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For over a century, chemical synthesis has played an
essential role in the structural assignment of natural
products. With the development of characterization
instrumentation and methods [1], such as nuclear magnetic
resonance (NMR), high-resolution mass spectrometry,
X-ray crystallography etc., natural product chemists view
synthetic chemistry more as an assistive technology and
less as a core competence. Contrary to this opinion, the
development of synthetic chemistry will continue to be
critical in the structural evaluation of natural products. Two
comprehensive reviews on natural products with revised
structures have already been published [2,3]. Many natural
products had their structures reassigned, in particular their
stereochemical configurations, by total synthesis in 2019
[4–13]. This paper covers some selected examples.
Monocillin VII. Monocillin VII was isolated in 2017

from the rice-grown cultures of a Paecilomyces sp.
SC0924 [14]. Key structural elements include a
b-resorcylate and a 12-membered macrolactone. The first
total synthesis of the monocillin VII was completed by the
Mohapatra’s group [15] in which the proposed structure of
the natural product was synthesized (Scheme 1). The
approach included Sonogashira coupling between 1 and 2,
dicobaltization, which change geometry of alkyne and
improve the macrolactonisation, and Au-catalyzed hydra-
tion, to form the proposed Monocillin VII (4b). Unexpect-
edly, the synthetic compound showed deviations from the
product in the 1H NMR and 13C NMR spectra and optical
rotation. They suggested a new revised structure and
synthesized the 10′S-isomer by a similar route. Compar-
ison of their 1H and 13C NMR data with the published data
for the natural product allowed correction of the originally
assigned structure.
Biemamides B and D. Biemamides B and D were

isolated in 2018 from Streptomyces sp. [16]. These natural
products contain a pyrimidine core. The structure was

originally assigned at C5 to the R absolute configuration.
The first synthesis was published by the Ha group [17] and
the synthetic compounds were found to be enantiomeric to
the natural products (Scheme 2). The route began with a
regio- and stereo-selective ring opening of the azididine 5
followed by amidation, cyclization to give the pyrimidi-
nedione 8, which was reduced to free amide and converted
to final product ent-8a and ent-8b. The specific rotation
and the electronic circular dichroism spectrum of the
synthetic compounds where opposite in sign to the natural
products. This resulted in the revision of the absolute
configuration to (–)-5S for both compounds.
Citrafungin A. The alkyl citrate natural product

citrafungin A was first isolated in 2004 from the fungal
sterile mycelium (MF6339) [18]. The absolute configura-
tion of the core of the originally proposed structure was
assigned as 3R, 4R, 6R and this was synthesized by several
different groups [19–21]. However, the specific rotation
[a]D = +3.2, (c = 0.25, MeOH) [20] did not match well to
that reported and the configuration was then reassigned as
3S, 4S, 6S in line with all the other alkyl citrates [22].
Recently, Rizzacasa and co-workers reported the synthesis
of the revised structure of citrafungin A (3S, 4S, 6S) and its
degradation product 12 (Scheme 3) [23]. The synthesis
involved a formal [2+ 2] cycloaddition and cascade
rearrangement to rapidly access the citrate moiety. The
spectral and chiroptical data of the diacid degradation
product 12 matched that reported for the natural product
and this proved those the absolute configuration of the core
was opposite to that originally assigned. The intermediate
11 was then converted into the natural product 13a.
Harziane diterpenoid. The unnamed harziane diterpe-

noid 19a was isolated in 2014 from a Trichoderma
symbiont of Taxus baccata [24]. The structural elements
included the unique and caged 6-5-7-4 carbon skeleton.
The first racemic total synthesis was completed by the
Carreira group (Scheme 4) [25]. They also suggested that
the original assignment at C9 of the natural product was
incorrect and then completed an synthesis of the original
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19b and revised structure 19a to support this reassignment.
The carbon skeleton was formed by a sequential
Au-catalyzed cycloisomerization to give the cyclobutane
15, intramolecular imine aldol condensation of 16 and
ketoaldehyde ring expansion. The late-stage addition or
Mukaiyama hydration at C9 led to the two different
epimers at C9. The comparison of the spectral data proved
that the epi-C9 alcohol 19a is the correct structure.
(+)-Marineosin A. Marineosin A was isolated from a

marine-derived Streptomyces sp. CNQ-617 in 2008 [26].
Due to its novel structure and biological activity, several
groups published synthetic studies [27–32] and Shi with
co-workers completed the synthesis of the proposed
structure [32]. The structure of the synthetic material was
confirmed by X-ray crystallography; however, the spectro-
scopic data differed to that reported for the natural product.
Recently, Harran and co-workers reported an eight-step
synthesis and stereochemical reassignment of (+)-mar-

Scheme 2 Synthesis of pyrimidinedione 2d and revised structure of biemamides B (9a) and B (9b) [17].

Scheme 1 Onogashira coupling and revised structure of monocillin VII (4a) [15].
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Scheme 4 Cycloisomerization and revised structure of harziane diterpenoid (19a) [25].

Scheme 3 Cascade rearrangement and revised structure of citrafungin A (13a) [23].
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ineosin A (Scheme 5) [33]. Their route started with the
synthesis of ketopyrrolophane 20 in three steps including a
flow photochemical step. After conversion to compound
21, oxidation using special “acidic”MnO2 gave only a low
yield of 22 (6%), which was unstable. Fortunately, the
reduction gave a stable final product marineosin A (23),
which matched the reported data. This allowed for the
revision of the stereochemistry as 7S.
Streptide. Streptide was first isolated in 2015 from

Streptococcus thermophilus [34]. The compound was
identified as a 20-membered macrocyclic peptide with a
novel lysine-tryptophan crosslink. The first total synthesis
was competed by Boger and co-workers (Scheme 6) [35].
The key steps in the synthesis were a Pd-catalyzed indole
macrocyclization to form indole 25 and diastereoselective
C–H activation/b-arylation of a lysine derivative. Notably,
both C3 diastereomers were carried through the similar
route and afforded the same yield (60%) in the macro-
cyclization reaction. The 1H NMR spectrum of the a/b
proton in the crosslinked lysine shown a distinguishable
difference between two diastereomers, only 3R matched
the natural product. The isolated compound co-eluted on
high performance liquid chromatography with streptide-3R

diastereomer 26a and so the stereochemistry of streptide
was reassigned to 3R.
Mytilipin B. Mytilipin B is one of the most complex

chlorosulfolipids. It was isolated in 2002 from a culinary
mussel Mytilus galloprovinvialis [36]. This family of
natural products contains a complex array of secondary
chlorides and alcohols. The proposed structure was
synthesised by Carreira’s group in 2011 [37]. However,
the spectral data of the synthetic compound showed
deviations from those reported for the natural product.
Recently, the same group published a paper that combined
NMR analysis and chemical synthesis to revise the
configuration (Scheme 7) [38]. The key C13-C14 bond
was formed via a Julia olefination. Another highlight in
this synthesis was the choice of different reagents
(Et4NCl3, NCS, TMSCl/HCl, SiCl4, MgCl2) to achieve
the required selective chlorinations. Eventually, four
diastereomers were synthesized and compared with the
natural product. The final structure resulted in revision of
configuration at eight stereocenters.
Even with modern spectroscopic and computational

techniques, the structures of many natural products are
often incorrectly assigned. However, one can still turn to

Scheme 5 Redox reaction and revised structure of (+)-marineosin A (23a) [33].
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Scheme 6 Indole macrocyclization and revised structure of streptide (26) [35].
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synthetic chemistry to reveal the true structure of many
natural products, especially those containing complex
stereochemistry.
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