there were various air filtration methods, such as effect of
electric field [4-5], photocatalysis [6—7], and mechanical
filtration [8-9]. However, the effect of electric field and
photocatalysis methods are limited in the applications due
to their high
inconvenience in carrying. Therefore, the most common

cost, cumbersome equipment, and
method is the mechanical filtration of pollutants through
porous materials [10] due to their simple preparation, easy
replacement, and suitability for large-scale use. The usual
porous materials for air filtration made by non-woven
fabrics are mainly composed of artificially synthesized
resin polypropylene. The extensive use of the synthetic
resin could cause difficulties in recycling and reuse,
leading to a certain burden on the environment every year
[11]. Moreover, the filtration efficiency of non-woven
fabrics on ultra-fine particles still needs to be improved
[12]. effort into
environmentally friendly materials for air filtration film

Therefore, scholars put more
[13—15]. In our previous research, the use of cellulose
nanofibril/bamboo activated carbon composite aerogel
sheet for PM2.5 filtration showed excellent filtration
performance and thermostability [16]. However, the
thickness of the prepared aerogel sheet was relatively
large and the mechanical properties needed to be
improved. Currently, it is an urgent challenge to prepare
air filter using environmentally friendly materials with
high filtration efficiency, low pressure drop, and good
mechanical properties.

Recently, studies on electrospun nanofibers for air
filtration have become a hot topic because the ultra-fine
nanofibrous structures by electrostatic electrospinning
[17] with a minimum diameter of 1 nm are prepared,
which has a strong advantage in the adsorption of fine
particles. The most typical materials for electrospun are
organic solvent-based polymers. For example, ethyl

acetate could be dissolved in dimethylformamide (DMF)
for electrospun to prepare an air filter film with excellent
filtration efficiency (over 98%) and low pressure drop
(29.3 Pa) [18]. In addition, the foamed polystyrene in the
mixture of DMF and d-limonene solvents was able to
with
superhydrophobicity, high efficiency (99%), low-pressure
drop (70 Pa), and quality factor of 0.16 [19]. The above
shows that organic solvent-based electrospun nanofibers

prepare  electrospun  nanofibers stability,

have good filtration performance, permeability and
stability, playing an important role in the field of air
filtration. However, due to the volatility of organic
solvents during the electrospun process, it is inevitably of
serious impact on the environment and human health.
Therefore, scholars have also begun to try to use more
environmentally friendly water-based polymers for
electrospun. However, the water-based polymers
electrospun nanofibers were usually of low strength, weak
water-resistant and poor stability, and the production
process was complex, limiting their application.

To overcome the drawbacks above, some scholars were
dedicated to the research on compounding water-based
polymer with other polymers. For example, the introduced
waterproof melamine formaldehyde could improve the
adjustable three-dimensional (3D) structures and the
stability of polyvinyl alcohol (PVA)-based nanofibrous
films by one-step electrospun and heat treatment,
exhibiting excellent filtration performance (97.3% for
PMO0.3, 100% for PM1.0, and 100% for PM2.5) and low
pressure drop (76 Pa), but the mechanical properties were
not evaluated [20]. Polyacrylonitrile was added to PVA to
prepare nanofibrous with small fiber diameter, pore size
and good breathability by electrospun [21]. And some
had modified
introducing carbon nanotubes (CNTs) as reinforcers.
Wang et al. heat-bonded CNT sheets and polyimide
nanofibers together by electrospun to prepare nanofibers
with the highest filtration efficiency of 99% for 2.3 um
particles and low pressure drop [22]. Inorganic particles

scholars electrospun nanofibers by

(Zn0O, TiO,, etc.) to modify electrospun nanofibers were
also tried. They were introduced to PVA to prepare
PVA/ZnO or TiO; electrospun nanofibers, which had
abundant hydroxyl groups and could degrade gas
pollutants into small molecules [23]. Copper acetate was
crosslinked with PVA and then used to prepare PVA/Cu
nanofibrous films by electrospun with high filtration
efficiency of up to 99.5% for PM2.5, low pressure drop,
and antibacterial properties, but the mechanical properties
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were not ideal [24]. It could be known from the above that
the water-based polymer electrospun nanofibrous films
have good air filtration performance, and the pressure
drop could be improved to some extent, but its weak
mechanical strength limited its further application.
Therefore, the preparation of water- and polymer-based
with high

filtration, low pressure drop and good mechanical strength

electrospun nanofibrous films efficiency
is still a serious challenge.

