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ABSTRACT: Graphene is a fascinating material of recent origin whose first isolation
was being made possible through micromechanical cleavage of a graphite crystal. Owing
to its fascinating properties, graphene has garnered significant attention in the research
community for multiple applications. A number of methods have been employed for the
synthesis of single-layer and multi-layer graphene. The extraordinary properties of
graphene such as its Hall effect at room temperature, high surface area, tunable bandgap,
high charge mobility and excellent electrical, conducting and thermal properties allow for
the development of sensors of various types and also opened the doors for its use in
nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have
also been investigated with particular emphasis on its toxicity and drug delivery. In this
review, many of the salient aspects of graphene, such as from synthesis to its
applications, primarily focusing on sensor applications which are of current interest,
are covered.
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1 Introduction

Graphene and carbon nanotubes (CNTs) are two of the
most studied materials in recent years. There is an
increasing interest in two-dimensional (2D) graphene due
to its unique electrical properties like very high carrier
mobility, the quantum Hall effect (QHE) at room
temperature and ambipolar electric field effect along with
ballistic conduction of charge carriers [1–5]. Other
attractive properties of graphene include unexpected high
absorption of white light [6], high elasticity [7], unusual
magnetic properties [8–9], high surface area [10], gas
adsorption [11], and charge-transfer interactions with
molecules [12–13]. Generally, graphene is defined as a
single layer of sp2 hybridized carbon atoms arranged in
hexagonal format. Over the years new and more efficient
methods are evolved to prepare high-quality single-layer
graphene (SLG) and functionalized graphene (FG). Direct
visualization of defects in the graphene lattice, such as the
Stone–Wales defect, has been possible by aberration-
corrected transmission electron microscopy (TEM) with
amonochromator. In many studies, it has been shown that
graphene can enfold into a zero-dimensional (0D) full-
erene, rolled to resemble one-dimensional (1D) carbon
nanotubes, or stacked to three-dimensional (3D) graphite
(Fig. 1) [14].
Due to many important structures properties, researchers

focused their attention to develop various carbon nano-
structures for multifunctional applications [15–28].

2 Properties of graphene

The pristine graphene has numerous attractive properties
like high charge (electrons and holes) mobility (230,000
cm2$V–1$s–1) with the absorption of visible light up to
2.3%, thermal conductivity (3000 W$K–1$m–1), high
strength (130 GPa), and high theoretical specific surface
area (2600 m2$g–1) [29–31]. Also, graphene shows QHE
even at ambient temperature (minimum Hall conductivity 4
e2/h, even at zero carrier concentration).

2.1 Electrical properties

Pristine graphene is zero-gap semiconductor [31]. In
graphene, atoms of carbon are linked in hexagonal fashion
with sp2 hybridization. A remarkable fact about graphene is
the abnormal behaviour of its charge carriers, acting as
massless relativistic particles (Dirac fermions) which are
considered electrons without their rest mass. These
particles can be better described with a (2+ 1)-dimensional
Dirac equation. In general, the behaviour of Dirac fermions
is anomalous in comparison with electrons under a
magnetic field. For example, the strange integer quantum
Hall effect (IQHE) was noticed even at room temperature
[31–35]. Summary of unique capabilities of graphene
includes:

Fig. 1 Schematic diagram showing that graphene can be
wrapped to form 0D fullerenes, 1D CNTs, or stacked to form
3D graphite. Reproduced from Ref. [14].
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i) Electrons scattering is negligible up to micrometer
distance even at room temperature.
ii) Electrons travel ballistically.
iii) Electrons pass through the graphene sheet as if they

hold no mass, as fast as just one hundredth that of the speed
of light.

2.1.1 Band structure

Graphene exhibit zero bandgap and symmetrical structure.
Electrons in insulator or semiconductor are bound to an
atom and needs energy to jump the bandgap. But, due to
infinitesimal bandgap of graphene, electrons can move
easily and very fast. Also, by applying electric field
perpendicularly to the graphene, the bandgap symmetry
can be removed. Therefore, we can say that the graphene
exhibits tunable bandgap. It means bandgap of graphene
can be changed with variations of electric field (Fig. 2)
[36]. The capability to change a device’s energy gap could
lead to detectors that respond only to a particular
wavelength of light or light emitters whose colour is
controlled [36].

2.1.2 Graphene efficiently filters electrons according to the

direction of their spin

The movement of electrons can be controlled by applying
astrong magnetic field, in which electrons can travel only
along the edges, and are stopped from moving in the
interior. In addition, only electrons with one direction of
spin can travel in only one direction by the side of the edges
while electrons with the opposite spin are blocked.

