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ABSTRACT: Minimally invasive injectable self-setting materials are useful for bone
repairs and for bone tissue regeneration in situ. Due to the potential advantages of these
materials, such as causing minimal tissue injury, nearly no influence on blood supply,
easy operation and negligible postoperative pain, they have shown great promises and
successes in clinical applications. It has been proposed that an ideal injectable bone
repair material should have features similar to that of natural bones, in terms of both the
microstructure and the composition, so that it not only provides adequate stimulus to
facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory
biological environment for new bone to grow at the implantation site. This article reviews
the properties and applications of injectable bone repair materials, including those that
are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/
polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well
as the progress made in biomimetic fabrication of injectable bone repair materials.
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1 Introduction

Bones can easily suffer from defects or damages caused by
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osteoporosis, trauma, tumour, infection and other diseases,
and this has become one of the most devastating problems
in human health [1]. Traditional therapies used for bone
repairs rely on the implantation of bone grafts, which
involves the shaping of corresponding bone substitutes in
vitro and then their implantation through a surgical
procedure. Despite the satisfactory results that they
provide, these therapies can cause increased bone loss,
trauma for the surrounding tissues, and large surgical
wounds. A potential improvement over the traditional
therapies is to repair bones using an injectable material.
This type of materials can be injected into the damaged
tissues by an invasive technique and then mold to the shape
of the bone cavity in situ to set and fill in the defects.
Ideally, the injected bone repair material should be
administered through the percutaneous or small bone
window via precise positioning.
Injectable bone repair materials have gained much

attention in recent years due to their numerous potential
advantages, such as considerable intensity, steady degrada-
bility, minimal damages to tissues and blood supply at the
repair site, and great relief of patients’ suffering [2–4].
These materials can be used not only for prevention of
vertebral fracture, restoration of vertebral height and
treatment of osteoporosis, but also for secondary fracture
fixation and intramedullary fixation and bone defect and
tuberculosis repairs [4–7]. Although injectable bone
materials are a relatively new subject, it has become one
of the major research focuses in the field of artificial bone
repair material research. As the components and structure
of natural bone is often the inspiration for bone repair
material designs, this review begins with a very brief
discussion about the fundamental biology of the natural
bone. Then this article summarizes the recent progress
made in this field by particularly focusing on the properties
and applications of injectable bone materials, including
calcium sulfate, calcium phosphate, polymers, calcium
phosphate/polymer composites and other materials, to
orthopedics and bone tissue repairs, as well as biomimetic
fabrication of injectable bone repair materials.

2 The structure and biology of bone

Natural bone matrices are three dimensional organic–
inorganic composites with an intricate hierarchical struc-
ture [8–10]. The organic materials are composed of 90% of
collagen I with 10% of various glycoproteins and
proteoglycans. The inorganic material is mainly crystals

of hydroxyapatite (HA), which give the bone matrix its
stiffness [8]. The hierarchical microstructure of bone
matrix includes an orderly deposition of HA minerals
within type I collagen matrix. The crystallographic c-axis
of HA is oriented in parallel to the longitudinal axis of the
collagen fibril [11–13]. Figure 1 shows the seven
hierarchical levels of organization of natural bone [8].

As a surrogate of the natural bone, an ideal synthetic
injectable bone repair materials for orthopedic and dental
application should simulate both the components and the
structure of natural bone, moreover, this material should
have good biocompatibility, possess suitable working time,
suitable rheological properties for injection, exhibit desired
mechanical properties, degrade in a controlled manner with
resorbable degradation products, and be osteoconductive
[14].

Fig. 1 The seven hierarchical levels of organization of natural
zebrafish skeleton bone (Reproduced with permission from Ref.
[8]). Level 1: HA crystals and collagen fibrils with the triple helix
structure; Level 2: Mineralized collagen fibrils; Level 3: The array
of mineralized collagen fibrils; Level 4: Two fibril array patterns
of organization found in the bone family of materials; Level 5:
The lamellar structure in one vertebra; Level 6: A vertebra; Level
7: Skeleton bone.
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3 Current injectable bone repair materials

At present, injectable bone repair materials are mainly
divided into the following categories: polymer-based bone
materials, calcium phosphate-based bone materials, com-
posite calcium phosphates-polymer-based bone materials,
and calcium sulfate-based bone materials. These different
categories of bone repair materials will be individually
introduced and discussed.