In our previous studies [16], bamboo-based activated
carbon (BAC) has a good void structure and a certain
negative charge, which could play a certain electrostatic
adsorption effect on PM2.5.

nanocrystals (CNC), as the biomass-reinforced material,

In addition, cellulose
had also made a preliminary attempt on the enhancement
of the air filter film. Therefore, in this study, PVA was
(PEI), and the
introduced CNC as the reinforcer, BAC as the reinforcing

combined with polyethylenimine

adsorption and thermal stability —material, and
methyltrimethoxysilane (MTMS) as the hydrophobic
modifier to prepare the PVA-based -electrospun
nanofibrous films for air filtration. The resulted PVA-
based air filter was proven to be an excellent material with
high filtration efficiency, good stability, low pressure
drop, superior mechanical and repeatable performance,
showcasing its potential to be an ideal air filter for the
removal of PM2.5 in applications of environmental
protection.

2 Experimental

2.1 Materials

PVA with Mw of about 85000-98 000 (99+%
hydrolyzed) was purchased from Macklin, China. PEI
with the purity = 99% and molecular weight of
10 000 g'-mol™! was supplied by Aladdin, China. CNC
with a solid content of 5.44% was purchased from Tianjin
Muzhiling Biotechnology Co., Ltd., China. BAC
(JFH400) with a diameter of 10-100 pm was provided by
Zhejiang Jizhu Biotechnology Co., Ltd., China. MTMS
(= 98%) was purchased from Macklin, China.

2.2 Preparation of PVA@PEI@BAC@CNC composite
air filter

Firstly, a certain amount of PVA powders were added into
deionized water and continuously stirred in an oil bath at

100 °C for 1 h to dissolve into uniform PVA aqueous
solution, and the 20% of PVA solution was obtained by
adjusting the proportion of deionized water for subsequent
use. And the preparation of nano BAC was briefly as
follow. 30 g BAC raw material was mixed with deionized
water to make 1% suspension. The speed of the supermass
colloid (Masukosangyo Co., Ltd., Kawaguchi/Saitama,
Japan) was set to 1500 r-in"! and the mill spacing was
180 nm. Bamboo charcoal was ground five times to
prepare nanometer bamboo charcoal and made into BAC
suspension (5 wt.%).

PEI and PVA (20 wt.%) were mixed and stirred evenly,
followed by adding BAC (5 wt.%) and CNC (5 wt.%)
suspension, then stirred at low speed for 1 h to obtain the
PVA@PEI@BAC@CNC
Subsequently,

electrospinning  solution.
of 20.5kV, the
electrostatic spinning was carried out at the needle

under the voltage
distance of 12 cm from the receiving plate to get the
PVA@PEI@BAC@CNC composite air filter. Finally, to
improve the water resistance of the PVA@PEI@
BAC@CNC composite air filter, the samples stayed in a
sealed bottle with MTMS were put into a 90 °C oven and
modified by chemical vapor deposition (CVD) for 3 h to
obtain  the PVA@PEI@BAC@CNC
composite air filter.