2.2 Optical properties

It is clear from numerous reports that single layer graphene
absorbs 2.3% of incident light over a broad wavelength
range. The transmittance of graphene can be well described
in terms of fine-structure constants [6,31,37]. The absorp-
tion of light was found to increase linearly with the addition
of a number of layers (each layer absorption A = 1 – T = πα
= 2.3%, where α = 1/37 is the fine-structure constant). Also,
the study established that the zero bandgap, large-area
monolayer, and few-layer graphene field-effect transistors
(FETs) can be used as ultrafast photodetectors. The
electron–hole pairs are generated in graphene by absorp-
tion of light which recombine quickly (picoseconds),
depending upon the temperature as well as the density of
holes and electrons. However, both the holes and electrons
are separated by applying an external field, which
ultimately leads to the generation of photocurrent.
The unique properties of graphene are its ability to

provide high-bandwidth (> 500 GHz) light detection, wide
wavelength detection range, zero current operation, and
excellent quantum efficiency. By combining optical and
electrical properties of graphene many new phenomena
arise which are necessary for various photonics and
optoelectronics applications. Other interesting and possible
applications of graphene include its use as photodetectors,
touch screens, light-emitting devices, photovoltaics, trans-
parent conductors, terahertz devices, and optical limiters
[38].
The monolayer graphene can absorb light from 200 to

2500 nm; the peak at about 250 nm in the ultraviolet (UV)
region is ascribed to the interband electronic transition

Fig. 2 Schematic diagram showing the band structure of graphene in absence and presence of electric field: (a) monolayer and
(b) bilayer graphene. (c) When an electric field E is applied perpendicular to the bilayer, a bandgap is opened in bilayer graphene, whose
size (2Δ) is tunable by the electric field. Reproduced from Ref. [36].
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from the unoccupied p-states (Fig. 3) [39]. By the
application of electrical gating, their optical transition can
be altered, because due to electrical gating Fermi energy is
changed [31,40–41]. Therefore, by using electrical gating
the charge injection in graphene-based optoelectronics can
be controlled and help to develop tunable infrared (IR)
detectors, modulators, and emitters [40–41].

Photoluminescence (PL) is another important property
of graphene [31]. To make a luminescent graphene, the
suitable bandgap is induced in it by using two methods. In
the first method, graphene is cut into nanoribbons and
quantum dots. In the second method, the physical or
chemical treatment of graphene with different gases to
diminish the connectivity of the p-electron network is
involved.

2.3 Mechanical properties

Graphene exhibits high elastic modulus (0.5 TPa) and
tensile strength (130 GPa). The intrinsic superior mecha-
nical properties of graphene are determined by phonon
frequency variation on the application of tensile and
compressive loading [41–46]. To monitor the phonon
frequency under uniaxial tensile and hydrostatic stress,
Raman spectroscopy is commonly used [31,42–46].
Phonon softening is induced by tensile stress, due to
adecrease in vibrational frequency. However, phonon
hardening is caused by compressive stress (hydrostatic)
due to increase in vibrational frequency mode [31]. As a
consequence, in graphene, the information regarding stress

transfer to individual bonds is provided by the vibrational
frequency of phonon as a function of strain. Raman
spectroscopy is used to measure the tensile and compres-
sive strain in a graphene layer by calculating the variation
in the 2D and G peaks with the applied stress. A red shift
occurs due to increase in the strain and it also results in the
splitting of “G” peak [31]. For a minute strain of 0.8%, a
2D split was observed without any shoulder [42–46].

2.4 Thermal properties

Graphene has a vital role in electronic devices due to its
unique thermal properties [31]. This assists in thermal
management to enhance performance and reliability of
electronic components. In a recent work, it was found that
defect-free graphene exhibited the highest room tempera-
ture thermal conductivity (5000 W$K–1$m–1) [47]. In the
case of supported graphene, the conductivity was about
600 W$K–1$m–1. In various reports in the past, the
conductivity of graphene was not studied in depth.
However, the effect on conductivity using graphene as a
channel was first predicted by Klemens [48]. A novel
strategy followed to check the thermal conductivity of a
thin atomic layer of graphene is shown in Fig. 4 [49].

3 Synthesis methods of graphene

3.1 Exfoliation methods

Graphene is a unique nanostructured material that has
strong potential in applications such as in polymer
composites, conductive coatings and inks, fuel cells
batteries, catalysts and ultracapacitors. A large quantity
of graphene is thus required for fulfilling these goals.

Fig. 3 Schematic diagram showing the representative transmit-
tance of different graphene layers. UV-vis spectra roll-to-roll,
layer-by-layer transferred graphene films on quartz substrates.
The inset shows the UV spectra of graphene films with and
without HNO3 doping. Reproduced from Ref. [39].

Fig. 4 Schematic diagrams: (a) High-resolution scanning elec-
tron microscopy image of the suspended graphene flakes;
(b) Schematic of the experimental setup for measuring the
thermal conductivity of graphene. Reproduced from Ref. [49].
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Exfoliation techniques provide the solution for bulk
production of nano-graphene at a low cost. Moreover, the
exfoliation produced graphene has the lowest number of
defects and highest electron mobility. Various exfoliation
techniques have been discussed in the following subsec-
tions.

3.1.1 Mechanical exfoliation

In this process, a scotch tape is used to produce graphene in
bulk but the quality of graphene is not that high. A few
inches long (about 6 inches long) scotch tape is taken
(Fig. 5) [50]. The adhesive side of the tape is pressed onto
the highly ordered pyrolytic graphite (HOPG) for about 10
s. Then the tape is gently peeled away taking away a thick
layer of graphite sticking on it. The newly made surface of
tape with layers from HOPG is again pressed along the
pristine adhesive part of the remaining tape. This process
continues until the glassy surface of tape turn into dark and
gray. Si/SiO2 substrate softly pressed against the taped to
get the graphite layers transferred on its surface from the
tape surface. Graphene sheets of various thicknesses can be
produced by mechanical exfoliation method or by peeling
off layers from graphitic materials such as highly ordered
pyrolytic graphite, single-crystal graphite, or natural
graphite. Peeling and manipulation of graphene sheets
have been achieved through atomic force microscopy
(AFM) and scanning tunneling microscopy (STM) tips
[51–56].