3.1 Polymer-based injectable bone repair materials

Polymeric materials that have been used for bone repairs
are usually those, either natural or synthetic, with favorable
biocompatibility. Examples of naturally occurring biopo-
lymers used include chitosan, alginic acid and hyaluronic
acid, and some of the synthetic polymers are polyesters and
polymethylmethacrylate (PMMA).

3.1.1 Injectable natural polymer bone repair materials

Chitosan, alginic acid, and hyaluronic acid (Fig. 2) are
natural polysaccharides which are biodegradable and
biocompatible. Furthermore, chitosan has multiple free
amino groups, whereas alginic acid and hyaluronic acid
have multiple carboxyl groups, which makes these
polymers easily modified with all kinds of molecular
species for the purpose of tuning and improving their
physical, chemical and biological properties. Conse-
quently, chitosan, alginic acid, and hyaluronic acid are
among the most investigated molecular scaffolds for the
development of novel injectable bone repair materials. For
example, genipin-crosslinked chitosan has been developed
as injectable tissue-engineering scaffold materials and has
been used to load live cells [15]. Hydrogels prepared from
chitosan derivatives and poly (vinyl alcohol-dimethacry-
late-dimethylacrylamide) obtained by photopolymerization
have also been used as injectable bone repair materials.
Cell culture results showed that this material was good in
promoting the cell attachment and proliferation [16].
Alginate has been used not only to encapsulate adipose
tissue-derived stromal cells for bone repairs [17] but also to
combine with collagen and physiologically active peptides.
These composites had improved osteogenic ability [18].
Hydrogels formed by crosslinking hyaluronic acid and
polyvinyl alcohol had good osteogenic property and
degradability as injectable bone repair material [19].
Moreover, with barium sulfate as radiopaque agent and
HA as radiopaque and bioactive agent, hyaluronic acid was

combined with PMMA to create injectable low modulus
bone cement for the treatment of osteoporosis [20].

3.1.2 Synthetic polymer-based injectable bone repair

materials

Polyesters are a class of polymers derived from the
polymerization of organic acids with hydroxyl terminated
oligomers. The alternation of different segments in the
prepared block co-polymers can provide unique physical,
chemical, and biological properties. Many types of
polyesters are biocompatible, thus they are good candidates
for the development of novel synthetic polymer-based
injectable bone repair materials [14,21–24].
Poly(propylene glycol-co-fumaric acid) (PPF) is an

unsaturated polyester (Fig. 3(a)) that can be crosslinked
in the presence of various fillers and solvent vehicles to
yield cements or fillers. PPF filled with calcium gluconate/
HA can be fabricated into injectable and absorbable bone
materials by crosslinking in situ. The materials had
injectable viscosity and reasonable working time (6–7
min), hardening time (10–12 min) and osteoconductive
property as revealed in the rat femoral osteotomy model
[21]. They can also turn into porous materials with good
osteo-induction activity when solidified in the sites of
damaged tissues [22]. Fluid triblock poly(lactide-block-
propylene glycol-block-lactide) dimethacrylate (Fig. 3(b))
was developed as drug-loaded injectable bone repair
materials, whose drug release rate could be regulated by
adjusting the lengths of lactic acid or propylene glycol

Fig. 2 The structures of chitosan, alginic acid, hyaluronic acid
and genipin.
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blocks [23]. An in situ crosslinkable, biodegradable,
methacrylate-encapped porous bone scaffold composed
of D- and L-lactide, ε-caprolactone, 1,6-hexanediol and
poly(orthoesters) was developed for bone tissue regenera-
tion, which showed excellent biocompatibility and moder-
ate osteoconductive properties, while adding α-TCP could
improve its osteoconductive properties. This material also
had the potential as a carrier for bone healing promoter
substances [24].
Since the degradation products of polycarbonate-based

