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ABSTRACT: Sn-based materials are considered as a kind of potential anode materials
for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their
use is limited by large volume expansion deriving from the lithiation/delithiation process.
In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-
NPCNSs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-
doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages
containing abundant defect sites, high specific surface area (214.9 m2-g~'), and rich
hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode,
the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643
mAh-g~1 at 0.1 A-g™, ultrafast rate performance of 490 mAh-g~1 at 10 A-g~1, and superior
long-term cycling performance of 988 mAh-g~! at 1 A-g~! after 2000 cycles with a
capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test
confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-
750 electrode is ascribed to the rapid capacitive mechanism. These impressive results
indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and
fast-charging LIBs.

KEYWORDS: amorphous Sn; rapid capacitive mechanism; lithium-ion storage;
nitrogen-doped carbon; fast charging
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development of science and technology, requirements for
the endurance of new energy vehicles and portable
devices are gradually improved [1-7]. Rechargeable
lithium-ion batteries (LIBs), as a kind of secondary
batteries, are widely used owing to their ultrahigh energy
density and long service life [8§—11]. Nevertheless, the
graphite anode is difficult to satisfy the requirement of
high-performance LIBs due to the low theoretical specific
capacity (372 mAh-g 1) [12-15]. Hence, it is necessary to
investigate substitute anode materials with high capacity,
ultrafast rate performance and excellent cycle stability to
satisfy the requirements of high-performance LIBs.
Metallic Sn anode materials are widely investigated owing
to their excellent conductivity and high theoretical
capacity (994 mAh-g 1) [16-19]. Unfortunately, Sn anode
materials illustrate unacceptable capacity fading during
cycling due to the pulverization resulting from large
volume expansion, which is caused by the repeated
lithium-ion insertion/extraction [20-22].

In order to overcome difficulties in the application of Sn
anode materials, many significant research schemes have
been proposed. One scheme is to combine active and
inactive metal components, developing a firm structure of
metal-Sn alloy (Ni—Sn alloy, Co—Sn alloy, etc.) [23-25],
and the other scheme is to construct nanostructured Sn-
based materials with shortened lithium-diffusion length
and reduced internal strain, such as Sn-based nanowires,
nanospheres, and nanotubes [26-28]. Besides, compared
with crystalline Sn materials, the short-range sequence of
amorphous Sn anode materials can provide more abundant
lithium intercalation sites and effectively release structural
strain in the repeated lithium-ion insertion/extraction
process, thus improving the structural integrity of the Sn-
based electrode [29]. Furthermore, much more schemes
have been concentrated on combining carbonaceous
materials to fabricate Sn/C composites. Carbonaceous
buffer matrices, such as carbon dots, carbon nanofibers,
carbon nanotubes, graphene, and porous carbon materials,
have been widely investigated and demonstrated with
improved electrochemical performance [30-34]. These
carbonaceous materials can successfully buffer the strain
resulting from the volume expansion of Sn and stabilize
the structure of the electrode, incurring greatly enhanced
rate performance and cycling stability. Furthermore, the
nitrogen doping has been demonstrated as an efficient
strategy for carbonaceous materials to enhance the
lithium-ion storage by introducing the supplementary
surface induced lithium-ion adsorption mechanism and

promoting the electrical conductivity of materials [35]. As
a two-dimensional (2D) material and superior nitrogen
source, g-C3Ny is widely used in the preparation of LIBs
anode materials because of its high nitrogen content, low
cost, and simple preparation methods [36—42]. Generally,
g-CsN4 as a template can not only avoid the metal
particles aggregation during the preparation process, but
also self-decompose to facilitate the construction of
porous structure at high temperatures, providing abundant
lithium-ion storage sites [43—46]. Even these strategies are
carried out, there are challenges such as high cost, strong
precursor toxicity, and complicated preparation processes
to synthesize high-performance Sn/C anode materials for
LIBs via the combination of amorphous Sn and nitrogen-
doped porous carbon materials [4,6,13].