3.1.2 Chemical exfoliation

This method constitute of two steps. In order to mitigate the

effect of interlayer vander Waal forces the interlayer
distance is to be increased. This is done by graphite
intercalation compounds (GICs) [57]. The GICs are then
exfoliated into graphene with single to a few layers by
rapid heating or sonication. GICs can be prepared by the
intercalation of alkali metal ions. Viculis et al. [58]
prepared potassium, cesium and NaK2 intercalated graphite
by reacting alkali metals with acid-intercalated exfoliated
graphite in Pyrex sealed tubes. GICs are then rinsed with
ethanol causing a vigorous reaction to yield exfoliated FG
(Fig. 6(a)) [58]. Direct exfoliation and noncovalent
functionalization and solubilization of graphene in water
are done by using the potassium salt of coronene
tetracarboxylic acid to yield monolayer graphene–coro-
nene tetracarboxylic acid composites (Fig. 6(b)) [58].
Stable high-concentration suspension of FG is then
obtained by direct sonication in ionic liquids.

3.1.3 Electrochemical exfoliation

The electrochemical exfoliation is an eco-friendly techni-
que for producing high-quality graphene. The electroche-
mical exfoliation of graphite because of ions present in the
solution produces the few-layer graphene (FLG) or
graphene oxide (GO) depending upon the nature of
electrolyte. The electrolyte is subjected to the requirement
of the oxidizing environment and more importantly on the
size of the intercalating ion. The framework consists of two
electrodes one of them being graphite or HOPG the other
can be Cu, Pt or even HOPG/graphite. Generally, �10 V is
applied for an unequal period of time. Due to the effect of
applied voltage, intercalating ions present in the solution
exfoliates the graphite into anodic few-layer graphene
(AFLG) by penetrating in between the sheets (Fig. 7) [59].
The need for negative voltage is to bring the intercalated
ions back into the solution along with the sheets, hence the
need of unequal application time for the voltages [59].

3.2 Epitaxial growth of graphene on SiC

The fundamentals of this methodology are based on the
differences between the vapor pressures. The vapor
pressure of silicon is higher, as a result on heating the
SiC wafer, Si evaporates leaving behind the graphene
layers on the substrate. The silicon carbide substrate is
heated at a temperature around 1200°C and the conditions
of the chamber are set accordingly. The Si atoms evaporate
due to thermionic emission leaving behind the carbon
atoms on the remaining substrate (Fig. 8) [60]. The final

Fig. 5 Schematic diagram showing steps of the mechanical
exfoliation of graphene from graphite using scotch tape:
(a) adhesive side of the tape is pressed onto the HOPG; (b) tape
is peeled away with graphite layer sticking on it; (c) newly made
surface is again pressed along the pristine adhesive; (d) Si/SiO2

substrate softly pressed against the taped to get the graphite layers.
Reproduced from Ref. [50].
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SiC substrate is covered with the carbon layers which can
be either monolayer, bilayer or multilayer graphene [60].

3.3 Hummers method

This method produces graphene by oxidizing graphite to
graphite oxide by using suitable oxidizing agents such as
KMnO4. The GO so produced is chemically reduced to get
graphene. The Hummers method introduces a way to get a
more stable GO colloidal solution. Ultra-sonication is used
for stabilizing the GO solution and enhancing the
exfoliation in the GO solution (Fig. 9) [61].

3.4 Reduction of graphite oxide

Chemical reduction of graphite oxide is one of the
established procedures to prepare graphene in large
quantities [62]. Graphite oxide, when ultrasonicated in
water, forms a homogeneous colloidal dispersion of
predominantly sufonated graphene oxide (SGO) in water.
Reduced graphene oxide (RGO) with properties similar to
that of graphene is prepared through chemical, thermal, or

Fig. 6 Schematic diagrams: (a) GICs prepared by the intercalation of alkali metal ions; (b) direct exfoliation and noncovalent func-
tionalization and solubilization of graphene by using the potassium salt of coronene tetracarboxylic acid (PCT). Reproduced from Ref. [58].

Fig. 7 Schematics of the exfoliation mechanism for the peroxide electrolyte. Reproduced from Ref. [59].

Fig. 8 Schematic illustration of the thermal decomposition
method. Reproduced from Ref. [60].
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electrochemical reduction pathways [63]. Hydrazine
monohydrate is one of the preferred options for reducing
aqueous dispersions of graphene oxide [64]. Other
reducing agents include NaBH4 [65], phenyl hydrazine
[66], hydroxylamine [67], glucose [68], ascorbic acid [69],
hydroquinone [70], alkaline solutions [71], and pyrrole
[72]. Electrochemical reduction is another means to
synthesize graphene in large scale [73–75]. The reduction
initiates at – 0.8 V and is completed by – 1.5 V, with the
formation of black precipitate onto the bare graphite
electrode.