polymers are less acidic than that of the conventionally
biodegradable polyesters, such as poly(lactic acid), the
former are considered to be more biocompatible. However,
most of these polymers are hydrophobic and hence degrade
slowly. Incorporating unsaturated groups or hydrophilic
segments into polycarbonates can improve its hydrophili-
city, degradation rate, mechanical properties, and increase
reactive sites for implanting and crosslinking reactions
[14]. Due to these desirable properties, a series of
injectable, biodegradable, and in situ crosslinkable poly-
carbonate-based polymers have been developed, which
include poly(hexamethylene carbonate-fumarate)
(PHMCF, Fig. 3(c)), poly(hexamethylene carbonate)
diacrylate (PHMCA, Fig. 3(d)), and their amphiphilic
copolymers with polyethylene glycol (PEG), poly(ethylene
glycol fumarate-co-hexamethylene carbonatefumarate)
(PEGF-co-PHMCF, Fig. 3(e)). These polymers have
controlled hydrophilicity, biodegradability, and mechanical
properties [14].
Hydrogels are networks of hydrophilic polymers retain-

ing a large amount of water. In their hydrated form,
hydrogels can transport nutrients similar to native tissues,
which can be further augmented with biochemical cues to
improve the cellular migration and survival after implanta-
tion [25]. An example of injectable and biodegradable
hydrogels is oligo(poly(ethylene glycol) fumarate), which
can be synthesized from fumaryl chloride and PEG. This
material can form a hydrogel network by the crosslink of
fumarate double bonds in the macromer chains [26]. These
hydrogels can encapsulate mesenchymal stem cells
(MSCs) for osteochondral repair [27]. However, develop-
ing an injectable biomaterial for the encapsulation of viable
cells presents a great challenge because of the direct
exposure of cells to reactant, products, and so on. To
achieve clinical application, additional challenges such as
cell viability and storage stability must be considered [25].
Some other polymers with various characteristics have

also been developed as injectable bone repair materials,
including poly(N-isopropylacrylamide-co-vinylphospho-

nic acid)-based thermo-responsive hydrogel systems [28],
poly(aldehyde guluronate) hydrogels [29], the copolymer
of poly(lactic acid) and poly(glycolic acid) (PLA/PGA)
[30], polyethylene oxide [31], arginylglycylaspartic acid
(RGD)-modified PEG [32] and hydroxypropyl methylcel-
lulose polymer [33].
Although many polymers have been developed as

injectable bone repair materials, most of them are still at
the research stage. Among these materials, PMMA-based
(Fig. 3(f)) implant is one of the most widely studied, and
they have also been utilized in clinic owing to their fast
setting property and appropriate biocompatibility. More-
over, modifications of PMMA-based bone repair materials
have been explored to improve their performance in clinic
applications. For example, the fatigue strength of PMMA
used for vertebroplasty and kyphoplasty could be adjusted
by regulating the solid/liquid ratio of injectable PMMA
paste [34]. The property and function of PMMA-based
materials could also be improved by incorporating HA
containing strontium into PMMA [35]. Putting barium
metasilicate and strontium metasilicate into PMMA
improved the mechanical property and injectability of
these materials [36]. With methyl methacrylate and N,N-
dimethyltoluidine as the liquid phase, benzoyl peroxide
and antibiotics as the solid phase, and bismuth salicylate as
the radiopaque agent, injectable crylic acid-based bone
cement loaded with antibiotics was developed [37].
Although these modified PMMA materials have improved
performances to different extents, there are still limitations
in their clinical applications due to the shortcomings of
PMMA [38–40]. For example, it has strong exothermic
effect (up to 40°C–100°C) when it is solidified, which
could easily burn the tissues near the implanted site,
especially the nerve roots and the spinal cord. This can also
cause burns to the vertebral bone cells to influence the final
healing of fracture. PMMA may also release toxic residual
monomers that cause hypotension or fat embolism. More-
over, PMMA is lack of bioactivity, bonding ability to the
surrounding tissues, osteoconductivity, and biodegradabili-
ty, and it can result in inflammation as a foreign material at
the implanted site. Therefore, many people disapprove
treating vertebral diseases by using PMMA, except for the
palliative treatment of vertebral metastatic tumors.