Therefore, we have synthesized amorphous Sn modified
nitrogen-doped porous carbon nanosheets (ASn-NPCNs)
through hydrothermal and annealing strategy to overcome
these challenges. The decomposition of g-C;Ns and
successful doping of nitrogen provide a rich pore structure
and high specific surface area for ASn-NPCNs, which is
conducive to the lithium-ion storage and the rapid
transmission of electrons. ASn-NPCNs display unique 2D
porous nanosheet structure and ultrahigh nitrogen doping
level (> 15.18 at.%). When used as the LIB anode, the
ASn-NPCNs-750 electrode delivers high capacity
(1643 mAh-g'! at 0.1 A-g™!), ultrafast rate performance
(490 mAh-g'! at 10 A-g’!), and superior long-term
cycling performance (988 mAh-g™! at 1A-g! after
2000 cycles retention of 98.9%).
Moreover, amorphous Sn can not only provide high

with a capacity

capacity, but also reduce electrode pulverization to ensure
the structural integrity of the electrode, thus extending the
cycle life.

2 Experimental

2.1 Sample preparation

The g-C3N4 was obtained by thermal polycondensation of
melamine in a muffle furnace under 550 °C for 4 h.
Typically 20 g of melamine was added into a crucible
with a lid, which was then transferred to a muffle furnace.
The melamine was heated to 550 °C with a ramp rate of
2.5°C'min~! and kept at 550 °C for 4 h. After cooling
down naturally to room temperature, the resultant yellow
bulk product was ground into powder using a Soybean
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Milk machine, obtaining the g-C3Njy.

ASn-NPCNs-T (T = 650, 750, and 850) samples were
synthesized via a simple hydrothermal and pyrolysis
strategy. Taking ASn-NPCNs-750 for example, 1 g SnCly,
2 g g-C3Ny, and 6 g glucose were added into 60 mL water
with stirring for 2 h to make it dispersed uniformly. Then,
the mixed solution was transferred into a 100 mL Teflon-
lined stainless-steel autoclave and treated at 180 °C for
4 h. Subsequently, the obtained precursor was centrifuged
and washed with distilled water and then dried in vacuum
oven at 80 °C for 12 h. Finally, the obtained precursor
was annealed at 750 °C for 1 h with a ramping rate of
5 °C-min~! under Aratmosphere toobtain ASn-NPCNs-750.

The ASn-PC-750 (amorphous Sn modified porous carbon
nanosheets) was prepared under the same conditions as
ASn-NPCNs-750, except that no g-C3N4 was added.

The NPCNs-750 (nitrogen-doped porous
nanosheets) was prepared under the same conditions as
ASn-NPCNs-750, except that no SnCls was added.

carbon

2.2 Material characterization

The morphologies of the as-prepared samples were
characterized by scanning electron microscopy (SEM;
SU8010) and transmission electron microscopy (TEM;
JEOL JSM-2100). The structure features and crystal
phases of as-prepared samples were explored by powder
X-ray diffraction (XRD; Miniflex, Rigaku) and Raman
spectroscopy (Horiba, 532 nm laser excitation). The
specific surface area and the pore size distribution were
investigated via a nitrogen gas sorption surface area tester
(JW-BK132F). The elemental
prepared samples were confirmed by X-ray photoelectron

compositions of as-

spectroscopy (XPS; K-Alpha 1063 spectrometer).
2.3 Electrochemical measurements

The Li* storage performances of the as-prepared samples
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were evaluated by assembling CR2032 coin half-cells.
The slurry was prepared by mixing active materials
(80%), Super P (10%), and polyvinylidene fluoride
(PVDF; 10%), and then coated on a Cu foil and dried at
100 °C for 10 h to obtain the working electrode. The mass
loading of active materials in the working electrode was
about 1.3—1.6 mg-cm™2. The electrolyte was 1.0 mol-L™!
LiPF¢ mixed in a solvent of dimethyl carbonate (DMC)
and ethylene carbonate (EC) with a volume ratio of 1:1.
Lithium foil was used as the counter electrode. The
galvanostatic charge/discharge cycling was tested on a
battery test system (LAND CT2001A) at 25 °C with a
voltage range of 0.01-3 V. The cyclic voltammetry (CV)
was performed by the CHI 760E. The electrochemical
impedance spectroscopy (EIS) was applied by the
CS350/CS16X workstation.

