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Abstract Emulsion is a disperse system with two
immiscible liquids, which demonstrates wide applications
in diverse industries. Emulsification technology has
advanced well with the development of microfluidic
process. Compared to conventional methods, the micro-
fluidics-based process can produce controllable droplet
size and distribution. The droplet formation or breakup is
the result of combined effects resulting from interfacial
tension, viscous, and inertial forces as well as the forces
generated due to hydrodynamic pressure and external
stimuli. In the current study, typical microfluidic systems,
including microchannel array, T-shape, flow-focusing, co-
flowing, and membrane systems, are reviewed and the
corresponding mechanisms, flow regimes, and main
parameters are compared and summarized.

Keywords microfluidics, emulsification, capillary num-
ber, droplet breakup

1 Introduction

Emulsion is defined as the dispersion of one fluid in
another immiscible liquid. This process demonstrates wide
applications in pharmaceutical [1–3], food [4,5], cosmetic,
[6,7], petroleum [8–10], and construction industries [11].
Particularly, the monodisperse emulsion processes have
gained significant attention. In the drug delivery system, a
narrow distribution can provide a controlled and repeatable
release process. The monodisperse emulsion process is
generally used for producing microspheres, microcapsules,
and microgels. When microspheres are employed as drug
carriers, their small size and good monodispersity can
result in less side effects, especially in case of anti-cancer

agents [12]. The polymer wall of microcapsules can be
sensitive to changes in environment, such as temperature
or pH [13]. Microgels usually experience significant
swelling or shrinking, when the external environment is
changed [14], which renders the drug release controllable.
In food industry, the monodisperse water-in-oil emulsion is
generally adopted for encapsulating the water soluble
flavors and nutrients [15]. In construction industry, stable
monodisperse emulsion provides a good bond strength,
when it is used as an adhesive agent for building insulation
[16]. It is worth noting that monodisperse emulsion is
exempt from Oswald ripening, which is highly required for
maintaining long term stability [17]. In addition, the
uniform physiochemical properties of individual droplets
can be easily correlated to those of the dispersion system,
which enables the system behavior prediction and
theoretical development [18,19].
The droplet breakup techniques performed via conven-

tional mechanical methods, such as mixing, colloid milling
[20], and homogenization [21,22] are based on uneven
stretching and shearing flow [23], which can easily lead to
a wider distribution of droplet size and poor monodisper-
sity. However, the microfluidics-based methods can
provide better control during the preparation of mono-
disperse droplets. The microfluidic system limits the
dimension within the range of tens to hundreds of microns.
It can enhance the heat and mass transfer between the
dispersed phase, continuous phase, and the inner walls of
the devices [24–27]. The size, morphology, and composi-
tion of individual droplets can be more precisely
controlled. The development of microfluidic emulsification
technology in the past decade has remarkable. The
emulsification process demonstrates a complex mechanism
and is usually the result of balancing across interfacial
tension forces, viscous forces, inertial forces, and forces
generated due to hydrodynamic pressure and external
stimuli. The droplet breakup is mainly influenced by
geometric configurations and flow regimes. In this study,
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the emulsification process conducted via microfluidic
systems is systematically studied, considering the effects
of geometry, fluid properties, and operating conditions.

2 Fundamentals of droplet formation

Interfacial tension is a physical property that can
significantly affect the process of droplet formation [28].
When the interface is formed, pressure difference is
generated between the inside and outside of the curved
interface due to the presence of interfacial tension, which is
called the Laplace pressure [29] (shown in Fig. 1).