hydrophobic

2.3 Characterization

The morphologies of the PVA-based air filters were
observed by using field emission scanning electron
microscopy (SEM; Hitachi S-4800, Japan). Fourier-
transform infrared spectroscopy (FTIR; Perkin Elmer,
USA) was employed to characterize the chemical
structure of PVA-based air filters. The chemical state
information of the samples was determined using X-ray
photoelectron spectroscopy (XPS; thermo Scientific
ESCALAB 250Xi). Thermal degradation analysis was
examined by thermogravimetric analysis (TGA). The
samples were subject to be heated at a heating rate of
10 °C-min”! under a nitrogen atmosphere and the test
temperature range was 25-1000 °C. Static water contact
angle (WCA) of the samples was measured at room
temperature using the water contact angle tester
(JC2000D, Shanghai Zhongchen, China), then 5-8 pL
droplets were placed on the sample surfaces with a micro-
syringe (at least four different spots/sample, carried out in
triplicate), and the average values of WCAs were
evaluated.
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2.4 Filtration capacity test for PM2.5

The filtration capacity of PVA-based air filters for PM2.5
was evaluated using a self-built test system described in
our previous study [16]. As shown in Fig. 1, a constant air
flow was driven through the smoke generating bottle via
the air compressor, and the simulated PM2.5 smoke
(concentration > 500 pg'm3) generated by burning
incense in the smoke generation bottle was passed through
air filters at a velocity of 5cm-s™!. The filtration

efficiency (E) was calculated by the following equation:

_No—N,
==

E 1)
where Ny and N, stand for the particle numbers measured
without and with samples, respectively. The concentration
of PM2.5 was measured by a particle counter (CEM DT-
9851 M, China), and to minimize errors, all samples were
measured three times and the average was taken. The
pressure drop of the sample was measured by a
differential pressure gauge (Testo 510, Germany) [25-26].
To evaluate the usability of the samples, the filtration
efficiency and pressure drop were balanced using the
following equation:

_In(1-E)

Or= AP )

where QO is an indicator of comprehensive evaluation of
filtration performance, £ is the filtration efficiency of
PM2.5, and AP is the pressure drop.

Fig. 1 Scheme of PM2.5 filtration set: air compressor (1);
flowmeter (2); smoke generating bottle (3); valve (4); air filter
film (5); air filtered bottle (6); particle counter (7).

2.5 Mechanical properties test

To prepare test samples, the PVA-based air filtration films
were cut into the standard size of 40 mm x 10 mm
(length x width). Both ends of the sample were covered
with 800-grit sandpaper to create a secure grip during
testing. Next, the sample was placed into the CMT6104
universal strength testing machine, ensuring a clamping
distance of 20 mm with a pulling speed of 5 mm-min!.

Finally, to ensure reliable results, the average of five
samples per group was taken for testing.

2.6 Regeneration of hydrophobic PVA@PEI@BAC@
CNC composite air filter

Because the PVA-based air filters were easily clogged by
PM2.5 after use, as previously reported in our research,
MTMS was utilized as the hydrophobic modifier to enable
To test the efficacy of this
modification, the used samples were immersed in water

its water resistance.

and swung gently for 30 s to be effectively cleaned.
2.7 Heat resistance test

To evaluate the heat resistance, PVA-based composite air
filters were dried at room temperature, 50, 100, and
150 °C for 2 h, respectively, and the filtration efficiency,
pressure drop, and WCA of each sample were measured.

3 Results and discussion

3.1 Forming and working mechanism of PVA@PEI@
BAC@CNC composite air filter

Figure 2(a) shows the forming and working mechanism of
the PVA@PEI@BAC@CNC composite air filter prepared
by electrostatic spinning. Due to its excellent
biocompatibility, PEI was introduced to the PVA solution,
and its merits of high adhesion, high adsorption, and high
reactivity could give nanofibrous better versatility. CNC
and BAC carried negative charges and could be
electrostatic bonded with positively charged PEI fibers
during spinning. After treating with MTMS by CVD, the
air filter displayed good hydrophobicity.

