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ABSTRACT: Developing high-activity and low-cost catalysts is the key to eliminate the
limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic
overall water splitting. Herein, Ni-Fe/black phosphorous (BP) composites are
synthesized using a simple three-electrode system, where exfoliation of bulky BP and
synthesis of NiFe composites are simultaneously achieved. Under light illumination, the
optimized Ni-Fe/BP composite exhibits excellent photoelectrocatalytic OER performance
(e.g., the overpotential is 58 mV lower than a commercial RuO; electrocatalyst at a
current density of 10 mA-cm~2). The electron transfer on this composite is proved to
follow a Ni-BP-Fe pathway. The electronic structure of this Ni-Fe/BP composite is
effectively regulated, leading to optimized adsorption strength of the intermediate OH*
and improved intrinsic activity for the OER. Together with active sites on the support,
this Ni-Fe/BP composite possesses abundant electrochemical active sites and a bug
surface area for the OER. The introduction of light further accelerates the electrocatalytic
OER. This work provides a novel and facile method to synthesize high-performance
metal/BP composites as well as the approaches to reveal their OER mechanisms.

KEYWORDS: black phosphorous; (photo-)electrocatalysis; oxygen evolution
reaction
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1 Introduction

Electrocatalytic water splitting has been regarded as one
of the most prospective approaches to acquire clean
hydrogen energy. Unfortunately, it is greatly limited by
the sluggish oxygen evolution reaction (OER) occurring
on the anode [1-10]. Up to now, IrO; and RuO, have been
considered as the most efficient catalysts for the OER
[9,11-12]. Their drawbacks are quite obvious: scarcity
and high cost, refraining their widespread application. In
this context, many efforts have been made to develop low-
cost and earth-rich catalysts for the OER. Among various
potential alternatives, Ni-Fe composites have been widely
employed for the OER, originating from their unique
[7,13-15]. their
conductivity is too low, heavily restricting their OER

collaborative  structures However,
catalytic activity. To overcome such a challenge, Ni-Fe
composites have been frequently coupled with specific
materials or loaded onto the substrates that feature high
electronic mobilities. One promising substrate to load the
catalysts of Ni-Fe composites is black phosphorus (BP) in
that this recently emerging two-dimensional (2D) material
owns inherent features (e.g., high carrier mobility, strong
optical adsorption, and tunable direct band) [16-25]. To
synthesize these Ni—Fe/BP hybrids, Ni-Fe and BP must
be separately synthesized in the first preparation step.

Herein, we propose in this work to simultaneously
produce active Ni—Fe composites and conductive BP
nanosheets only by use of a home-made three-electrode
system, where one single cathode and two anodes are
equipped [26-30]. The application of voltage is expected
to result in the exfoliation of bulky BP into BP nanosheets
at the cathode and meanwhile the generation of NiFe
composites at the anode. This approach is much simple
than those reported protocols to Ni—Fe/BP hybrids.
Moreover, the consumed energy will be reduced.
Furthermore, it is known that both BP and Fe-based
materials have been widely applied as the photocatalysts,
due to their specific band structures [31-33]. The
proposed Ni—Fe/BP hybrid is thus expected to promote
the OER activity once it is illuminated.

Many reports have revealed that a typical OER
electrocatalyst follows an adsorbate evolution mechanism
(AEM) during the OER process. Namely it experiences a
stepwise adsorption—deprotonation—coupling—desorption
procedure [16]. This AEM is often interpreted using the
density functional theory (DFT) method, namely to
explore the influence of adsorption strength to OH* on the

OER performance of an electrocatalyst.
With light
photoelectrocatalytic path is added. Excitation by the

introduction of irradiation, a new
photon energy could generate the photoelectrons in
conduction band (CB) and photogenerated carriers or
in valence band (VB). The
intermediate can greatly enhance its catalytic activity by

holes formation of
reducing the energy barrier and improving the kinetic
activity. In view of this, here light irradiation is introduced
in the OER, as previous work shown in superior materials
such as cobaltite and hematite [34—38].

In this contribution, we report about the synthesis of the
Ni—Fe/BP  hybrids/composites
universal electrochemical synthesis method as well as

using a simple and
their performance toward photoelectrocatalytic OER.
Different from those theoretical tools, experimental
methods have been applied to certify the AEM. The
investigation of OH* adsorption on the catalyst has been
probed by use of a methanol oxidation reaction (MOR)
under the identified operating conditions for the OER. The
OER performance of these Ni—Fe/BP composites has been
also compared with the commercially available OER
catalyst — noble RuO; in terms of its electrochemical
active surface area, adsorption behavior, and photoelectric
effect.