3 Results and discussion

The procedure for the synthesis of ASn-NPCNs-T
composites is shown in Fig. 1. In the typical synthesis
process, SnCly is used as the Sn source, while glucose and
g-C3Ny are utilized as carbon and nitrogen sources.
Glucose carbide and Sn derivatives are uniformly coated
on the surface of the g-CsNs template during the
hydrothermal treatment step. Then g-C3N4 starts to
decompose as a self-decomposition template in the
subsequent annealing process (¢ = 650, 750, or 850 °C),
and gradually forms a nitrogen-doped porous carbon
nanosheets structure with rich hierarchical pores. Notably,
the self-decomposition effect of the g-C;Ny template
promotes the formation of the 2D porous carbon
nanosheet structure.

The microstructure and the morphology of ASn-
NPCNs-7' samples were probed by SEM and TEM.
Figures 2(a)-2(f) indicate that ASn-NPCNs-650 and ASn-
NPCNs-750 evidently have a crimped lamellar structure

Ar,t,1h ;
t=650, 750 or 850 °C .

ASn-NPCNs-T

Schematic illustration of the synthesis of ASn-NPCNs-T.
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Fig. 2 Morphology characterizations: SEM images of (a)(d) ASn-NPCNs-650, (b)(e) ASn-NPCNs-750, and (¢)(f) ASn-NPCNs-850;
(g)(h) TEM images and (i) HRTEM image of ASn-NPCNs-750; (j) SAED pattern of ASn-NPCNs-750; (k) EDX mapping images of

ASn-NPCNs-750.

with a certain degree of aggregation. However, an obvious
Sn particle appeared in ASn-NPCNs-850, which may be
due to the high annealing temperature leading to the
transformation of amorphous Sn into crystalline Sn.
Interestingly, without g-CsN4 as a template, the sample
(ASn-PC-750) will form heavily aggregated porous
carbon (Figs. S1(a) and S1(c)). In addition, when no
SnCly is added, the carbon layer of NPCNs-750 is thinner
and more transparent (Figs. S1(b) and S1(d)). The
microscopic structure and the internal morphology of such
samples are further explored by TEM and HRTEM. It can
be seen from Figs. 2(g)—2(i) that ASn-NPCNs-750 shows
a 2D sheet structure which is similar to the morphology of
the g-C3N,4 template. Moreover, the selected area electron
diffraction (SAED) pattern of ASn-NPCNs-750 shows no
obvious diffraction rings, indicating the typical
amorphous structure (Fig. 2(j)) [47]. In addition, the
mapping of ASn-NPCNs-750

elemental analysis

demonstrates the homogenous distribution of C, N, and Sn
elements (Fig. 2(k)).

The chemical compositions of ASn-NPCNs-7 samples
were investigated by XRD and thermogravimetric
analysis (TGA) under air atmosphere. As illustrated in
Fig. 3(a), ASn-NPCNs-650 and ASn-NPCNs-750 have no
obvious strong peaks, which prove that Sn exists in an
amorphous phase in these samples and there is no residual
g-C3Ny4 (Fig. S2). However, the diffraction peaks of ASn-
NPCNs-850 are ascribed to the characteristic peaks of Sn
(JCPDS card no. 04-0673), which proves the existence of
crystalline Sn. This result is consistent with those from
SEM and TEM. Therefore, the increase of the annealing
temperature will promote the transformation of
amorphous Sn into crystalline Sn. Neither ASn-PC-750
nor NPCNs-750 shows a characteristic peak related to
crystalline Sn (Fig. S3). As revealed in Fig. 3(b), a little

decrease of weight below 200 °C is ascribed to the loss of
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Fig. 3 Structural characterization: (a) XRD patterns of ASn-NPCNs-T; (b) TG curves of ASn-NPCNs-T7; (¢) Raman spectra of ASn-
NPCNs-T; (d) N, adsorption/desorption isotherms and pore size distributions of ASn-NPCNs-7.

adsorbed water. The following reactions will happen
along with the increased temperature:

C+02—>C02 (1)

Sn+ 02 — Sn02 (2)