The Laplace pressure (DPLap) can be calculated using
the Young-Laplace equation [30]:

ΔPLap ¼ g
1

R1
þ 1

R2

� �
, (1)

where g is the interfacial tension, and R1 and R2 are the two
principal radii of the interface curvature. When the
pressure generated due to all the forces other than
interfacial tension force overcomes this pressure differ-
ence, the droplets would be deformed or broken. The
Reynolds number (Re) describes the relative importance of
inertial force to viscous force:

Re ¼ �ul

η
, (2)

where r is fluid density, u is the characteristic velocity, l
specifies the characteristic length scale, and h is the
viscosity. In most microfluidic applications, Re is rela-
tively low [31]. The capillary number (Ca) is defined as

Ca ¼ ηU
g
, (3)

where U is the velocity. Ca is a measure of viscous force
relative to the interfacial tension force [32]. The capillary
number of the continuous phase (Cac) and dispersed phase
(Cad) are mainly used to characterize the flow condition in
the subsequent sections.
The Rayleigh number (Ra) of the fluid is a dimension-

less number associated with natural convection. It is
defined as

Ra ¼ βΔTl3g
vα

, (4)

where b is the fluid volume expansion coefficient, DT is the
temperature difference between the upper and lower sides
of the fluid, l is the characteristic length, v is the dynamic
viscosity, and a is the thermal diffusion coefficient. Ra is
usually small in microsystems, because the characteristic
length considered in microfluidics is in the order of
102 mm. For example, the Ra value of kerosene is estimated
to be under 102, which shows that conduction dominates
heat transfer, and natural convection is negligible in
microsystems [33].
From the perspective of energy, droplet formation can be

correlated to interface energy variation DG using the
second law of thermodynamics as follows:

ΔG ¼ ðA2 –A1Þg12 – TΔS, (5)

where A1 and A2 are the surface areas before and after
droplet formation, respectively. The entropy of dispersions
term TDS is generally positive, because the droplet number
increases after the breakup. In most of the cases, (A2–A1)
g12> > –TDS, and DG is positive, which indicates that
emulsion is thermodynamically unstable [34].

3 Microfluidic emulsification systems

3.1 Microchannel array

The microchannel array emulsification has been exten-
sively studied [35,36]. Two kinds of microchannel array
systems, including the straight-through microchannel and
microchannel with terrace, are reviewed in this section.
The straight-through microchannel is a structure for
generating emulsion using an array of uniform through-
holes vertical to the plate surface [37–39], as shown in
Fig. 2(a). Channel intersection was developed with two
shapes that include oblong and circular [40]. The dispersed
phase passed through the channel under a pressure, which
was marginally higher than the breakthrough pressure. In
oblong form, the interface was elongated near the tip,
thereby causing instability. The continuous phase entered
the space between the to-be-dispersed phase and channel
wall, which was critical for spontaneous droplet formation
[39]. However, in circular straight-through microchannel,
the continuous phase could not enter the channel, and the
droplet detachment resulted only due to the drag force from
the continuous phase [41]. The droplet size varied
according to the flow rate of the continuous phase, and
polydisperse emulsion was formed. The aspect ratio of the
slot is a crucial factor in determining whether the droplet
formation is spontaneous in such designs [37].
To avoid the formation of polydisperse droplets at low

flow rates, the structure microchannel with terrace (shown
in Fig. 2(b)) was discovered [44]. The oil phase flows out

Fig. 1 Schematic of Laplace pressure.
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of the microchannel and forms a distorted shape on the
terrace. Then the dispersed phase is detached in the well,
and the droplet is formed [42]. The system was delicately
developed so that the interfacial area could be reduced
during the droplet formation, thus rendering the interface
free energy to be negative [44] and the emulsification
process to be spontaneous. In the microchannel with
terrace systems, when the flow rate of the dispersed phase
increased to a certain extent, the droplet distribution
changes from monodisperse to polydisperse, and the
droplet size increased [45]. The process could be
characterized by the critical Ca of the dispersed phase.
When Cad was smaller than the critical value, the breakup
was spontaneous and dominated by interfacial tension, the
droplet size was almost constant, and the distribution was
monodisperse. When Cad exceeded the critical value, the
flow became a continuous outflow, in which the breakup
was dominated by shear stress, the droplet size increased
with Cad, and the distribution was polydisperse [46].
Therefore, maintaining the Cad value to be less than the
critical value was important for obtaining good mono-
dispersity.
Table 1 lists the main studies conducted in literature

related to emulsification using microchannel with terrace
systems. The data presented are either directly cited or
calculated based on the information provided by the
references [43,45,47]. The top view of the microchannel
with terrace structure is presented in Fig. 3. Lch and Wch