In the PVA@PEI@BAC@CNC system, a dual filter
structure was constructed. First, the interception of PM2.5
by the electrospun nanofibrous
constructed by PVA@PEIL
electrostatic adsorption between the surface negative
charge of both BAC and CNC and the surface positive
charge of PM2.5, resulting in the high filtration efficiency
of the PVA-based air filtration. The added BAC was
benefit to prevent nanofibrous bonding with each other to

network structure

Second, there was the

some extent, which might be due to the fact that the
particle size of BAC was larger than the nanofibrous
diameter and could play a role in expanding and
supporting electrospun nanofibers, as well as increasing
the porosity, so the pressure drop could be effectively
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Fig. 2 (a) Forming mechanism and (b) PM2.5 filtration principle of the PVA@PEI@BAC@CNC composite air filter.

reduced. CNC, as an environmentally friendly nano-

reinforced material, can improve the mechanical
properties of the system due to its high crystallinity. After
the MTMS modification, it
hydrophobicity and enhanced its water resistance. Based
on above processes, the PVA@PEI@BAC@CNC@

MTMS composite air filter was endowed with good

gave the system

mechanical properties, high filtration efficiency, and low
pressure drop.

3.2 Morphological analysis

As shown in Fig. 3(a), the inner structure of pure PVA

electrospun nanofibers exhibits an irregular 3D network
structure and could effectively intercept solids of a certain
size, which is very suitable for the removal of PM2.5. The
introduction of PEI makes the network structure more
compact (Fig. 3(b)) because the viscosity of PEI enhances
the binding force among electrospun nanofibers.
Figure 3(c) shows that BAC is successfully introduced
and encapsulated by PVA@PEI, which enhances the
stability of BAC in the system. On the other hand, proper
amount of BAC could prevent the agglomeration of
electrospun nanofibers and play a certain role in reducing
the pressure drop. As shown in Fig. 3(d), part of CNC is

agglomerated and wuniformly distributed on the
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Fig. 3 SEM images of (a) PVA, (b) PVA@PEIL (¢) PVA@PEI@BAC, and (d) PVA@PEI@BAC@CNC composite air filtration.
(e) SEM image and (f) its high magnification of the hydrophobic PVA@PEI@BAC@CNC composite air filtration.

nanofibrous surface, significantly improving the network
structures of the system. And the surface negative charge
of CNC could effectively produce electrostatic adsorption
on PM2.5. After the modification with MTMS, as shown
in Figs.3(e) and 3(f), the hydrophobic PVA@PEI@
BAC@CNC composite electrospun nanofibers form a
regular and uniform network structure due to the cover of
MTMS to CNC agglomeration. In this system, BAC is
well loaded on nanofibers, MTMS completely
encapsulates PEI, PVA, BAC, and CNC, which is of good
porosity and more conducive to the PM2.5 adsorption and
the reduction of pressure drop after filtration.

3.3 Chemical component analysis

During the preparation process of PVA-based electrospun
nanofibers, the change of both chemical composition and
structure was analyzed by FTIR. As shown in Fig. 4, the
characteristic peaks of pure PVA electrospun nanofibers

appear at 3300cm™! (-OH stretching vibration),
2930 cm ! (C-H stretching vibration) [27], and
1090 cm™! (C-O asymmetric stretching vibration),

respectively. After adding PEI, there are new
characteristic peaks observed on the PVA@PEI one at
1560 cm™! (C—N stretching vibration), 1630 cm™! (N-H
bending vibration) [28], 1310 cm™! (C—N stretching and
bending vibration) and 815cm™' (N-H out-of-plane
deformation vibration) [29-30], which are all the
characteristic peaks of PEIL, proving only physical mixing
between PVA and PEI. The peak at 3300 cm™! is stronger
than that of pure PVA film due to the superposition of the
N-H peak of PEI. Because the characteristic peaks of
CNC, BAC, and PVA basically overlap with each other,

74
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1 1560 1310 | |
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Fig. 4 FTIR spectra of different PVA-based electrospun
nanofibrous films.