3.2 Calcium phosphate-based injectable bone repair

materials

Calcium phosphate has been developed as an in situ self-
setting bone cement after its hydration and hardening
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Fig. 3 The molecular structures of some synthetic polymer-based injectable bone repair materials: (a) PPF; (b) poly(lactide-block-
propylene glycol-block-lactide) dimethacrylate; (c) PHMCF; (d) PHMCA; (e) PHMC, PEG and PEGF-co-PHMCF; (f) PMMA.
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characteristics were discovered by Chow et al. [41–42]. It
can be solidified and shaped freely in the damaged tissue
site in the normal environment and under the normal
temperature of human body, and eventually converted into
HA. Owing to its good bioactivity and biocompatibility,
calcium phosphate has satisfactory application to the
therapy of bone tissue diseases, such as treatment of lateral
tibial plateau fracture [43], enhancement of internal
fixation of femoral neck fracture [44], joint internal fixation
[45], maxillary repair [46], alveolar ridge augmentation
[47], bone defect repair, and so on. It can also be used as a
drug carrier. For example, controlled release of cephalos-
porin antibiotics was achieved by mixing the antibiotics
with the calcium phosphate cement and adjusting the
cement pore size, and neither the percent conversion of
calcium phosphate to apatite phase nor the drug activity
was affected [48].
Due to the many advantages of calcium phosphate as

bone cement, such as free shape, in situ self-setting
property, good biocompatibility and gradual degradability,
it has the potential to be developed into a series of new
injectable bone repair materials. Because biocompatible
HA as one of the main components of natural bones can
effectively promote osteoinductive activity, the application
of injectable calcium phosphate bone cements transforma-
ble into HA can lead to revolutionary therapies for bone
defects. Nonetheless, the calcium phosphate bone cement
does have defects such as easy collapsibility in body fluids
and poor degradability and mechanical properties, so it is
necessary to improve these properties of the new injectable
calcium phosphate bone cements in order to make them
applicable in clinic.
At present, there are many reports on using calcium

phosphate as injectable bone cement. Its injectability can
be improved by adjusting the rheological behavior of
concentrated calcium phosphate cement slurry [49]. The
pore-forming property of calcium phosphate cement could
be enhanced by using acetic acid and citric acid as pore-
making agents [50]. The setting time of calcium hydrogen
phosphate was shortened upon adding sodium phosphate
as a setting accelerator, and the refrangibility and
mechanical property of calcium hydrogen phosphate
were significantly improved by adding PMMA [30,51].
The HA and β-calcium phosphate complex was developed
as an injectable, bone marrow-containing, and two-phase
bone repair material with improved osteoconductive
property [52]. In vivo histological studies have also
demonstrated that nanocrystal HA has better osteogenic
property and vascular regeneration performance [53].

It has been found that the bone repair ability of the
calcium phosphate cement could also be improved by
adding other elements or components. For example, adding
calcium carbonate could improve the osteogenic property
[54], and the addition of calcium silicate could promote
material mineralization and cell proliferation on the
material [55]. Calcium phosphate loaded with zinc element
could maintain zinc release for a long period, which can
increase the bone mineralization density and be especially
useful in the treatment of zinc-deficient bone defects [56].
Calcium phosphate loaded with magnesium, zinc and
fluoride elements had increased bone mineralization
density and mechanical strength [57]. Adding magnesium
phosphate not only improved the injectability, setting time,
and mechanical property of materials, but also modified
their degradability [58]. The addition of hexadecyl
trimethyl ammonium bromide led to macroporous
injectable bone repair materials [59], which made it easy
for bone tissues to grow into it and to integrate with the
material [60]. The calcium phosphate cement containing
strontium carbonate had better injectability and compres-
sive strength, which had an effect on the distribution of
pores in the cement [61], whereas bioactive HA bone
cement containing strontium element with processed
surface by methyl methacrylate had improved mechanical
properties [62]. The mixture of calcium phosphate and
calcium sulfate had not only good injectability, appropriate
setting time and mechanical property but also improved
degradability and osteogenetic ability [63].