Hence, the contents of Sn are calculated to be 21.4% for
ASn-NPCNs-650, 21.1% for ASn-NPCNs-750, and
20.3% for ASn-NPCNs-850 from the TG curves. This
result shows that different temperatures do not affect the
content of Sn in ASn-NPCNs-T. The structure characteri-
stics of ASn-NPCNs-T7 samples are further investigated by
Raman spectroscopy and N, adsorption/desorption
isotherms. From the Raman spectra in Fig. 3(c), the value
of the intensity ratio /p/lg in Raman spectra is used to
verify structural defects in the carbon skeleton.
Apparently, ASn-NPCNs-750 exhibits a higher I/l ratio
of 1.16 than those of ASn-NPCNs-650 (1.12) and ASn-
NPCNs-850 (1.01). The increase of carbon skeleton
defects will provide more lithium-ion storage sites, which
is conducive to the performance of LIBs [48]. In addition,
the Ip/lg ratio of ASn-NPCNs-750 is significantly higher

than those of ASn-PC-750 (0.98) and NPCNs-750 (1.02),
which may be due to the introduction of nitrogen and
amorphous Sn, respectively (Fig. S4). The specific surface
area and the pore size distribution of ASn-NPCNs-T are
investigated via the N, adsorption/desorption isotherms
(Fig. 3(d)). ASn-NPCNs-750 has a larger specific surface
area (2149 m2-g!) than those of ASn-NPCNs-650
(181.4m2-g’) and ASn-NPCNs-850 (102.7 m2-g1).
Furthermore, ASn-NPCNs-750 owns a larger pore volume
and a richer hierarchical pore distribution than those of
ASn-NPCNs-650 and ASn-NPCNs-850. It is generally
believed that mesopores promote the transfer of lithium
ions and electrons, while micropores can supply rich
active sites for the lithium-ion storage [49]. Consequently,
based on the above advantages, ASn-NPCNs-750 may
have the best lithium-ion storage performance.

In addition, XPS measurements are performed to
evaluate elemental compositions of the ASn-NPCNs-T
samples. The full spectra (Fig.4(a)) indicate that the
prepared ASn-NPCNs-T7 samples consist of C, N, O, and
Sn elements, consistent with the element mapping results.
The high-resolution C 1s spectrum of ASn-NPCNs-750
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Fig. 4 Structural characterization: (a) XPS spectra of ASn-NPCNs-T; (b) C 1s high-resolution XPS spectra of ASn-NPCNs-750; (¢)
Sn 3d high-resolution XPS spectra of ASn-NPCNs-750; N 1s high-resolution XPS spectra of (d) ASn-NPCNs-650, (e) ASn-NPCNs-

750, and (f) ASn-NPCNs-850.

can be divided into three peaks, including C—C (graphite
carbon), C—N, and C—O located at 284.8, 286.4, and
288.9 eV, respectively (Fig. 4(b)) [50]. Figure 4(c)
displays the high-resolution XPS spectrum of Sn 3d, there
are two peaks located at 486.8 and 495.2 eV, which are
assigned to Sn 3ds;; and Sn 3dsp,, respectively [51]. Both
ASn-NPCNs-650 and ASn-NPCNs-850
high-resolution spectra of C 1s and Sn 3d to those of ASn-
NPCNs-750 (Figs. S5 and S6). As illustrated in
Figs. 4(d)-4(f), the high-resolution N 1s XPS spectra of
ASn-NPCNs-T can be divided into three individual peaks
at 398.4, 399.9, and 401.2 eV, assigning to pyridinic N,
pyrrolic N, and graphitic N, respectively [52]. It is well

show similar

known that the types of nitrogen have a tremendous
the
performance of the obtained carbon materials [49]. Edge-

impact on structure and lithium-ion storage
nitrogen dopants include pyridinic N and pyrrolic N,
which are combined with two adjacent carbon atoms
while leaving themselves at the edge of the defect or the
carbon skeleton [53-54]. Moreover, the experimental and
illustrate that the defects

induced by edge nitrogen

computational results in

carbonaceous materials
(pyridinic N and pyrrolic N) are key active sites for the
lithium-ion storage, rather than graphitic N [55]. Table S1
depicts the quantitative analysis on three nitrogen doping

types at different annealing temperatures. This result

indicates that the three nitrogen doping types in ASn-
NPCNs-T can be controlled by changing the annealing
temperature. Interestingly, the edge-nitrogen content of
ASn-NPCNs-T descends in the order: ASn-NPCNs-750
(14.01 at.%) > ASn-NPCNs-850 (13.14 at.%) > ASn-
NPCNs-650 (13.01 at.%). A similar phenomenon has
been confirmed in previously reported literature [49,53].
According to above results, it can be inferred that ASn-
NPCNs-750 may have better lithium-ion storage
performance than that of ASn-NPCNs-650 and ASn-
NPCNs-850.