denote the length and the width of microchannel,
respectively. Lte is the length of terrace, and d is the
depth of microchannel and terrace. Vcr refers to the critical
velocity of the dispersed phase, which corresponds to the
aforementioned critical Cad value, and D is the droplet
size. To facilitate the comparison, the droplet size of the
emulsion produced spontaneously at low Cac value was
considered, as it was almost constant. In group 1, both
channel and terrace dimensions were changed, and the
structure shape remained the same by setting Lte/d ≈ 7.1,
Wch/d ≈ 1.2, and Lch/d ≈ 4. It was deduced that Vcr was
identical for all the cases, and the droplet size normalized
by channel depth (D/d) remained approximately the same,
which indicated that the critical velocity and normalized
droplet size depended on the shape of the structures. In

group 2, the dimension of the terrace was fixed, and the
dimension of the microchannel was varied. It was observed
during the comparison of case 2a and case 2c that when
Lch/dwas increased from 7.6–19.4, Vcr increased from 1.6–
2.3 mm$s–1, but the produced droplet size remained
constant. It was also noted during the comparison of case
2a and case 2b that when Wch/d was decreased from 1.6–
0.8, Vcr increased from 1.6–2.9 mm$s–1, but the droplet
size that resulted was still constant. These results
established that longer and narrower microchannels
increased the critical velocity and demonstrated no
influence on the droplet size. In group 3, when Lte/d was
increased from 4–10, and Lch/d was increased from 15–47,
Vcr increased from 36–158 mm$s–1. Because of the lack of
sufficient data, determining the correlation between Lte/d
and Vcr was difficult, although the influence of Lch/d on Vcr

had been established previously. In addition, the dimension
of the structure in group 3 was one order of magnitude
higher than the others. However, from all the studied cases
from Table 1, it is apparent that the normalized droplet size
is almost the same. Therefore, it could be concluded that
the droplet size depended mainly on channel depth in such
structures.

Figure 4 shows the correlation between D/d and Cad
based on the experimental condition of group 1. The
authors [45] varied the interfacial tension in the range of
2.9–539 mN$m–1, viscosity of the dispersed phase in the

Fig. 2 Schematic of microchannel array systems (dashed lines indicate flow directions): (a) straight-through microchannel [41];
(b) microchannel with terrace [42].

Fig. 3 Top view of the microchannel with terrace structure (Lch:
Length of microchannel, Lte: Length of terrace, Wch: width of
microchannel).
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range of 151–588 mPa∙s, and the viscosity of the
continuous phase in the range of 2.77–5.5 mPa∙s.
However, the viscosity ratio was maintained at hd/hc ≈
56 for all the experiments. It was established that the
critical value of Cad was independent of interfacial tension
and the viscosity of individual phase liquid. However, it
was a function of viscosity ratio.

3.2 T-junction

T-junction (Fig. 5(a)) is one of the most frequently used
microfluidic geometries for producing emulsions, as the
droplets produced by this method can be controlled to be
highly monodisperse [49–52]. The cross-flow configura-
tion, in which the continuous phase is introduced from the
horizontal channel, and dispersed phase flows through the
perpendicular channel, is the most popular approach for

generating droplets in T-junction [53–55]. The droplets can
be formed in different locations along the main channel by
varying the flow rate of the continuous phase (Qc) or
dispersed phase (Qd). The breakup point generally
corresponds to different breakup mechanisms under
different flow conditions, such as squeezing, dripping, or
jetting flow regimes.
In squeezing regime (shown in Fig. 5(b)), when Qc is

low, the hydrodynamic pressure, which is also called the
static pressure and constitutes the hydrodynamic compo-
nent in Bernoulli equation [56], increases gradually along
with the inflow of the to-be-dispersed phase fluid, until the
main channel is blocked [57,58]. As a result, the
accumulated pressure in the continuous phase squeezes
the neck of the dispersed phase, until the droplet is
detached. The plug volume or normalized length (L/w)
increases with an increase in the flow rate ratio of the
dispersed phase to the continuous phase (Qd/Qc) or with a
decline in the total flow rate [49,59]. The droplet
deformation is not caused by shear stress, but mainly due
to pressure drop, and the breakup mechanism is called
“pressure-driven” [60]. The driven forces in the breakup
are derived from the kinetic energy of the continuous phase
fluid, wherein the normal stress is perpendicular to the
interface and the shear stress is along the interface.
When Cac exceeds a certain value, the dripping regime