3.3 Calcium phosphate-polymer composites as injectable

bone repair materials

Natural bone matrices are complex tissues, which are
composed of organic matrices with deposited HA crystals.
Introducing polymer materials into calcium phosphate can
mimic natural bones and improve the performance during
bone repair. Combining calcium phosphate or biphasic
calcium phosphate with polycaprolactone (PCL) [64],
acrylic acid [65] or hydroxypropyl methyl cellulose [66–
67] could improve their mechanical and other properties.
Compared to macroporous biphasic calcium phosphate, the
composites of hydroxypropyl methyl cellulose and calcium
phosphate as injectable bone materials had improved
biological activity at the early implantation stage. The
material micropores between the crystal particles of
biphasic calcium phosphate and hydroxypropyl methyl
cellulose could help the permeation of body fluids into the
materials and promoted angiogenesis and three-dimen-
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sional cell migration, growth, and new bone generation
[68]. The poly(propylene fumarate) and calcium phosphate
composites as injectable bone materials can be used for the
treatment of femoral head necrosis, although poly(propy-
lene fumarate) has some toxicity. Both the biocompatibility
and the mechanical property of the composites were
enhanced with the increase of calcium phosphate content in
the composites [69–70].
The calcium phosphate and natural polymer complexes,

such as the composites of HA and collagen prepared by the
sol-gel method [71] or by collagen coating or HA capsules
[72] had additional advantages as injectable bone repair
materials due to the inherent biocompatibility of natural
polymers. Introduction of calcium alginate into the HA-
collagen composites could modify their injectability and
setting times [73]. The composites of β-calcium phosphate
and collagen loaded with fluvastatin were used for vertical
bone augmentation [74]. The addition of recombinant
human platelet-derived growth factor into the collagen-β
tricalcium phosphate composites could accelerate fracture
repair [75]. The calcium phosphate-gelatin composites had
good osteogenic properties and enhanced the mechanical
strength of new bones, while bone remodeling was
improved with the addition of transforming growth
factor-β1 (TGF-β1) [76]. Adding hyaluronic acid into
calcium phosphate not only shortened the setting time but
also improved the physicochemical and biological proper-
ties, such as the anti-collapsibility, mechanical property,
degradability and bioactivity [77–78]. Compared to
calcium phosphate approved by U.S. Food and Drug
Administration (FDA), the calcium phosphate and chitosan
composites had comparative or better mechanical proper-
ties, biocompatibility and osteogenic properties [79]. The
β-calcium phosphate particle-fibrin-thrombin gel compo-
sites are another class of promising injectable bone repair
materials, in which calcium phosphate particles are
distribute in fibrin gel. The elastic modulus and bioactivity
of these materials were improved with the increase of
calcium phosphate content in the composites [80].
In short, the synergistic effect of calcium phosphate and

polymers can help overcome their respective limitations as
bone repair materials. Consequently, the calcium phos-
phate-polymer composites are becoming one of the most
promising research directions.

3.4 Calcium sulfate-based injectable bone repair materials

Calcium sulfate is considered as one of the most promising

bone graft substitute materials because of its good
biocompatibility, degradability and no irritation to the
surrounding tissues, thus it has been studied and used for
filling bone defects for a long time [81–82]. The calcium
sulfate used in clinic is α-calcium sulfate hemihydrate
(CSH) that has intact crystal structure and good plasticity
and in situ self-setting properties. In particular, when mixed
with water, CSH is converted into calcium sulfate
dihydrate (CSD) with high density and strength. In the
course of conversion, the material can be shaped into
different forms, which are very suitable for filling or
repairing bone defects. At present, calcium sulfate has been
approved by both FDA and Conformite Europeenne (CE)
as injectable bone materials in wide clinic use. In the
treatment of osteoporosis, calcium sulfate can enhance the
fixation of internal bone nails, which reduces the risk of
graft failure [83]. In the treatment of aneurysmal bone cyst,
calcium sulfate can promote new bone formation with its
own degradation [84]. It also has good effect in the
treatment of tibial plateau fracture [85].
Although calcium sulfate has many advantages as bone

repair materials, it also has some problems, such as too
rapid degradation and lack of osteoinductive activity.
Whereas future studies should address these problems so as
to match the degradation rate of calcium sulfate with the
new bone formation rate and to improve its osteoinductivi-
ty, newly designed calcium sulfate-based bone materials
should also have improved operability, injectability,
mechanical properties and biocompatibility, for minimally
invasive treatment of bone trauma.
At present, many efforts have been devoted to improve