3.5 Chemical vapour deposition (CVD)

CVD is one of the most efficient, inexpensive, and
pragmatic approaches for the bulk scale deposition of
reasonably high-quality graphene onto transition-metal
substrates such as Ni [76], Pd [77], Ru [78], Ir [79], and Cu
[80]. The working principle of process is that metal
absorption increases with increase in temperature and vice
versa. Exposure of transient metal substrate to hydrocarbon
at high temperature results in the absorption of carbon on it
and this is continued until carbon saturation is reached. On
cooling the substrate, the solubility of carbon in the
transition metal decreases and a thin film of carbon
precipitates from the surface. Different hydrocarbons like
ethylene, methane, benzene, and acetylene were decom-
posed on different transition-metal substrates for e.g. Co,

Au, Ni, Cu, and Ru [81]. A plasma-enhanced chemical
vapor deposition (PECVD) technique that makes use of
radio frequency is also used to synthesize graphene on a
variety of metal substrates such as Mo, Si, W, Zr, Cr, Ti, Ta,
Hf, Nb, stainless steel, SiO2, and Al2O3. The advantages of
this method are that energy consumption is decreased and
the formation of amorphous carbon or another type of
unwanted product are averted [82–84].

3.6 Unzipping multi-walled carbon nanotubes (MWCNTs)

Unzipping of MWCNTs can be performed by the
intercalation of lithium and ammonia followed by exfolia-
tion in acid and abrupt heating [85]. The product that
results will consist of a mixture of partially open MWCNTs
and graphene flakes. Unzipping of MWCNTs can also be
performed by the plasma etching of MWCNTs partially
embedded in a polymer film [86]. The etching procedure
basically opens the MWCNTs to form graphene. In a
different approach, MWCNTs were unzipped by a multi-
step chemical treatment, including exfoliation by concen-
trated H2SO4, KMnO4, and H2O2, stepwise oxidation using
KMnO4, followed by a reduction in NH4OH and hydrazine
monohydrate (N2H4$H2O) solution [87]. This new route of
unzipping MWCNTs to produce graphene opens the
possibilities of synthesizing graphene in a substrate-free
manner.
Advantages and disadvantages of techniques currently

used to produce graphene source are compared in Table 1
[88].

4 Applications of graphene composites

Graphene composite have various intended applications to
create unique and innovative materials. The possible
applications of graphene composite involve medical
implants, engineering materials for aerospace and renew-
able and many more. Graphene composites are of three
types namely polymer, metal and ceramic. But the most

Fig. 9 Schematic showing the steps in Hummers method.
Reproduced from Ref. [61].

Table 1 Advantages and disadvantages of techniques currently used to produce graphene [88]

Method Advantages Disadvantages

Mechanical exfoliation
� low cost and easy
� no expensive equipment needed

� uneven films
� labour intensive
� not suitable for large-scale production

Epitaxial growth
� most even films (of any method)
� large-scale area

� difficult control of morphology and adsorption energy
� high-temperature process

Graphene oxide
� easy to upscale
� versatile handling of the suspension
� rapid process

� fragile stability of the colloidal dispersion
� reduction to graphene is only partial
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interesting composite is the polymer graphene composite
as they generally do not involve high pressure and
temperature. The applications appear to be countless as
graphene polymers manifest to be flexible, light and
outstanding electrical conductor. These composites are
discussed in the following section.

4.1 Polymer–graphene nanocomposites

Graphene exhibits superior mechanical, gas barrier,
thermal, flame retardant and electrical properties which
can assist in enhancing the performance of polymers for
wider engineering applications. Various applications of
polymer–graphene nanocomposites in biomedical field are
investigated. Some of them are mentioned in Table 2 [89–
101]. Some examples of polymer-based graphene contain-
ing composites are listed below:
i) PVA/graphene nanocomposites
This type of nanocomposites are used as biocide

nanocomposites in food and drink package applications,
and they show antibacterial activity both gram positive and
gram negative bacteria [102].
ii) Polyaniline/graphene nanocomposites
In many studies, PANI/GN are synthesized by in situ

polymerizations for high-performance supercapacitors
[103–104].
iii) Epoxy/graphene nanocomposites
For heat dissipation, epoxy/graphene nanocomposites

are used as interface material. These films show high
transmittance, which is very useful in potential applications
like power-producing windows or metal-foil-supported
dye-sensitized solar cells. Also, these nanocomposites are
used for cryo-tank composite application [105].

4.2 Metal–graphene nanocomposites

Graphene is used as a reinforcement in metallic matrices
owing to its high tensile strength ≈ 130 GPa and Young
modulus Y ≈ 1 TPa [7]. Some of the examples of metal–
graphene composites are listed below:
i) Mg–graphene nanocomposites
Graphene nanoplatelets addition into Mg alloys like

Mg–1Al–1Sn alloy matrix leads to considerable improve-
ment in tensile strength of the resulting composite;
however, ductility was adversely affected [106]. The
targeted applications of these materials are in weight
critical sectors such as transportation sector.
ii) Al–graphene nanocomposites
Al–graphene nanocomposite shows tensile strength of

256 MPa and 13% elongation which are ~62% higher and
around 2 times lower than the strength of unreinforced Al
matrix (154 MPa) and elongation (27%), respectively.
Results of this study revealed that addition of graphene into
aluminum increases the strength appreciably and maintain
ductility exceeding 5% which is an acceptable norm for
engineering applications [107].
iii) Ni–graphene nanocomposites
Ni–graphene nanocomposites are used for hydrogen

storage with nickel (10 nm in size) uniformly dispersed
over a graphene substrate. This system exhibits attractive
features like high gravimetric density, ambient conditions,
and low activation temperature for hydrogen release [108].