(Fig. 5(c)) occurs. The critical value of Cac for the
transition from squeezing to dripping varies due to the
diversity in channel size, flow rate ratio, and viscosity ratio
of both phases. For example, these values were deduced to
be 0.003 [61], 0.01 [59,62], 0.1 [63], or 1 [64] in literature.
In Fig. 6, when Qd is varied from 2–8 mL$h–1, the droplet
size is a function of only Cac and independent of Qd. In
dripping regime, the necking is caused by shear stress, and
the droplet breakup point is located slightly downstream
from the junction. The drop volume decreases with Cac
and shows a strong dependence on the viscosity ratio. The
shear stress dominates the droplet formation process, and
the correspondent breakup mechanism is called “shear-
driven” [55,65]. Under this mechanism, the droplet size

Table 1 Dimensions of the studied microchannel with terrace system, critical velocity, and droplet size of the products.

Group Case
d

/µm
Lte
/µm

Wch

/µm
Lch
/µm

Lte/d Wch/d Lch/d
Vcr

/(mm$s–1)
D
/µm

D/d

1 [45] 1a 2 15 3.3 7.7 7.5 1.7 3.9 2.2 7 3.5

1b 4 28 4.7 14 7.0 1.2 3.5 2.2 14 3.5

1c 8 57 8.3 32 7.1 1.0 4 2.2 32 4

1d 16 113 16 68 7.0 1.0 4.2 2.2 57 3.6

2 [43] 2a 7 39.3 11.6 53.1 5.6 1.6 7.6 1.6 25 3.6

2b 7 35.6 5.9 55.6 5.1 0.8 7.9 2.9 25 3.6

2c 7 38.4 11.3 136.1 5.5 1.6 19.4 2.3 25 3.6

3 [47] 3a 30 300 35 1400 10 1.1 47 158 100 3.3

3b 100 400 100 1500 4 1 15 36 300 3

Fig. 4 Oil-in-water (O/W) emulsion through the microchannel
with terrace system. Dimensionless droplet diameter (D/d) as a
function of Cad with fixed viscosity ratio. The symbols represent
droplets produced at different viscosities, channel size, and
interfacial tension. Reproduced from [45] with permission,
Copyright American Chemical Society, 2002.
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can be predicted by approximately equaling the Laplace
pressure with the shear stress by assuming that the droplet

is a sphere [53]. However, the pressure effect cannot be
completely neglected in the dripping regime [48]. Thus, it
is clear that the generated droplet size resulted from the
combined effects of shear stress and pressure [48], which
renders the prediction of the droplet size difficult.
To realize the jetting regime (Fig. 5(d)) in T-junction, the

flow rates of both phases must be sufficiently high with a
well-adjusted flow ratio, until the two-phase fluids form a
parallel flow. The time scales for blob formation and
pinching vary with an increase in the flow rates. In jetting
regime, the time scale of pinching is longer than the time
scale for forming a blob, indicating that the dispersed
phase flow is stretched downstream, before it is pinched off
from the dispersed phase fluid [66]. In the case of jetting
regime [65], the formed jet is almost stable and
progressively travels downstream, which indicates the
breakup resulted due to Rayleigh instability [67]. With a
T-junction device, a perpendicular flow can also be
configured, where the continuous phase flow is introduced
from the perpendicular channel, and the dispersed flow is
included from the horizontal channel. The size of the
droplet obtained by perpendicular flow was not as uniform
as in the one in cross-flow, and the plug length is only a
function of the flow rate ratio [68].