2 Experimental

2.1 Chemicals and materials

Tetrabutylammonium tetrafluoroborate (TBABF4, 98%,
solid) and propylene carbonate (PC, 99.9%, powder) were
bought from Aladdin. Nickel wire and iron wire were
purchased from Runde Metal Materials Company. Bulk
BP was purchased from Kunming BP Technology Service
Co., Ltd.

2.2 Preparation of Ni-Fe/BP

Nickel hydroxide, ferric oxide, and thin-layer BP were
simultaneously pre-made via electrolysis at a voltage of
30V for 2h in a self-designed three-electrode system,
where one single cathode and two anodes were equipped
[26-30]. In a 0.1 mol-L™! solution of TBABF,, polished
nickel and iron wires were fixed as the anode, and crushed
block BP that was wrapped with a filter membrane was

immobilized on the cathode. The electrolyte was
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ultrasonically dispersed for 2 h and then transferred to an
autoclave where a solvothermal reaction occurred at
160 °C for 12 h. After the resultant solution was washed
with PC (98%) and pure ethanol for 3 times, it was dried
in vacuum. The nickel hydroxide-iron oxide/BP
(Ni-Fe/BP) was synthesized. The catalysts that were
prepared by replacing one iron wire and one nickel wire
with two nickel wires or two iron wires as the anodes are
defined in this contribution as Ni/BP and Fe/BP,
respectively. After the electrolysis was completed, the rest
BP (after electrochemical stripping) was taken out from
the cathode and put into the unreacted solution to continue
the reaction. As-obtain product was defined as the BP
catalyst. The applied voltage is set as 30 V to support the
power source for moving large-sized TBA™ cations and
dissolving the iron (or nickel) wire anode;
tetrabutylammonium tetrafluoroborate electrolyte and
propylene carbonate solvent are used to enter into
interlayer of black phosphorous for promoting the
exfoliation; the solvothermal temperature of 160 °C is
chosen to combine the BP NSs with metal species.

2.3 Characterization

Phase analysis of these catalysts was carried out by X-ray
diffraction (XRD, Bruker D8 powder diffractometer with
the Cu Ka radiation, 4 = 0.154 nm). The composition and
oxidation states of these catalysts were examined using X-
ray  photoelectron  spectroscopy  (XPS, Thermo
ESCALAB-210). Their morphologies and structures were
characterized using scanning electron microscopy (SEM,
Thermo, INSPECT F50) and transmission electron
microscopy (TEM, JEOL, Jem 2100F).

2.4 Electrochemical measurements

Electrochemical tests were carried out on a CHI760E

electrochemical workstation (CH Instruments, USA)
using a three-electrode setup. The working electrode was
prepared as follows: 5 mg of the catalyst was added into
1 mL of a mixed solvent (20 uL 5 wt.% Nafion, 290 pL
H,0, and 790 puL ethanol) till an ink was formed with aid
of ultrasonication. On the surface of a glassy carbon
electrode with a geometric area of 0.03 cm?, 5 uL of this
ink was casted and dried. The Hg/HgO electrode and a
graphite rod were used as reference electrode and counter
electrode, respectively. Throughout the paper, the
Hg/HgO reference electrode was calibrated with respect to
a reversible hydrogen electrode (RHE) in 1 mol-L™! KOH
using the equation of E/(V vs. RHE) = E/(V vs. Hg/HgO)
+ 0.059pH + 0.098 = E/(V vs. Hg/HgO) + 0.924. The
electrochemical tests under light
conducted using a xenon lamp. A voltage of 14 V and a

illumination were

corresponding current of 20 A were applied.