4.3 Ceramic–graphene nanocomposites

The fascinating properties of graphene make it a suitable
candidate as advanced fillers in composite material.

Table 2 Applications of polymer–graphene nanocomposites in biomedical field [89–101]

Application Purposes Graphene/polymer composites used Refs.

Drug delivery � CPT delivery
� GO–PVA–CPT
� CNT–PVA–CPT
� PNI–PAM–GS

[89–90]

Gene delivery

� anticancer drug delivery
� DNA transfection
� CPT drug and report
� DNA delivery
� Si RNA and DOX delivery

� NGO–PEG
� PEI–GO
� GO–chitosan
� GO–PEI

[91–96]

Cancer therapy
� tumor ablation
� multifunctional cancer therapy
� hepatocarcinoma diagonosis

� PEG–NGS
� Ce6 loaded PEG–GO
� GO–PEG–FA/Gd/DOX

[97–99]

Bio-imaging � cell imaging
� NGO–PEG
� GO–PEI

[100]

Actuators � artificial muscles � graphene/PDMS [101]
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Integrating graphene into ceramic has considerable possi-
bilities in producing tough, strong and electrically
conductive ceramic composites which could further solve
extensive material related challenges in processing aero-
space, transportation, industries and military applications
[109–112].
The exceptional electrical and mechanical properties of

graphene deliver an enormous prospective for functional
and structural applications of graphene–ceramic compo-
sites such as low-temperature fuel cells [113], electronic
devices [114], surface renewable electrodes [115], hip-joint
prosthetics [116], energy storage materials [117].

5 Biocompatibility and toxicity of graphene

Due to the advantageous physiochemical properties,
ascendable production and extensive applications of
graphene, there has been an increasing interest to develop
nanoscale biocompatible graphene structure.
Zhang et al. compare the cytotoxicity of graphene and

single-walled carbon nanotubes (SWCNTs), where both
the materials were tested on pheochromocytoma (PC12)
cells at dosages from 0.1 to 100 g$mL–1. Lactase
dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) release assays
were used to estimate cell membrane disruption and the
mitochondrial toxicity respectively. Both graphene as well
as SWCNT presented a dose-dependent toxic response
after a 24 h exposure, and graphene induced greater
toxicity than SWCNTat lower concentrations, although the
opposite was observed at the higher concentration [118].
Also Wang et al. has synthesized graphene/chitosan

composite and this composite was found to be biocompa-

tible to L929 cells as shown by MTT chlorimetric assays.
Moreover, the absence of metallic impurities on graphene
sheets makes them potential applicant as frameworks for
tissue engineering [119].
Graphene and its other forms can pierce through the

physiological barriers or cellular structures by various
exposure methods or administration routes and enter the
body or cells which ultimately results in toxicity in vivo and
in vitro. The wavering administration routes and entry
paths, different tissue distribution and excretion, even
several cell uptake configurations and locations, possibly
can determine the degree of the toxicity of graphene-family
nanomaterials (GFNs) [120–122]. So to make them clear
may be helpful to better understand the laws of the
occurrence and development of graphene toxicity.

6 Graphene-based sensors

Graphene’s distinctive optical properties, exceptional
electrical conductivity, high thermal conductivity, appre-
ciative carrier mobility and density, large surface to volume
ratio and many other attributes makes graphene greatly
beneficial for sensor application. Due to these anticipated
properties of graphene, it will facilitate sensors to be
smaller and lighter, thus imparting countless design
opportunities. Also, they will be additionally sensitive to
identify smaller changes in matter making them more
sensitive; work more swiftly and eventually will be less
expensive than traditional sensors. Also, many nanocarbon
materials are used in sensor applications as described in
Table 3 [123–131].
Some of the graphene-based sensors are explained

below.

Table 3 Different nanocarbon materials used in sensor applications [123–131]

Nanocarbon material Analytes Method Sensor Sensing parameter Refs.

Carbon black ethanol vapors electrical resistance gas sensor sensitivity, 27.7% [123]

Carbon nanofibers ethanol vapors electrical resistance gas sensor sensitivity, 40% [123]

MWCNTs ethanol vapors electrical resistance gas sensor sensitivity, 47.4% [123]

SWCNTs DNAs DPV b) biosensor detection limit, 1.43 μmol/L [124]

Graphene uric acid amperometry biosensor detection limit, 0.132 μmol/L [125]

Buckypaper–SWCNTs glucose amperometry biosensor detection limit, 0.022 mmol/L [126]

Nitrogen-doped graphene uric acid DPV b) biosensor detection limit, 0.045 μmol/L [127]

Graphene–Pt ascorbic acid DPV b) biosensor detection limit, 0.03 μmol/L [128]

MWCNTs cholesterol amperometry biosensor detection limit, 0.2 mmol/L [129]

Graphene–Au nanorod NADH a) amperometry biosensor detection limit, 1.5 μmol/L [130]