Fig. 5 T-junction with cross-flow configuration (a) structure (b) squeezing regime (c) dripping regime (d) jetting regime. Reproduced
from [48] with permission, Copyright Cambridge University Press, 2008.

Fig. 6 Normalized plug length (L/w) as a function of Cac, where
L is the length of the plug, and w is the width of the channel. Water-
in-oil (W/O) emulsion with T-junction cross-flow (hd = 0.58 mP∙s,
and hc = 68.6 mP∙s). Reproduced from [61] with permission,
Copyright IOP Publishing, 2009.
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3.3 Flow-focusing

The flow-focusing system is another common microfluidic
device used for emulsification [69–72]. The typical flow-
focusing structure is shown in Fig. 7(a). The dispersed
phase flows in the intermediate channel, and the
continuous phase flows in the upper and lower channels,
and then both phases flow through the orifice [73]. The
rupture of the dispersed phase occurs within or down-
stream of the orifice.
Similar to T-junction, Cac can be adopted in flow-

focusing for characterizing the droplet breakup in different
flow regimes. Cac is usually calculated as Cac = hcGa/g. G
is the effective elongation rate, and a is the radius of the
parent droplet [74] or simply the half width of the
dispersed phase inlet channel [75]. With an increase in
Cac, the droplets can be formed in squeezing, dripping, or
jetting regimes, as shown in Figs. 7(b–d) [76,77]. In the
squeezing regime, also called the “geometry-controlled”
regime [74,76], the dispersed phase from the central
channel is forced into the orifice, and the flow of the
continuous phase is blocked due to geometric restrictions,
which is similar to the squeezing regime with T-junction.
The continuous phase can only pass through the thin gap
between the dispersed phase and orifice walls and
generates a high pressure upstream, which drives the
interface to be squeezed and deformed, until the drop is
detached. Then the dispersed phase immediately fills the
orifice again, and the new droplet breakup process starts
[78]. The size of the produced droplet is marginally higher
than the orifice diameter, and the distribution is highly
monodisperse [74]. With higher Cac, the droplets are
formed in the dripping regime. As the velocity of the
continuous phase is high, the dispersed phase is concen-
trated in the center of the orifice and not constrained by the
passage. During droplet formation, the dispersed phase
remains inside or near the orifice. The droplets break up,
when the dispersed phase is elongated sufficiently. It was
argued that the breakup could be due to a mixed

mechanism of Rayleigh instability, and shearing [79–81],
because the predicted droplet size does not agree with the
result estimated solely based on either of the two
mechanisms. In this case, the droplets are smaller than
the orifice diameter [82]. Figure 8 shows the droplet size as
a function of Cac. It is observed from this figure that the
droplet size can be reduced by increasing Cac or Qc/Qd

[83]. In literature, the flow regimes have been classified
differently. For example, the aforementioned squeezing
regime and dripping regime can both be categorized as
dripping regimes, but with different modes. The former is
called the mode under rate-of-flow or pressure-driven
mechanism, while the latter is called the mode under
shearing or shear-driven mechanism [59]. When Cac
increases further, the flow condition can turn into a jetting
regime. The dispersed phase is extended and later broken
downstream from the orifice due to Rayleigh instability,
which results when the length of the jet increases to be
comparable to its radius [84]. In addition, shear stress is

Fig. 7 Flow-focusing system (a) structure, (b) squeezing regime, (c) dripping regime and (d) jetting regime. Reproduced from [74] with
permission, Copyright AIP Publishing, 2006.

Fig. 8 Droplet size as a function of Cac. W/O emulsion with
flow-focus. Reproduced from [83] with permission, Copyright
Elsevier, 2015.
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exerted by the continuous phase fluid [81]. The droplet size
is usually larger than the sizes of the droplets generated in
the dripping mode and can be similar or even larger than
the orifice dimension [74]. The distribution obtained is
polydisperse.