3 Results and discussion

According work [26-30,39], the

application of a high working voltage (e.g., 30 V) leads to

to our previous

the migration of large-sized TBA* cations in solution to
the cathode and further their insertion into the interlayer
of bulky BP, namely the exfoliation of bulky BP into
nanosheets (Fig. 1) [40]. At the same time, Ni ions or Fe
ions that are generated via anodic oxidation of the
electrode are solved into the electrolyte solution and then
evolved as the precursors of NiFe composites. A
subsequent solvothermal treatment of as-obtained results
in the formation of the Ni—Fe/BP hybrids. Noticeably, our
experimental results suggest the properties of used
electrolytes are significantly altered under such a high
voltage since it mainly determines the oxidation states of
involved metal ions, which are in turn the sources of
electrocatalytic activities of the Ni—Fe/BP hybrids.
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Fig. 1 Schematic plot of electrochemically synthesizing the Ni-Fe/BP composites.
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The Ni/BP, Fe/BP, Ni-Fe/BP, and BP catalysts were  (Fig. 2(a)), three main characteristic peaks are located at
firstly characterized using XRD. In their XRD spectra 16.9°,34.1°, and 52.3°, which can be assigned to the (0 2 0),
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Fig. 2 (a) XRD patterns and (b) XPS survey spectra of BP nanosheets, Ni/BP, Fe/BP, and Ni—-Fe/BP catalysts. (¢) Ni 2p XPS spectra
of the Ni/BP and Ni—Fe/BP catalysts. (d) Fe 2p XPS spectra of the Fe/BP and Ni—Fe/BP catalysts. (¢) P 2p and (f) O 1s XPS spectra of
BP nanosheets, Ni/BP, Fe/BP, and Ni-Fe/BP catalysts.
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(04 0), and (0 6 0) planes of BP, respectively (PDF #73-
1358). Meanwhile, the tiny peaks at 26.4°, 35.0°, 55.8°,
and 56.7° result from the (021), (111), (200), and
(1 3 2) planes of BP, respectively. No obvious diffraction
peaks are observed, corresponding to nickel or iron
species in XRD patterns of the Ni/BP, Fe/BP, and
Ni-Fe/BP catalysts. This indicates that the crystallinity of
formed nickel or/and iron species over BP supporter is
very low, due to their small size or mixing with
amorphous structure [16].

In the XPS survey spectra of the Ni/BP, Fe/BP, and
Ni-Fe/BP catalysts (Fig. 2(b)), the signals of nickel or/and
iron species are noticed. In other words, nickel or/and iron
species are successfully loaded on the BP nanosheets. The
contents of nickel or/and iron were further calculated by
use of inductively coupled plasma-optical emission
spectroscopy (ICP-OES) (Table S1). The Ni content is
19.53 wt.% for the Ni/BP catalyst, while the content of Fe
is 22.54 wt.% for the Fe/BP catalyst. For the Ni—Fe/BP
catalyst, the contents of Ni and Fe are 12.08 and
12.68 wt.%, respectively. Meanwhile, in the Ni 2p XPS
spectra (Fig. 2(c)) for the Ni/BP and Ni—Fe/BP catalysts,
two main peaks are located at about 856.4 and 861.2 eV,
typical for NiZ" species and the corresponding satellite
peak, respectively. Noticeably, a new peak in the Ni 2p
XPS spectrum of the Ni/BP catalyst arises at 853.0 eV,
corresponding to Ni® in Ni,P [17]. However, the
introduction of Fe leads to the disappearance of this peak,
an indication of structure transformation of original Ni
species by the added Fe species. The incorporation of Fe
is supposed to promote the oxidation of Ni’ to Ni2*
species or electron transfer to Ni species. The formed Ni2*
species on the Ni/BP catalyst is believed to be a-Ni(OH),,
which can be oxidized. Such an oxidation process stems
from the conversion of o-Ni(OH), to y-NiOOH [3].
Interestingly, this oxidation peak almost is not expected
for the Ni-Fe/BP catalyst, due to the incorporation of Fe
species.

In the Fe 2p XPS spectrum of the Fe/BP catalyst
(Fig. 2(d)), two characteristic peaks appear at 711.4 and
724.6 ¢V, indicating the formation of Fe3' species.
Compared with those of the Ni/BP catalyst, a negative
shift of the binding energy (BE) by about 0.4-0.5 eV is
observed for the Ni—Fe/BP catalyst. The introduction of
Ni brings in the transfer of more electrons to Fe species.
The P 2p XPS spectra of the BP, Ni/BP, and Fe/BP
catalysts were recorded and compared (Fig. 2(e)). The P
2p peaks in the XPS spectrum of the BP catalyst

obviously shift when it is incorporated with Ni (or Fe)
species. The P 2p peaks in the XPS spectrum of the BP
catalysts just appear at the middle between those of the
Fe/BP and Ni/BP catalysts. This is because these
introduced Ni (or Fe) species exhibit strong electron
interactions with BP. Moreover, the peak in the O 1s XPS
spectrum (Fig. 2(f)) of the BP nanosheets
deconvoluted into two peaks at 532.9 and 530.9 eV,
assigned to OH and P—O groups, respectively. In addition

were

to these two peaks, a new peak is seen in the spectra of the
Ni/BP, Fe/BP, and Ni-Fe/BP catalysts, an indication of
(O—M) bond.
Consequently, metal oxides/oxyhydroxides are formed in

the formation of an oxygen—metal

these catalysts.