SWCNTs dopamine DPV b) biosensor detection limit, 48 nmol/L [131]

a) NADH, nicotinamide adenine dinucleotide. b) DPV, differential pulse voltammetry.
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6.1 Graphene-based biosensors

The graphene-based materials have been implemented to
construct different types of biosensors based on various
sensing mechanisms including optical (fluorescence) and
electrochemical sensors [132]. Figure 10 illustrates differ-
ent representations of graphene-based electrochemical
sensors in biomedical applications [133]. Depending on
the specific working principle, graphene-based biosensors
either use their electrical properties (i.e. high charge-carrier
mobility), electrochemical properties (i.e. high electron-
transfer rates), or unique structure (i.e. atomic layer
thickness and high surface-to-volume ratio) for biomole-
cule detection [134]. Due to these advantages, graphene is
selected for synthesis of biological sensors with high
sensitivity, selectivity, and low detection limit. Using fast
electron transportation criteria of graphene, the tiny
biological information can be converted into an electronic
format, thus making the sensors with high sensitivity. In
general, biosensors are composed of two parts: a receptor
and a transducer. The receptor can be any material that can
interact with a target analyte. The highly sensitive
biological element acting as a receptor is connected to a

transducer, which acts on its part converting biological data
to electrical data. The transducer, in turn, connects to a
measuring device translating the electrical signal to a
measurable quantity. In graphene-based biosensors, gra-
phene is used as a transducer element.

6.2 Graphene-based gas sensors

Because of the absence of dangling bonds on the graphene
surface, the gaseous molecules cannot be easily adsorbed
onto its surface. The sensitivity of chemical sensor
responds according to the thin layer of receptor molecules.
Presence of certain polymer on graphene enriches its
sensitivity. The ability to detect any local small change in
electrical resistance depicts the power and efficiency of
sensor acting on a gas molecule adsorption. Graphene has
high electrical conductivity due to its unique structure and
low noise, making even small change catchable thus
proving its superiority over other material to be used in a
sensor. Chen et al. [135] demonstrated the possibility of
sensitive gas sensing with graphene materials. Chen et al.
designed their sensing device with the help of gold
interdigitated electrodes and aqueous GO suspension

Fig. 10 Graphene-based electrochemical sensors for DNA, protein and cancer cell detection. Reproduced from Ref. [133].
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[136] with both finger-width and interfinger spacing
(source–drain separation) of about 1 µm. A few drops of
the GO suspension were cast onto gold interdigitated
electrodes, and a discrete network of GO sheets was left
behind on the wafer after water evaporation. The working
principle of the sensing device is that the drain–source
channel becomes closed after GO is partially reduced by
low-temperature thermal treatments thus the conductance
of the device varies with exposure to various gases. Both
two-terminal direct current (DC) and three-terminal field-
effect transistor (FET) measurements were performed on
GO devices using a Keithley 2602 source meter (Fig. 11)
[135]. Electrical conductance of the GO device was
measured by ramping the drain-source voltage Vds and
simultaneously recording the drain-source current Ids to
evaluate the influence of thermal treatment on the device
characteristics.

6.3 Graphene chemiresistors as pH sensors

These were fabricated by Lei and co-workers using
graphene sheets produced by mechanical exfoliation and
platinum electrodes fabricated using focused ion beam
technique. Annealing was used to improve the electrical
contact. Results revealed that resistance of graphene device
increased with decreasing pH value (in the range of 4–10)
of the surrounding liquid environment [137].

6.4 Photodetectors based on graphene

Graphene and various other 2Dmaterials, such as transition
metal dichalcogenides, are quite intriguing building blocks

for optoelectronic applications with a strong focus on
various photodetection platforms [138–140]. The different
characteristics and adaptability of this material system
make them suitable for application in fields like ultrafast
and ultrasensitive detection of light in the ultraviolet,
visible, terahertz and infrared frequency. This detector
system can be upgraded by attaching to other photonic
components on the same material as well as with silicon
photonic and electronic technologies [141].

7 Graphene-based biosensor for health and
environmental monitoring

Due to the unique properties of graphene, it is expected soon
to become extensive in diagnostics and biosensors.
Considering the large surface area of graphene, it can
augment the surface loading of desired biomolecules. Also
the small bandgap and excellent conductivity, it is said to be
beneficial for conducting electrons between electrode sur-
face and biomolecules. Biosensors can be further used for
the detection of various analytes like hemoglobin, glucose,
cholesterol, glutamate and many more. Also to detect toxic
gases or organic pollutants in the environment graphene-
based sensors can be utilized. Some of the graphene-based
biosensors for monitoring health and environmental condi-
tion are explained in the next subsection.

7.1 Graphene-based DNA biosensors

In recent years, graphene and GO have emerged as a
distinctive platform for developing DNA-based biosensors,
given the DNA adsorption by detection of DNA hybridiza-
tion techniques [142–143] and fluorescence-quenching
properties of GO. Lin et al. [144] reported an electro-
chemical DNA biosensor in which the captured DNA was
immobilized on the surface of a graphene-modified glassy
carbon electrode (GCE) through p–p stacking. Gold
nanoparticles (AuNPs) modified with single nucleotide
probes were then cohybridized on the surface of GCE for
the detection of the targeted DNA sequence. Then, the
target DNA sequence and oligonucleotide probes-labeled
AuNPs were able to hybridize in a sandwich assay format
following the AuNPs-catalysed silver deposition. Owing to
the high DNA loading capability of graphene and the
different signal amplification by AuNPs-catalysed silver
staining, the resulting biosensor exhibited a good analytical
performance with a wide detection linear range from

Fig. 11 Schematic diagram of the RGO device. An RGO sheet
bridges the source and drains electrodes, which closes the circuit.
Reproduced from Ref. [135].
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200 pmol$L–1 to 500 nmol$L–1 and a low detection limit of
72 pmol$L–1.