3.4 Co-flowing

A co-flowing system is shown in Fig. 9. In a co-flowing
device (shown in Fig. 9(a)), the dispersed phase is injected
through a capillary or a needle in the center and flows co-
currently with the continuous phase in the main channel
[86,87]. The droplet can be formed either close to the tip of
the capillary or detached from the jet [88–90]. Unlike the
bounded flow condition, such as in the case of T-junction
and flow-focusing, the effect of inertia cannot be neglected
in co-flowing, as it may contribute to droplet formation.
The Weber number is introduced in this section for
describing the effect of the inertial force. The relationship
between the inertial force and interfacial tension force can
be expressed by the Weber number of the internal fluid
(Wed). It is defined as follows:

Wed ¼
�ddUd

2

g
, (6)

where r is the internal fluid density, U is the characteristic
internal flow velocity, d is the characteristic length, and g is
the interfacial tension. The breakup in co-flowing usually
occurs in dripping (Fig. 9(b)), jetting (Figs. 10(c,d)), and
wavy regimes [91].
In the dripping regime, the flow rates of both continuous

phase and dispersed phase are low. The droplet formation
involves two steps, including the drop growth stage and
separation stage [91]. In the growth stage, the viscous drag
force, inertial force, and gravity force cannot overcome the
interfacial tension forces. As a result, the interfacial tension
dominates and holds the drop attached to the tip. The
viscous drag force increases with an increase in the drop
size. Then the attached drop is stretched, and a neck is
formed. In the separation stage, the large local curvature

leads to detachment, after which the neck shrinks rapidly
[92,93].
The jetting process can be classified into narrowing

jetting and widening jetting, which are characterized by
different breakup mechanisms. When Qc increases, until a
critical Cac value is attained, the dispersed phase can be
stretched as a narrowing jet form, which results in the
occurrence of the narrowing jetting regime [85,91]. The
velocities of the continuous phase and dispersed phase can
become equal downstream along the jet [94]. The breakup
of the jet is attributed to Rayleigh instability, and no clear
retraction is observed after droplet detachment. Unlike
narrowing jetting, widening jetting is caused, when the
velocity of the dispersed phase is much higher than that of
the continuous phase. The large inertial force of the
dispersed phase leads to the formation of a jet. The shear
force is exerted in the direction contrary to that of the
dispersed phase flow at the interface, and therefore, the
flow of the dispersed phase is decelerated, and the jet forms
a wide head. In the widening jetting regime, discrete
droplets are formed from the breakup of the jet down-
stream due to Rayleigh instability [85]. If the flow rate of
the dispersed phase increases further, the wavy regime is
formed, in which Wed of the dispersed fluid is high. For
example, the wavy regime was observed, when Wed = 164
in Wu’s work [91].

Fig. 9 Co-flowing system (a) structure, (b) dripping regime, (c) narrowing jetting, and (d) widening jetting. Reproduced from [85] with
permission, Copyright American Physical Society, 2007.

Fig. 10 Water droplet formation in flow-focusing with varied
Span 80 contents: (a) 0%, (b) 0.01%, (c) 0.02%, (d) 0.05%,
(e) 0.07%, (f) 0.1%, (g) 0.3%, (h) 0.5%, and (i) 6.6% (Qc =
700 µL$h–1 and Qd = 25 µL$h–1). Reproduced from [105] with
permission, Copyright International Society for Optics and
Photonic, 2007.