Combining with these XPS results, one can tell that a
pathway for the Ni—Fe/BP catalyst to transfer electrons is
Ni,P(a-Ni(OH),)-BP-Fe,0s.
electrons migrate from Ni species to Fe species along the
BP bridge. The electronic structure of such a Ni-Fe/BP
composite is expected to be effectively regulated. Its

formed: Namely, the

adsorption and electrocatalytic behavior will be finally
optimized.

The morphology of these catalysts was checked using
SEM. In the SEM images of the Ni/BP (Fig. S1(a)) and
Fe/BP (Fig. S1(b)) catalysts, one can clearly see that small
nanoparticles are distributed over the surface of BP
nanosheets. After the loading of both Ni and Fe species
onto the BP nanosheets (Fig. S1(c)), large nanoparticles
are observed (Fig.3(a)). The nanostructure of these
Ni—Fe/BP nanoparticles was further revealed by means of
TEM, high-resolution TEM (HRTEM), and scanning
TEM (STEM). In their TEM image, small irregular
aggregates are dispersed on lamellar BP nanosheets
(Fig. 3(b)). These BP nanosheets are mainly composed of
the crystal face of (04 0), inferred from an interplanar
distance of 0.263 nm (Fig. 3(c)). In addition, the emerging
lattice fringe spacings of 0.256 nm (Fig. 3(d)) and
0.252 nm (Fig. 3(e)) are noticed, well matched with the
(0 09) plane of Ni(OH), and the (3 1 1) plane of Fe,;Os,
respectively. The corresponding elemental mapping
images of P (Fig. 3(g)), Ni (Fig. 3(h)), O (Fig. 3(i)), and
Fe (Fig. 3(j)) reveal the uniform distribution of these
elements. All these results verify the successful and
uniform loading of the NiFe composites on the BP
nanosheets, consistent with the results obtained from XPS
analysis. The Ni—Fe/BP composites are formed inside the
Ni—Fe/BP catalyst.

As-prepared catalysts were then employed as the OER
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Fig. 3 (a) SEM image, (b) TEM image, (c)(d)(e) HRTEM
images, (f) HAADF-STEM image, and (g)(h)(i)(j)
corresponding EDS mapping images of the Ni—Fe/BP catalyst.

photoelectrocatalysts. Their intrinsic activity toward
photoelectrocatalytic OER was firstly evaluated by means
of linear sweep voltammetry (LSV) (Fig. 4(a)). In some
cases, light was illuminated. The corresponding overpo-
tentials obtained at a current density of 10 mA-cm 2
(without further
(Fig. 4(b)). Without light illumination, the overpotentials