7.2 Graphene-based haemoglobin (Hb) biosensor

Hb is the most important component in the blood for
transporting O2 and CO2 throughout the circulatory
system. Change of Hb concentration in the blood can
cause various disorders such asanemia, leukemia, heart
diseases, while its normal level displays the well-function-
ing of the organism. Xu et al. [145] fabricated a chitosan–
graphene (CS–GN) modified electrode for the electro-
analysis of Hb. The cyclic voltammogram (CV) of Hb at
the CS–GN/GCE exhibited well-defined redox peak when
compared to CS–GCE. Sun et al. [146] prepared a new
electrochemical biosensor using three-dimensional gra-
phene (3D-GN) as the substrate electrode by immobiliza-
tion of Hb on the electrode surface with a chitosan film.
This electrochemical process shows that a pair of well-
resolved redox peaks appeared on CV, illustrating the
realization of direct electron transfer of Hb.

7.3 Graphene-based glucose biosensors

Diabetes is critical diseases in the world and it is important
to make a quantitative determination of glucose levels in
the blood for the diagnosis of this disorder. Shan et al.
applied the first graphene-based glucose biosensor with
graphene/polyethyleneimine-functionalized ionic liquid
nanocomposites modified electrode that exhibited wide
linear glucose response (2–14 mmol$L–1, R = 0.994),
effective reproducibility (normal standard deviation of the
current response to 6 mmol$L–1 glucose at 0.5 V was 3.2%
for ten measurements), strong stability (response current+
4.9% after one week) [147]. Zhou et al. [148] produced a
glucose biosensor based on chemically reduced graphene
oxide (CRGO). This biosensor showed enhanced ampero-
metric signals for sensing glucose in the blood, wide linear
range (0.01–10 mmol$L–1), high sensitivity (20.21
µA$mmol–1$L$cm–2) and low detection limit of 2.00
µmol$L–1 (S/N = 3). Kang et al. explored the efficiency
of chitosan in dispersing graphene and constructed glucose
biosensors with the desired sensitivity. Chitosan helped to
form a well-dispersed graphene suspension and immobi-
lized the biomolecules, and the graphene-based biosensor
showed high sensitivity (37.93 µA$mmol–1$L$cm–2) and
long-term stability for measuring glucose. These investiga-
tions show great promise for graphene-based glucose
biosensors.

7.4 Graphene-based cholesterol biosensor

High cholesterol level in arteries leads to well-defined
health problems such as coronary heart diseases, cerebral
thrombosis and atherosclerosis [149]. Therefore, the
quantitative determination of cholesterol levels in the
arteries is clinically important. Cao et al. [150] explored an
electrochemical biosensor for detection of cholesterol by
using platinum-palladium–CS–GN hybrid (PtPd–CS–GN)
nanocomposites functionalized GCE with enhanced sensi-
tivity. The PtPd–CS–GN nanocomposite not only facili-
tated direct electron transfer from the redox enzyme to the
surface of the electrode but also improved the immobilized
amount of cholesterol oxidase (ChOx). Li et al. [151]
developed a novel cholesterol biosensor by immobilizing
ChOx on GCE functionalized by CS–GN nanocomposites.
The results of TEM and Fourier transform infrared
spectroscopy (FTIR) showed that the GO was successfully
prepared and deoxygenated.

7.5 Graphene in bio-FETs

FET-based biosensors rely on biorecognition events
between the probe and target biomolecules at the gate of
the FET [152–153]. In these devices, upon target–receptor
interaction, the electric charge distribution changes the
charge carrier density at the biorecognition layer and
modulates the channel conductance making them espe-
cially appropriate for sensing charged molecules like DNA
[154]. A FET immunosensor for the detection of
immunoglobulin G (IgG) was implemented using ther-
mally-reduced graphene oxide (TRGO) sheets decorated
with AuNPs-antibody conjugates using a simple method
that combines electrospray through electrostatic force
directed assembly [155]. This novel biosensor allowed
the specific detection of the target protein with a limit of
detection (LOD) of 2 ng$mL–1. The same authors have
recently developed other sensitive and selective FET
immunosensors using vertically-oriented graphene (VG)
sheets directly grown on the sensor electrode using a
PECVD method and labeled with AuNPs-antibody con-
jugates (Fig. 12) [156].

7.6 Graphene impedimetric biosensors

Electrochemical impedance spectroscopy (EIS) is a highly
sensitive technique suitable for integration with graphene
platforms. Recent advances in graphene-based platforms
for impedimetric genosensors and immunosensors were
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reviewed by Bonanni et al. [157]. They also provided an
overview on EIS and the preparation of graphene by
different methods. These graphene-based impedimetric
platforms have been developed mainly for detection of
DNA hybridization events. Bonanni et al. [158] combined
the advantages of using graphene-based platforms and the
EIS technique with the high selectivity of hairpin DNA
probes to develop impedimetric genosensors for the rapid
detection of single nucleotide polymorphism (SNP)
correlated to the development of Alzheimer’s disease
(Fig. 13) [158].