356 Front. Chem. Sci. Eng. 2020, 14(3): 350–364



3.5 Membrane emulsification

Numerous studies have been conducted on Membrane
emulsification (ME). Membrane emulsification can be
divided into direct ME and premix ME based on whether
the droplets are generated from the dispersed phase or
premixed emulsion. The direct ME involves employing a
low pressure difference for passing the dispersed phase
through a membrane with uniform pores into the
continuous phase. The premix ME can refine coarse
emulsions with uneven droplet size [95]. Similar to the
microchannel array emulsification, the ME process
demonstrates several advantages over the traditional
mechanical techniques, because it utilizes less energy,
requires low shear stress, and provides products with a
narrow distribution. The coefficient of variation in typical
scenarios is approximately 10% [96–98]. The property of
the emulsion depends strongly on the properties of the
membrane [97], such as the surface wetting behavior. The
hydrophilic/hydrophobic surface property of the mem-
brane can influence the affinity between the membrane and
liquid phases. The oil-in-water (O/W) or water-in-oil (W/
O) emulsion can be formed, depending on whether the
membrane is hydrophilic or hydrophobic [99]. The
production rate can be influenced by porosity, pore size,
and distance between adjacent pores. In addition to the
nature of the membrane, other factors, such as flow
condition, interfacial tension, and viscosity, could affect
the formation of droplets during ME. When the dispersed
phase attains the breakthrough pressure, the droplets are
spontaneously detached due to the absence of shear flow at
the membrane surface, and this type of emulsification is
called the static ME. The droplets can also be formed due
to shear stress, which is called the dynamic ME [95]. The
dynamic ME method requires cross-flow shearing of
continuous phase on the surface, where the droplets are
formed. The cross-flow shearing generation can be realized
either by moving the continuous phase in cross-flow,
stirred, or pulsed mode, or by moving the membranes
through rotation, vibration, or oscillation [96].

4 Physical properties of fluids

4.1 Interfacial tension and emulsifier

Interfacial tension represents the contracting force per unit
length at the interface [100], and the interfacial tension
force is one of the main forces involved in the microfluidic
emulsification process. The interface consistently demon-
strates the tendency to retain a small area under interfacial
tension due to the effect of interfacial energy. Reducing the
interfacial tension is necessary to maintain the stability of
the disperse system or facilitate the emulsification.
Emulsifiers or emulsifying agents are substances that are
usually employed for reducing the interfacial tension [101–

103]. They generally contain both hydrophilic and
hydrophobic groups, which can be adsorbed at the
liquid-liquid interface. Emulsifiers can be classified as
ionic and nonionic surfactants, both of which demonstrate
diverse emulsifying behaviors. When a new droplet is
formed, the dynamic interfacial tension increases sharply.
If the diffusion rate of the emulsifier molecules is
adequately high to cover the newly created interface, the
interfacial tension attains its equilibrium value instanta-
neously [104].
The emulsifier adsorbs at the interface in the form of a

monolayer. When the interface adsorption attains satura-
tion, the emulsifier molecules cannot continue to enrich on
the surface and form micelles. The concentration of the
emulsifier at the start of micelle formation is called the
critical micelle concentration (CMC) [106,107]. The
interfacial tension or interface energy can be reduced by
increasing the emulsifier content, before it attains the
CMC, which subsequently influences the drop size of the
final product. The droplets shown in Fig. 10 were produced
from a flow-focusing device. The droplet size decreases
with an increase in Span 80 content in the mineral oil from
0.01%–0.3%, which corresponds to the saturated emulsi-
fier concentration at the interface. The decrease in diameter
is not significant, when the emulsifier concentration
increases from 0.3%–6.6%. This is because, when the
emulsifier concentration exceeds CMC, the interfacial
tension of the system does not reduce further [68,108]. In
the two-phase system of n-octane/water with sodium
dodecyl sulfate as the emulsifier, the interfacial tension can
be reduced to a minimum at 2.54 mN$m–1, when the
concentration attains a CMC of 0.05% [68].
As the drop formation or breakup is a dynamic process,

the influence of the emulsifier on the interfacial tension
depends on its mass transfer behaviors, such as diffusion,
sorption, and desorption [109]. The so-called “thread
formation” [74] can happen in a flow-focusing system
(shown in Fig. 11). In this regime, the main droplets are
still produced based on the pressure-driven mechanism.
However, thin threads are also formed due to the tip
streaming phenomena. The elongational flow stretches the
interface, resulting in the concentration gradients of
emulsifiers happening along the interface with emulsifiers
accumulated at the tip. This leads to a reduction in the