no new characteristic peaks appear in the PVA@
PEI@BAC@CNC electrospun nanofibrous. In contrast,
after modification with MTMS, new characteristic peaks
appear at 1260 cm™! (C—H of MTMS) and 800 cm™!
(Si-C  and Si—O-Si),
modification of MTMS [31].
XPS was further employed to analyze the chemical
composition of different PVA-based -electrospun
nanofibrous films. As shown in Fig. 5(a), the presence of
element N (400 eV) confirms the successful introduction
of PEI. The elements C and O derive from PVA, PEI,
CNC, and BAC, while the element Si is mainly from
MTMS. Based on the C 1s spectra in Figs. 5(b)-5(e), it
could be observed that only C—C, C—H, and C—OH bonds
are exhibited by PVA, while C—N bond appears after the
introduction of PEI, confirming the successful composite
of PEI and the consistence with the element contents

indicating the successful
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Fig. 5 (a) XPS spectra of PVA-based electrospun nanofibrous films. C 1s spectra of (b) pure PVA, (¢) PVA@PEI, (d) PVA@

PEI@CNC, and (e) PVA@PEI@BAC@CNC electrospun
PVA@PEI@BAC@CNC electrospun nanofibrous films.

revealed in Table 1. Figure 5(d) shows the presence of
C—0O—C and O—C—O bonds, which came from CNC,
indicating the successful incorporation of CNC. The
chemical bonds of BAC were similar to those of
PVA@PEI@BAC@CNC electrospun nanofibrous films
(Fig. 5(e)). But as shown in Table 1, a trace amount of
silicon is found after introducing BAC, which might
originate from the ash content in BAC. Figure 5(f) shows
the C 1s spectrum of the hydrophobic PVA@PEI@
BAC@CNC composite electrospun nanofibrous films,
exhibiting C-Si—O-C, C-Si—O-H, and C-Si—-O-Si
bonds and indicating the successful modification with
PDMS, which would also be confirmed by in the
following WCA test (as shown in Figs. 8(e) and 8(f)).

3.4 Thermal stability analysis

Thermal stability is one of the main indexes of materials.
As shown in Fig. 6(a), as PVA is the main material, all the
samples show a TGA curve with the similar tendency, and
before 100 °C, the mass loss is mainly due to the
evaporation of water. In the pure PVA electrospun
nanofibrous, during 100-240 °C, the weight loss occurs
because of the evaporation of crystalline water in the
molecular followed by the thermal
decomposition between 250 and 380 °C with the fastest

chain. It is

nanofibrous films. (f) Si 2p spectrum of hydrophobic

Table 1 Element content ratios of different PVA-based electrospun
nanofibrous films

Sample Atomic content/% c(C)/c(0)
C (0) N Si

PVA 77.65 2235 - - 3.47

PVA@PEI 71.83 10.16 18.01 — 7.07

PVA@PEI@CNC 73.82 16.89 930 — 437

PVA@PEI@BAC@CNC 57.43 29.29 3.73 9.55 1.96

PVA@PEI@BAC@CNC@MTMS 58.21 22.31 1.77 17.71  2.61

rate observed at 294 °C (Fig. 6(b)), which is due to the
rapid weight loss caused by the scission of PVA chain
segments. The final residual mass is only 0.3%, indicating
the poor heat resistance of pure PVA. Similarly, the other
samples with the addition of PEI undergo decomposition
between 100 and 220 °C for the same reasons as pure
PVA. Subsequently, the decomposition continues between
200 and 280 °C, caused by the degradation of PEI
molecular chain side chains. The third decomposition
phase occurred between 300 and 450 °C, with the main
chain of PEI breaking down and reaching the highest
degradation rate at 386 °C. The heat resistance of the
samples is improved after the added PEIL It is noteworthy
that the introduced CNC results in a decrease in residual
mass due to the poor heat resistance of CNC as a kind of
biomass material, while the added BAC increase the
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Fig. 6 (a) TGA and (b) DTG curves of different PVA-based electrospun nanofibrous films.

residual mass. This is attributed to the lower thermal
decomposition rate of BAC, indicating that BAC is
helpful in improving heat resistance of the system. The
subsequent introduction of MTMS leads to a reduction of
weight loss at every stage of the sample due to the
protective role of the C layer formed after its pyrolysis,
with a significantly higher final residual mass compared
to other samples (reaching 12.77%). From above, the
introduced BAC could enhance the thermal stability of the
system.