of the Ni-Fe/BP, Ni/BP, Fe/BP, and BP catalysts are 340,

iR-compensation) are compared

351, 407, and 415mV, respectively. The Ni—Fe/BP
catalyst has the lowest overpotential, indicating the best
OER catalytic activity. This is believed that both Ni/Fe
species and BP nanosheets contribute to the OER catalytic
activity. A synergistic effect might exist among them.
Noticeably, compared with Fe/BP or BP, Ni/BP shows
obviously low overpotential, attributed to superior electro-
catalytic OER performance for Ni species to Fe or BP.
After the introduction of light illumination, the OER
activities of all these catalysts were elevated. The
overpotentials of the Ni-Fe/BP, Ni/BP, Fe/BP, and BP
catalysts decrease by 57, 40, 54, and 10 mV, respectively.
For the Ni-Fe/BP catalyst, its overpotential drops down to
283 mV, stemming from its excellent photocatalytic
features. UV—vis diffuse reflectance spectra of these
catalysts were recorded (Fig. S2). It is concluded that
band gap energy (£,) values of BP nanosheets and the
Fe/BP catalyst are lower than those of the Ni—Fe/BP and
Ni/BP catalysts, meaning superior photoresponse of BP
nanoparticles and the Fe/BP catalyst to Ni—Fe/BP or
Ni/BP. This photoelectric effect was further tested
(Fig. S3). Once light is on, the photocurrents on the
Ni-Fe/BP, Ni/BP, Fe/BP, and BP catalysts are quickly
enhanced. Big photocurrents or high photocurrent
densities are found for BP nanosheets and the Fe/BP
catalysts. These values are much higher than those of the
Ni-Fe/BP and Ni/BP catalysts. In this context, there is
strong photocurrent response caused by BP nanosheets
and Fe species. When the light turned off, the Ni—Fe/BP
catalyst showed the slowest decrease rate of the current
and required the longest time to let the current back to
zero. This tendency affirms its highest separation
efficiency of electrons/holes among these catalysts [31].
The intrinsic activity of these catalysts as the
photoanodes was investigated by examining their turnover
frequency (TOF) values (Table S1). The TOF value of the
Ni-Fe/BP catalyst is 0.4699 s71 at 1.60 V (vs. RHE),
higher than those of the Ni/BP (0.448 s™!) and the Fe/BP
(0.0667 s71) catalysts, again proving the superior catalytic
ability of the Ni—Fe/BP composites or the synergistic
effect between Ni and Fe components inside the
Ni-Fe/BP catalyst. The corresponding Tafel slope of the
Ni-Fe/BP catalyst (Fig. 4(c)) is 55.14 mV-dec™!, lower
than those of the Ni/BP catalyst (72.15 mV-dec™!), the
Fe/BP catalyst (109.48 mV-dec™!), and the BP nanosheets
(129.76 mV-dec™). This indicates that the rate-limiting
step is changed from the chemical reaction process to the
electron—proton reaction process, and the electron transfer
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Fig. 4 (a) LSV results, (b) overpotential comparison, (c¢) Tafel plots, (d) Nyquist plots, and (e) Cg; values of BP nanosheets as well as
the Ni-Fe/BP, Ni/BP, and Fe/BP catalysts. (f) Chronoamperometric curve of the Ni—Fe/BP catalyst at a constant potential of 1.57 V.

rate turns faster, which results from the composite synergy
of Ni—Fe/BP. After the application of light illumination,
the Tafel slopes of all catalysts are decreased. A
difference value between those with and without the light
illumination (4) was defined and calculated. For the
Fe/BP, BP, Ni/BP, and Ni—Fe/BP catalysts, the values of
AreBp, AP, ANiBp, and Aniremp are 14.58, 23.28, 0.66,
and 1.24 mV-dec™!, respectively. This tendency confirms
again that the light illumination significantly promotes the
electron transfer rates of these catalysts. Such a statement

was further verified by means of -electrochemical
impedance spectroscopy (EIS). Since the diameters in
Nyquist plots of these catalysts (Fig.4(d)) follow a
sequence of Ni-Fe/BP < Ni/BP < Fe/BP < BP.

In addition to the promoted intrinsic activity of the
Ni—Fe/BP catalyst for the boosted OER, the amount of
active sites on the Ni—Fe/BP catalyst is increased. This
was confirmed by measuring and comparing electroche-
mical active surface areas (ECSAs) of used catalysts. The

ECSAs can be referred to related double-layer capacitance
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(Cq) (Fig. 4(e)), which are possible to be estimated from
their cyclic voltammograms recorded within a non-
Faradaic potential domain at different scan rates (Fig. S4).
The obtained Cy values of these catalysts increase in the
order of BP < Fe/BP < Ni/BP < Ni-Fe/BP. Clearly, the
Ni-Fe/BP catalyst provides the highest amount of active
sites toward the OER. The active sites of these catalysts
are supposed to be further increased under light
illumination, due to the generated current carriers by a
photoelectric effect [41]. In addition to such excellent
OER activity, this Ni-Fe/BP catalyst shows high stability,
inferred from a long-term test for 10h by use of
chronoamperometry (Fig. 4(f)).