The lithium-ion storage performance of ASn-NPCNs-T
electrodes was evaluated by assembling CR2032-type
coin half-cells. Figure 5(a) illustrates the first three CV
curves of the ASn-NPCNs-750 electrode between 0.01
and 3.0V at a scan rate of 0.1 mV-sl
reduction peak appears at about 0.74 V during the first

The large

cathodic scan but disappears in the following cycles,
regarded as the formation of solid-electrolyte interface
(SEI) films [56]. The cascade of the reduction peak below
0.5V is attributed to the Li,Sn alloying process and the
lithium-ion insertion into ASn-NPCNs-750 [35]. In the
anodic scan, the oxidation peak at 0.30 V demonstrates
the extraction of lithium ions from ASn-NPCNs-750,
while the oxidation peak at 0.65V is regarded as the
dealloying process of Li,Sn [35]. As illustrated in Fig. S7,
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Fig. 5 Electrochemical performances of ASn-NPCNs-T in LIBs: (a) CV curves at 0.1 mV-s~! and (b) discharge/charge profiles of
ASn-NPCNs-750. (¢) Rate performance of ASn-NPCNs-T half-cells at 25 °C in the voltage range of 0-3 V. (d) Comparison of the rate
performance of ASn-NPCNs-750 with reported Sn/C materials for LIBs. (e) Long-term cycling stability of ASn-NPCNs-750 at

1 A-g~! for 2000 cycles.

the CV curves of ASn-NPCNs-650 and ASn-NPCNs-850
also exhibit similar characteristics. In addition, the curve
of the 3rd scan overlaps well with that of the 2nd one,
indicating superior electrochemical reversibility of the
ASn-NPCNs-750 electrode.

The galvanostatic discharge/charge tests of ASn-
NPCNs-T electrodes were carried out between 0.01 and
3.0 V to evaluate their lithium-storage capabilities. The
typical galvanostatic discharge/charge curves of the 1st,

2nd, 3rd, and 48th cycles of ASn-NPCNs-750 are
displayed in Fig. 5(b). The initial lithiation and delithia-
tion specific capacities are 2563 and 1578 mAh-g’!,
respectively. The initial irreversible capacity may be due
to the formation of the SEI film, the irreversible lithium
storage in carbon materials, and the conversion reaction of
Sn. The lithiation/delithiation specific capacity decreases
in the 2nd and 3rd cycles and then increases in the 48th
cycle, indicating that there is an activation process in the
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initial several cycles. The rate capacities of ASn-NPCNs-
T electrodes at the current density from 0.1 to 10 A-g™!
are depicted in Fig. 5(c). Specifically, the ASn-NPCNs-
750 electrode delivers highly reversible capacities of
1643, 1419, 1150, 983, 789, 630, and 490 mAh-g ! at 0.1,
0.2, 0.5, 1, 2, 5, and 10 A-g'!, respectively. After the
current density is shifted to 0.1 A-g~!, a higher capacity of
1681 mAh-g™! can be retained, confirming its excellent
reversibility. The discharge/charge curves of the ASn-
NPCNs-750 electrode at the current density from 0.1 to
10 A-g7! are illustrated in Fig. S8. As for the sample ASn-
NPCNs-650, lower rate performance is mainly owing to
the lower edge-nitrogen doping level in the carbon
substrate [53], while the poor rate performance for ASn-
NPCNs-850 is due to the presence of crystalline Sn. In
addition, both ASn-PC-750 and NPCNs-750 show poorer
rate performance than that of ASn-NPCNs-750 (Fig. S9).
By contrast, the superior rate performance of ASn-
NPCNs-750 outperforms many recently reported Sn/C
LIBs (Fig.5(d)) [57-63]. To further
understand the properties of those materials, the long-term