3.5 Mechanical properties analysis

The mechanical properties are closely related to the
application field and range of electrospun nanofibrous
films. In particular, the mechanical strength of the usual
water- and polymer-based electrospun nanofibrous film is
relatively poor, so it is very important to improve its
strength. In this system, to demonstrate the effects of the
components on the PVA-based electrospun nanofibrous
films, the tensile tests were carried out. As shown in

—PVA
@ PVA@PEI
4+t —— PVA@PEI@CNC
PVA@PEI@BAC@CNC]
5 —— PVA@PEI@BAC@CNC]|

@MTMS

Stress/MPa

" 1 " L " n "

0 10 20 30 40 50 60 70 80 90
Strain/%

Fig. 7(a), the stress of pure PVA electrospun nanofibrous
film is 3.2 MPa, but the fracture strain is only 29%. The
introduced PEI makes the electrospun nanofibrous films
more compact in structure by lots of hydrogen bonding
and greatly enhances the fracture strain of the nanofibrous
films, but the stress decreases somewhat. The added CNC
greatly improves the toughness of the composite
nanofibrous films and the fracture strain is up to 93%,
resulting from the high strength of CNC and its high
specific surface area, which could produce hydrogen
bonding with PVA and PEIL. But the stress further
decreases to only 1.9 MPa, which might be caused by the
introduced CNC blocked the integration of PVA and PEI
to a certain extent. The introduced BAC significantly
reduces the toughness of the nanofibers and makes an
increase in stress, which is benefited from the rigidity of
BAC, but showing a fracture strain of 30%, which might
result from the barrier effect of BAC particles on polymer
chains. After the modification with MTMS, MTMS
of the composite

nanofibrous films and the stress reaches 4.3 MPa,

completely covers the surface

Fig. 7 (a) Tensile stress—strain curves of PVA-based electrospun nanofibrous films. Pictures of (b) pre-fracture and (c¢) post-fracture
of hydrophobic PVA@PEI@BAC@CNC electrospun nanofibrous film.
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indicating that the hydrophobic PVA@PEI@BAC@CNA
composite electrospun nanofibrous film has excellent

mechanical strength.

3.6 Filtration performance analysis

Large amounts of PM2.5 are produced in industrial
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production, and as a result, PM2.5 filter have received
widespread attention in recent years. To test the filtration
efficiency of the PVA-based electrospun nanofibrous
films in an imitation of the polluted environment, a self-
built filtration system was designed for testing. As shown
in Fig. 8(a), the pure PVA electrospun nanofibrous film
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Fig. 8 (a) Filtration efficiency, (b) pressure drop, and (¢) Or of different PVA-based electrospun nanofibrous films for PM2.5 under
the gas velocity of 5 cm-s™. (d) Picture for barrier of sample to PM2.5. WCAs of PVA@PEI@BAC@CNC (e) before and (f) after the

modification.
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shows a filtration efficiency of only 82.84%, which might
be because the pore sizes of the film were large and part
of PM2.5 could penetrate it. It could be known from SEM
analysis above, the addition of PEI leads to the
of the
nanofibers due to its high viscosity, and a little increase in
the filtration efficiency of PVA@PEI one due to the
reduced pore sizes. The PVA@PEI@BAC one shows an
increase in filtration efficiency compared with the one

enhancement adhesion among electrospun

without BAC since BAC itself is of high porosity, as well
as reducing the adhesion caused by PEI and increasing the
porosity in the system. Additionally, BAC is negatively
charged and able to adsorb PM2.5 through electrostatic
adsorption. After the addition of CNC, the filtration
efficiency reached the maximum of 98.60% due to rich
negative charges in the CNC surface for the removal of
PM2.5 with electrostatic adsorption. Compared with other
electrospun films, it also has certain advantages, as shown
in Table 2 [32-33].