Adsorption of OH™ and subsequently the formation of
OH* are the first two steps involved in a complicated
OER process. The bonding strength of absorbed OH* on a
studied catalyst is thus the most important parameter,
which decides the formation of oxygen intermediates
(e.g., O* and OOH*) and eventually the whole
performance of the OER. In other words, design and
synthesis of an OER catalyst with a favorable bonding
strength of OH* is very important. Since OH* species are
electrophiles and can be detected by nucleophiles such as

10
BP (a)
—KOH
—KOH + CH,OH
& 51
£
S
<
£ §=0.152
=0
=5 r r
13 14 15 1.6
Potential/V vs. RHE
1.0
Fe/BP ©
0.8 { —KOH
—KOH + CH,OH
~ 0.6
g
S 044
<
£
= 024
- §=0.024
0.0
0.2
13 1.4 1.5 1.6

Potential/V vs. RHE

methanol molecules, the adsorption strength of OH* is
possible to be detected using the MOR when the identified
working conditions for the OER is applied [42]. The
degree of surface OH* coverage or the OH* adsorption
ability can be reflected with the current difference
between the LSV results of the MOR and the OER, which
are shown in filled areas (Fig. 5). The current difference is
reduced, following the tendency of Sniremp (2.022) >
SNi/BP (0380) > Sgp (0152) > Skre/BP (0024)
Consequently, the adsorption strength toward OH* on
these catalysts varies in the trend of Ni-Fe/BP > Ni/BP >
BP > Fe/BP. Noticeably, the introduction of Ni to the BP
nanosheets strengthens the OH* adsorption. In contrast,
the incorporation of Fe to the BP nanosheets weakens the
OH*
Ni—Fe/BP catalyst displays the strongest OH* adsorption.

adsorption. Among the studied catalysts, the

Namely, the improved OER catalytic performance of the
Ni—Fe/BP catalyst results from its favorable adsorption of
OH* species.

As is discussed above, this obtained Ni—Fe/BP catalyst
exbibits
towards OER. The improved OER performance is

superior photoelectrocatalytic  performance

assumed to result from the composition effect reflected in
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Fig. 5 LSVs of oxygen intermediates during the MOR on (a) BP nanosheets as well as (b) Fe/BP, (¢) Ni/BP, and (d) Ni-Fe/BP
catalysts in 1 mol-L™! KOH (black) and 1 mol-L~! KOH + CH30H (purple) at a scan rate of 50 mV-s~!. These filled areas are the

current difference that is caused by the MOR.
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three aspects (Fig. 6). Firstly, the formed Ni—-BP—Fe
electron-transfer pathway inside this catalyst effectively
regulates its intrinsic structure, which in turn enlarges
adsorption strength of the intermediate OH* species.
Secondly, three composites, namely Ni, Fe, and BP
contribute together to the ECSAs, or provide abundant
active sites for the OER. Thanks to d orbitals inside Ni
and Fe species, the NiFe composites offer intrinsic active
sites for the OER [43]. Meanwhile, abundant edge sites on
the BP nanosheets serve active sites for the O, evolution
[44]. Thirdly, the introduction of light leads to a
photocurrent effect, where the Ni—Fe/BP composite is
optimized, the number of active sites is increased, and
eventually the original electrocatalytic OER activity is
enhanced [20,45].

0O, e BP O Ni @ Fe

(b) . Structure of Adsorption
Ni wire active sites performance
Fe wire
“w  Electrochemical Composition 9 1, v
Shee Ni-Fe/BP Photoelectric
phosphorous synthesis method synergy effect

Number of O
active sites > ECSAs

Fig. 6 (a) Schematic illustration of as-proposed reaction
mechanism. (b) Composition effect of the Ni—Fe/BP catalyst
for the promoted OER.

4 Conclusions

In summary, a Ni-Fe/BP composite has been designed
and electrochemically synthesized using a simple three-
electrode electrolysis system where a single cathode and
two anodes are equipped. The advantage of this approach
is to simultaneously achieve exfoliation of bulky black
phosphorus into nanosheets at the cathode into nanosheets
and the synthesis of Ni—-Fe composites evolved from the
anode. This method is facile and wuniversal for
electrochemical synthesis of other BP based catalysts for
different catalytic reactions such as OER, hydrogen
evolution reaction, CO; reduction, nitrogen fixation/nitrite

reduction, and chloride/hydrogen peroxide production.

More these Ni—Fe/BP catalysts show

excellent OER activity under dark conditions and light

importantly,

illumination. A Ni-BP-Fe electron-transfer pathway
inside these Ni-Fe/BP catalysts and their superior
photoelectric effects are the sources of such superior OER
performance. The synergetic effect between individual
components of these Ni-Fe/BP catalysts is also proposed
and proved as demonstrated using their ECSAs and
adsorption strength of OH* species. Consequently, this
study paves a new way to design, synthesize and employ
new composted catalysts for different photoelectroca-
talytic applications.
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