anodes for

cycling performance of ASn-NPCNs-T electrodes was
measured at the current density of 1 A-g”!. As illustrated
in Fig. 5(e), ASn-NPCNs-750 remains a high capacity of
988 mAh-g~! after 2000 cycles at the current density of
1 A-g!, with a capacity retention of 98.9%, which is
better than those of ASn-NPCNs-650 and ASn-NPCNs-
850. Table S2 illustrates that the cycling performance of
ASn-NPCNs-750 is better than many reported Sn/C anode
materials for LIBs. The excellent long-term cycling
stability of the ASn-NPCNs-750 electrode can be
attributed to amorphous Sn that can adapt to the
mechanical stress in the lithiation/delithiation process
[22,58]. According to above results, it is deduced that the
impressive lithium-ion storage performance of ASn-
NPCNs-750 derives from the synergistic effect of
amorphous Sn and high edge-nitrogen-doped level porous
carbon nanosheets that provide it with multiple
advantages containing abundant defect sites, high specific
surface area, and rich hierarchical pores for the lithium-
ion storage.

To reveal the excellent lithium-ion storage dynamics
and the mechanism of ASn-NPCNs-T electrodes, CV
measurements were taken at 0.3—1.3 mV-s~! (Figs. 6(a)—
6(c)). It can be noted that with the increase of the scan
rate, the existing depolarization peak expands to a higher
potential range, indicating that the lithium-ion storage
process of the capacitive behavior is dominant [49]. The

capacitive mechanism can be explored by following
equations:

i=aV’ 3)

Igi=blgv+lga @

where a and b are variable positive numbers, v is the scan
rate, and i is the peak current. It is generally believed that
the value of b can be determined by plotting the 1g i—Ig v
curve [64]. When the b value is close to 0.5, the
electrochemical reaction is dominated by the diffusion-
controlled process, while close to 1.0 means that the
lithium-ion storage is predominantly contributed by the
capacitive-controlled process. As illustrated in Fig. S10,
all b values of ASn-NPCNs-T electrodes are between 0.5
and 1.0, indicating that the lithium-ion storage mechanism
is the hybrid process containing the diffusion-controlled
and the capacitive-controlled processes. Furthermore, the
capacitive-controlled contribution of the lithium-ion
storage to the total capacity can be estimated by the
following equation:

iv) = kv +kov'/? (5)

where, k; and k, are constants by linear fitting, and kv
and kyv!/2 represent the capacitive-controlled contribution
and the diffusion-controlled contribution, respectively.
Figures 6(d)-6(f) reveal the capacitive-controlled
contribution ratios of ASn-NPCNs-7 electrodes at the
scan rate of 1 mV-s™!. Calculated by integral fitting, ASn-
NPCNs-750 exhibits a capacitive-controlled contribution
of 83.4%, which is higher than those of ASn-NPCNs-650
(78.5%) and ASn-NPCNs-850 (67.8%). As shown in
Fig. 6(g), the capacitive-controlled contributions of ASn-
NPCNs-T electrodes are improved as the scan rate
increases. Apparently, the ASn-NPCNs-750 electrode
always maintains an absolute advantage in the capacitive-
controlled contribution. The enhanced capacitive-
controlled contribution is due to that the amorphous Sn
and high edge-nitrogen-doped level introduce more
surface defects, and the rich hierarchical pores nanosheet
thus
facilitating the rapid capacitive mechanism of the ASn-
NPCNs-750 electrode. These results illustrate that the
ASn-NPCNs-750 with  high

controlled contribution is more favorable to the high-rate

structure increases the specific surface area,

electrode capacitive-

performance.
Moreover, the EIS measurement was further performed
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Fig. 6 Quantitative analysis of the lithium-ion storage mechanism: CV curves of (a) ASn-NPCNs-650, (b) ASn-NPCNs-750, and
(¢) ASn-NPCNs-850 at different scan rates of 0.3—1.3 mV-s~!; capacitive-controlled contribution in (d) ASn-NPCNs-650, (e) ASn-
NPCNs-750, and (f) ASn-NPCNs-850 at a scan rate of 1.0 mV-s!; (g) contribution ratios of the capacitive process for ASn-NPCNs-T
at different scan rates; (h) Nyquist plots for ASn-NPCNs-T:; (i) the liner relation of Z’ versus w0 for ASn-NPCNs-T.