In order to enhance the water resistance of the PVA-
based electrospun nanofibrous films in humid environ-
ment, MTMS was employed to prepare the hydrophobic
PVA@PEI@BAC@CNC composite electrospun nanofi-
brous film, showcasing the increase of WCA to 112.4°
(Fig. 8(f)). However, the filtration efficiency slightly
decreases due to MTMS blocking some small pores and
its hydrophobicity decreasing the interception of PM2.5.
The quality factor (Qf) of the hydrophobic PVA@
PEI@BAC@CNC composite electrospun nanofibrous
film is 0.074 (Fig. 8(c)), with a filtration efficiency of
95.86% and a WCA of 112.4° indicating that the
hydrophobic PVA@PEI@BAC@CNC one had good
filtration performance and water resistance.

Table 2 Comparison with other electrospun films

Figure 9(a) shows the SEM image of the hydrophobic
PVA@PEI@BAC@CNC composite electrospun nanofi-
brous films before filtering PM2.5. However, after five
cycles of the filtration of PMZ2.5, the nanofibrous
arrangement becomes disordered and irregular, which
hinders the filtration efficiency of PM2.5 (Fig. 9(b)). After
water washing (Fig. 9(c)), the filtration efficiency retains
89% (Fig. 8(a)). Because the original regular structure of
the composite electrospun nanofibrous film is destroyed in
the process of water washing, the PVA nanofibers squeeze
each other, which increases the pressure drop (77 Pa) and
reduces QOrto 0.029 (Fig. 8(c)).

To wverify the heat resistance of the hydrophobic
PVA@PEI@BAC@CNC composite electrospun nanofi-
brous film, the samples were held in an oven for 2 h at
room temperature and 50, 100, and 150 °C, respectively,
to test filtration efficiency, pressure drop and WCAs. As
shown in Fig. 10(a), with the increased temperature, the
overall filtration efficiency presents a certain downward
trend, from 95.86% to 82.88%. However, the pressure
drop gradually increases, and the pressure drop reaches
104 Pa when the temperature reaches 150 °C. This is
because with the increase of temperature, PVA might melt
to a certain extent, causing local structure collapse and
even plugging pores, thus leading to the reduction of the
filtration efficiency and the increase of the pressure drop.
The wettability of the hydrophobic material PVA@
PEI@BAC@CNC is less affected by the increase of
temperature, and the WCA ranges from 112.3° to 125.1°.
Therefore, under the heating condition of 100 °C, the
filtration efficiency of the hydrophobic PVA@PEI@
BAC@CNC one remains above 90% and shows excellent
heat resistance.

Sample Filtration efficiency/% Pressure drop/Pa Mechanical property/MPa Ref.
PEPNF5-90 > 94 18 - [32]
2ein@ZIF-8 > 95 54.87 0.014 [33]
This work 95.86 59 43 -

Fig. 9 SEM images of hydrophobic PVA@PEI@BAC@CNC composite electrospun nanofibrous films: (a) before filtration, (b) after

filtration, and (c¢) after water washing for 5 times.
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Fig. 10 Values of (a) filtration efficiency/pressure drop/quality factor and (b) WCAs of hydrophobic PVA@PEI@BAC@CNC
composite electrospun nanofibrous films at room temperature and 50, 100, and 150 °C.

4 Conclusion

In summary, it is feasible to synthesize PEI, BAC, and
CNC with PVA for the preparation of environmentally
friendly composite electrospun nanofibrous films for the
removal of PM2.5. In this system, PVA and PEI spinning
construct multiple particle junction to play a major role in
filtering PM2.5. PEI could enhance the viscosity of the
system and had positive charge, which is conducive to
strong adhesion of the negatively charged CNC and BAC
in the system. BAC is conducive to enhancing the
system, CNC is benefit for the
improvement of the toughness of the system, and the

porosity of the

negative charge on the surface is conducive to enhancing
the filtration efficiency of the system through electrostatic
adsorption. The hydrophobic modification endowed the
system with water resistance, the filtration efficiency of
the composite electrospun nanofibrous film was as high as
95.86%, the pressure drop of only 59 Pa, and the Qf of
0.074. This study could supply a simple and effective
strategy with environmental protection for high efficiency
filtration for PM2.5.
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