the properties of calcium sulfate by adding other elements
or components. When calcium sulfate and calcium
phosphate are mixed together, the resulting materials
have suitable injectability and mechanical properties,
adjustable setting time, and good ability to promote new
bone formation [58]. Modifying the injectable calcium
phosphate-calcium sulfate composite with iron ion could
further improve the injectability and mechanical properties,
and the resulting materials could be used to treat spinal
diseases caused by osteoporosis [86]. The properties of
calcium sulfate may also be improved by combining with
polymers. The poly(lactic-co-glycolic acid) (PLGA)-poly-
vinyl alcohol (PVA)-calcium sulfate-cellulose ether com-
posites were developed as injectable carriers for the
delivery of growth factors in the treatment of orthopedic
and periodontal diseases [87]. Injectable bone materials
prepared by using citric acid and chitosan as the liquid
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phase and calcium phosphate and calcium sulfate hemi-
hydrate as the solid phase had much improved injectability,
crystallinity and mechanical properties [88].

4 Biomimetic injectable bone repair
materials

An ideal bone repair material should resemble natural
bones in both the composition and the microstructure. To
achieve such materials, much effort has been attempted by
employing the biomimetic strategy in vitro. Biomimetic
bone repair materials with certain 3-dimensional (3D)
structures can be prepared via self-assembly of proper
materials, such as assembly of biomimetic mineralized
collagen from collagen triple helices and nano-HA [89].
The crystallographic c-axis of nano-HA is oriented in
parallel to each other and to the longitudinal axis of
collagen molecules and fibrils in which they are located.
The deposited collagen fibrils then align in parallel to each
other, assembling into mineralized collagen fibers, which
have similar hierarchical microstructure and main chemical
components as those of natural bones. This has been
verified by both conventional and high-resolution trans-
mission electron microscopy (HRTEM) (Fig. 4) [89].
Figure 5 shows the schematic depiction of the self-
assembled nano-HA/collagen composites comprising hier-
archical microstructure. The lowest level of this hierarchi-
cal structure is the organization of HA crystals and collagen
fibrils with the triple helix structure of molecule. The
collagen fibrils are formed by self-assembly of the triple
helix structure of collagen molecule, and the HA crystals
are deposited initially in the gap zones between the
collagen fibrils. The second level of the hierarchical
structure is the formation of the collagen fibrils with HA
crystals growth on these fibrils. The c-axes of HA crystals
are oriented along the longitudinal axes of collagen
molecule and the fibrils. This organization implies that
the nucleation and growth of HA crystals on these fibrils
are controlled by the fibrils. The third level of the
hierarchical structure is the organization of the mineralized
collagen fibrils that are aligned in parallel to each other to
form mineralized collagen fiber bundles [8,89].
Studies have shown that biomimetic mineralized col-

lagen is an excellent bone repair material with good
biocompatibility and osteoinductivity [8,90], and it has
already been successfully utilized in tens of thousands of
cases in clinic, including different kinds of hard tissue
repairs, such as bone defect, lumbar and neck hurt, and so

on. In all these cases, the wounds heal and no abnormity
has been found with local and systematic examinations
during long-term follow-up [8]. However, the present
implants of bone repair material lack handling properties
due to its solid-preformed block form and a lack of the
desired shapes. Surgeons have to match the surgical sites
with the implants, which can lead to increased bone trauma
to surrounding tissues and longer surgery time. To
overcome the problems, CSH as a setting agent was
introduced into the mineralized collagen to explore an
injectable bone repair material with good injectability and
self-setting property [91]. The resulted composites pos-
sessed good biocompatibility, mechanical property, and
osteoinductivity [91–93]. Cells interacted with them well,
and moreover, multiple layers of cells could be formed on

Fig. 4 Hierarchical structure of biomimetic mineralized col-
lagen: (a) long arrow indicates the longitude direction of collagen
fibril, and two short arrows indicate HA nanocrystals; (b)
mineralized collagen fibrils; (c) mineralized collagen fibers.
(Reproduced with permission from Ref. [89])

Fig. 5 Scheme of the hierarchical structure of biomimetic
mineralized collagen. (Reproduced with permission from Ref.
[8])
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the material (Fig. 6). These results imply that the
biomimetic materials favor cell adhesion and proliferation.
Figure 7 shows the histological hematoxylin and eosin
(HE) staining results of this material implantation into a
bone defect. It is clear that the bone defect was gradually
repaired 12 weeks later. This means that the material could
provide a suitable biological environment for new bone
growth at the implant site. By combining with minimally
invasive surgical techniques, the material can be developed
into an excellent injectable bone repair material, which will
not only mold to the shape of the tissue cavity by setting in
situ after injection, but also decrease the surgery time,
reduce trauma, decrease the size of the scars and relieve the
suffering of patients [91]. The patient can also achieve
rapid recovery in a cost-effective manner, so to greatly
improve the patient's quality of life. Therefore, biomimetic
materials are one of the most candidates for injectable bone
repair materials.