to recognize the rapid electrochemical reaction kinetics of
ASn-NPCNs-T electrodes. As demonstrated in Fig. 6(h),
the Nyquist plots of ASn-NPCNs-T electrodes exhibit the
same outline with a semicircle (R representing the charge
transfer resistance) and an oblique line (W representing
the Warburg diffusion resistance that indicates the
lithium-ion diffusion process inside the electrode). The R;
of the
resistances) can be acquired from the intercept of the

(resistance electrolyte and other inherent
semicircle on the x-axis in the high-frequency region. The
corresponding values of Ry and R are summarized in
Table S3, which are obtained by the equivalent electrical
circuit in Fig. 6(h). It can be found that the ASn-NPCN5s-
750 electrode has a smaller Ry (93.4 Q) than those of the
ASn-NPCNs-650 electrode (112.3 Q) and the ASn-
NPCNs-850 electrode (177.8 Q), demonstrating its better
kinetics among ASn-NPCNs-T electrodes. Similarly, the

slope of the straight line is inversely proportional to W

(defined as the Warburg diffusion resistance), in which
the W wvalue of ASn-NPCNs-750
Figure 6(i) illustrates the fitting curves between Z' and

is the smallest.

w93, in which the slope of the fitting curve is inversely
proportional to the lithium-ion diffusion rate [49]. The
ASn-NPCNs-750 electrode maintains the minimum slope
of the fitting curve, revealing the maximum lithium-ion
ASn-NPCNs-T
Furthermore, the lithium-ion diffusion coefficient (Dy;+)

transfer rate among electrodes.
values in ASn-NPCNs-T electrodes are investigated from

following equations [65]:

R2T?

_ a
bii = Smarices ©
Z =Ry+Ry+oo™'? 7

where R is the gas constant, 7 is the absolute temperature,
A is the surface area of the electrode, n is the number of
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transfer electrons per mole of the active material involved
in the electrode reaction, F is the Faraday constant, C is
the molar concentration of lithium ion, Z' is the real part
of the impedance, and o is the Warburg factor associated
with Z'. As demonstrated in Table S3, the ASn-NPCNs-
750 electrode shows a higher Dy;- (2.42x10712 ¢cm?2-s71)
than those of the ASn-NPCNs-650 celectrode (7.64x
10713 cm?s7!) and the ASn-NPCNs-850 electrode
(6.41x10714 cm?2-s71), leading to a faster lithium-ion
transport. This result implies that the Dy;+ value of the
ASn-NPCNs-750 electrode is
ascribing to the high edge-nitrogen-doped level that

improved remarkably,

enhances the electronic conductivity and the lithium-ion

transfer rate, thus improving the fast-charging

performance.

4 Conclusions

Novel ASn-NPCNs are successfully acquired through a
hydrothermal and annealing strategy, which delivers
enhanced lithium-ion storage performance. The
synergistic effect of amorphous Sn and the high edge-
nitrogen-doped level introduce more surface defects, and
the rich hierarchical pores nanosheet structure increases
the specific surface area, thereby facilitating the rapid
electrochemical reaction kinetics of the ASn-NPCNs-750
electrode. Consequently, the ASn-NPCNs-750 electrode
shows high capacity (1643 mAh-g! at 0.1 A-gl),
remarkable rate performance (490 mAh-g™! at 10 A-g™1),
and superior cycling stability (988 mAh-g™! at 1 A-g’!
after 2000 cycles with a capacity retention of 98.9%).
Furthermore, the enhanced lithium-ion storage of the
ASn-NPCNs-750 electrode is ascribed to the rapid
capacitive mechanism which is demonstrated by the in-
This
provides an attainable strategy for developing Sn/C LIBs

depth electrochemical kinetic analysis. work

anode materials and supplies a reference for adjusting the

capacitive mechanism to accomplish enhanced lithium-ion
storage.
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