7.7 Detection of toxic gases in air

The detection of gas molecules is required in many fields
especially environmental monitoring due to their toxicity
and risk. Wang et al. [159] used partially RGO thin films
prepared by thermal treatment (at 500°C in a vacuum) as an
active sensing element to develop a hydrogen gas sensor.
The sensor exhibited good sensitivity (~4.5%), fast
response and recovery times (~20 and 10 s), respectively

to 160 ppm of hydrogen gas at room temperature. Mao et
al. [160] came up with a new gas sensor in which RGO
surface is covered with tin oxide nanocrystals (RGO–SnO2

NCs) showing enhanced NO2 but weakened NH3 sensing
compared with bare RGO (Fig. 14) [160].

7.8 Detection of heavy metal ions

Rapid and accurate captivity of metal-based contaminants
has utmost importance as these hazardous materials pose
risk for human health and environment. Sudibya and co-
workers [161] introduced a nanoscale FET sensor using
micropatterned, protein-functionalized RGO films as the
conducting or sensing channel. These RGO-FETs were
able to detect various metal ions (Ca2+, Mg2+, Hg2+, and
Cd2+) in real-time with high sensitivity via the change of
conductance caused by these metal ions addition. A more
sensitive voltammetric method for detecting Hg2+ was
presented by Zhou et al. [162] based on rational covalent
functionalization of GO with cysteamine through a
nucleophilic ring-opening reaction between the epoxy of
GO and the amino group of cysteamine in KOH solution
(Fig. 15) [161].
This sensor provided a LOD of 3�10–9 mol$L–1 and

demonstrated excellent selectivity towards Hg2+ in the
presence of a 200 fold higher concentration of Fe2+, Cu2+,
Zn2+, Co2+ and Mn2+.

7.9 Detection of organic pollutants

The phenolic compounds, among the organic pollutants,
are widely used as raw materials for pesticides, dyes and
cosmetics in chemical and pharmaceutical industries and
the maximum level permitted are defined strictly by the
wastewater discharge standard. For the detection of
phenolic compounds, Li et al. [163] constructed an
electrochemical sensor using TRGO as an electrocatalyst
for simultaneous detection of dihydroxybenzene isomers,
including resorcinol (RC), hydroquinone (HQ) and cate-
chol (CC). Regarding pesticides detection, the efforts are
focused mainly on organophosphate pesticides. Wang et al.
[164] self-assembled acetyl cholinesterase (AChE) on
nanohybrids of AuNPs/CRGO using as linker poly-
(diallyldimethylammonium chloride) (PDDA) which
apart from improving the dispersion of AuNPs stabilized
also the enzyme with high activity and loading efficiency.
The resulting biocomposites were utilized for the
ultrasensitive detection of paraoxon (LOD of 1.0�10–13

mol$L–1). Zhang and co-workers prepared another AChE

Fig. 12 Schematic of the VG-based FET immunosensor.
Reproduced from Ref. [156].

Fig. 13 Schematic of the protocol and Nyquist plots of the
graphene surface implemented in the presence of the probe,
complementary target, 1-mismatched sequence and a non-
complementary sequence. Reproduced from Ref. [158].
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biosensor synthesizing a reduced graphene oxide/Prussian
blue nanocubes (rGO/PBNCs) nanocomposite (Fig. 16)
[165]. The resulting rGO/PBNCs-based AChE biosensor
demonstrated a high electrocatalytic activity towards the
oxidation of acetylthiocholine and rapid response and high
sensitivity for detection of monocrotophos with a LOD of
0.1 ng$mL–1.

8 Summary

In this review an attempt is made to address the sustained
development and challenges with a wide scope of interest,

highlighting a fundamental understanding of the synthesis,
characterization, reduction of graphene and its potential
applications in various applications. Graphene exhibits
exceptional electrical, optoelectric, mechanical and thermal
properties and thus, has excellent potential to the scientific
community for its widespread applications in emerging
research areas of interest like transparent electrode, FET,
biosensors and energy applications. Simple and cost
effective methods have evolved recently enabling the use
of graphene and graphene-based materials in the applica-
tions that require a large amount of graphene. Readily
available functional groups set up to bind with various

Fig. 14 Schematic of (a) the novel gas-sensing platform of an RGO sheet decorated with SnO2 NCs and (b) of the sensor testing system.
Reproduced from Ref. [160].

Fig. 15 Schematic illustration of (a) protocols employed for functionalization of GO with cysteamine and (b) for Hg2+ determination.
Reproduced from Ref. [161].
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other nanostructures, drugs and biological molecules like
DNA, peptide, proteins, lipids etc. make GO as one of the
most suitable candidate for energy storage, electrochemical
devices, biosensors, catalysis, imaging/mapping of the
cancer cells, photo-thermal therapy, targeted drug delivery,
contamination purification and extraction devices for
chemical, biological, and environmental samples. Gra-
phene research and its applications are expected to expand
rapidly in the coming decade with a strong potential to
make a positive impact on our lives.
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