5 Summary and outlook

The field of injectable bone repair material development
has witnessed great progress in recent years. Despite that,
many of the materials still have problems that restrict their
clinical applications. For instance, although PMMA and
other synthetic polymer-based materials have already been

utilized clinically, their strong exothermic effect upon
solidification can burn the surrounding tissues and affect
bone healing. Moreover, many of these materials can
release toxic residual monomers that may cause hypoten-
sion or embolism, or lack osteoconduction, biodegrada-
bility, and osseointegration properties, forcing them to exist
in the body as foreign materials that can cause inflamma-
tory responses. Some of the problems of calcium phosphate
as a bone repair material are its easy collapsibility in body
fluids, poor mechanical properties, low porosity, and slow
degradability. Potential solutions to overcome these short-
comings of calcium phosphate are to modulate its proper-
ties via adding other components or to develop nano-HA
and nano-HA-based organic-inorganic hybrid materials.
The use of nano-HA may improve their degradability and
their binding to surrounding tissues. The synergistic effect
of organic and inorganic materials may enhance the anti-
collapsibility, mechanical property, and porosity of the
resulting hybrid materials. The drawbacks of calcium
sulfate as a bone repair material are its relatively rapid
degradation, easy collapsibility in body fluids, and the lack
of osteoinductivity. Future research should focus on how to
improve its degradation, mechanical, and osteoinductive
properties, and in the meantime its injectability [94].
Clearly, a universally useful strategy to overcome the
shortcomings of individual materials is composite materi-
als, which have shown promising properties in many cases.
While composite materials can be realized by combining
inorganic materials and polymers, including both natural
and synthetic polymers, and other components, the
physical, chemical, mechanical and biological properties
of the resulting composites can be further modified and
improved through careful design and revision of the
material composition and other parameters.
Despite some advantages of the manmade bone repair

materials, the best bone implant material used in clinic is
still autologous bone, which has widely been accepted as
the gold standard for the treatment of bone defects.
Therefore, biomimetic bone materials mimicking both the
composition and the 3D structure of natural bones have
great promises and are the potentially fruitful direction of
injectable bone repair materials. These materials should be
adequately integrated with the encoded spatial and
temporal cues of the extracellular matrix (ECM), which
will possess proper physical, chemical, mechanical and
biological properties similar to that of the host micro-
environment so as to promote cell attachment, prolifera-
tion, and bone repair or regeneration.

Fig. 6 SEM results of 2-day cultured marrow stromal cells on
injectable bone repair materials: (a) interaction between cell and
materials; (b) interactions between cell and cell on the materials.
(Reproduced with permission from Ref. [91])
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Bone defect-related infections such as osteomyelitis are
quite common in clinic, which seriously affect osseointe-
gration and are usually regarded as contraindications for
bone implant. Conventional treatments such as surgical
debridement and suction irrigation can only control but not
treat local infections [95]. Therefore, local delivery of
antibiotics is desirable in treating osteomyelitis or
preventing contaminations. A number of studies have
reported using bone substitutes to deliver antibiotics locally
for open fractures, infection prevention, and osteomyelitis
[96]. These bone substitutes include calcium sulfate,
calcium phosphate and biodegradable polymers, synthetic
or natural, such as PLA, PGA, collagen and chitosan [97–
98]. Therefore, antibiotic-loaded injectable bone repair
materials are also becoming more and more important [98–
100].
In brief, injectable bone repair materials have already

shown great promises and successes in clinical applications
owing to the advantage of little tissue damage, easy
handling, and few complications after surgery. All the
same, there are some shortcomings to restrict the further
development and applications of injectable bone repair
material, especially the urgent issues of improving bone
repair capacity and the cytocompatibility of materials.
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