Fig. 11 Thread formation in the flow-focusing system. Repro-
duced from [74] with permission, Copyright AIP Publishing,
2006.
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interfacial tension. Then the thread is broken into small
satellite droplets. The diameter of the main drops is
comparable to the size of the orifice, and the satellite drops
are one order of magnitude smaller [74,76].
The emulsifying agents not only reduce the interfacial

tension between water and oil, but also modify the wetting
behaviors of channel walls. The adsorption of the
emulsifier molecules on the interface between the fluid
and channel wall can lead to a change in the contact angle
[110–112]. To form an O/Wor W/O emulsion, the channel
walls generally need to be hydrophilic or hydrophobic. For
example, when the channel wall is in contact with the water
phase containing the emulsifier, the emulsifier molecules
are rearranged by turning the polar heads in the water and
tails onto the wall, thereby modifying the wall wetting
behavior. When the emulsifier content is higher than the
CMC, the wall surface is completely hydrophilic [57].
Ordered or disordered patterns are usually obtained
depending on whether the wetting of the channel is
complete or partial [113].

4.2 Viscosity

Viscosity is an important rheological property of the fluid.
The influence of viscosity on the emulsification process is
distinct for different geometries. For example, in straight-
through microchannel systems producing O/W emulsion,
when hd was less than 100 mPa∙s, the droplet size
decreased with increasing hd, because a high hd value led
to slow movement of the dispersed phase in the
microchannel, and the resulting drop volume was low
during the droplet formation time (tf) [38], although tf
increased with an increase in hd. In flow-focusing during
O/W emulsification under the rate-of-flow mechanism, the
droplet size was approximately proportional to Qd/Qc for
low viscosity of the dispersed phase hd (10 mPa∙s).
However, the correlation deviated from linear relationship
for a high hd value (500 mPa∙s) [114]. This is because, in
the case of low hd, the break-up time depended on the
orifice volume and Qd, while in the case of high hd, the
neck collapse was slow, and the breakup required a longer
duration, resulting in a larger droplet size than what was
estimated by the linear expression. With a co-flowing
system in jetting regime [85], the droplet size was affected
by the drag force, when hd/hc = 0.1. However, it was
independent from the velocity and determined only by the
tip diameter, when hd/hc> > 1.
In general, the droplet is expected to attain a critical state

of deformation, before it turns unstable and breaks up
[115]. For the dispersed phase, the greater the viscosity
relative to the continuous phase, the harder it is to deform
[116]. It is reported that that when the viscosity ratio is
greater than 4 [117], further breakup in laminar shear flow
is not possible. Instead, the formation of the droplet can be
still possible in laminar elongational flow. The difference
between hd and hc contributes to the velocity profile

development near the interface of the two phases [83] and
is related to the flow conditions, such as shear flow or
elongational flow.
The viscosity of the continuous phase can also affect the

diffusion of emulsifiers. The diffusion time (td) for
emulsifier molecules near the droplets in laminar flow
can be expressed as follows [118]:

τd ¼
2

D

dΓ
dc

� �2

, (7)

where D is the diffusion coefficient of emulsifier, G is the
adsorbed amount, and c is the concentration of the
emulsifier. D can be related to viscosity using Stokes-
Einstein equation as follows:

D ¼ kBT

6πηr
, (8)

where kB is the Boltzmann constant, T is the absolute
temperature, h is the viscosity, and r is the hydrodynamic
radius. Combining Eq. (7) and Eq. (8) [104], the following
relationship is obtained:

τd / ηc: (9)

Equation (9) indicates that the diffusion time of the
emulsifier near the interface in a microfluidic system is
proportional to the viscosity of the phase containing
emulsifiers. The viscosity can exhibit some influence on
the mass transfer behavior of the emulsifier and conse-
quently the emulsification process. A rapid diffusion of the
emulsifiers is favored for the purpose of stabilizing the
emulsion, after the new interfaces are created [67].

5 Operating conditions

5.1 Flow rate

Flow rate is an important operating parameter influencing
the emulsification process and can be used for adjusting the
flow regimes. For example, the increase of flow rates in a
confined geometry can aid in building up pressure. Similar
to the viscosity difference, the flow rate difference between
the dispersed and continuous phases can significantly
influence the velocity profiles near the interface. The size
of the produced emulsion in microfluidics can usually be
correlated to flow rates or the flow rate ratio values. In the
squeezing regime with T-junction cross-flow configura-
tion, the normalized plug length (L/w) was established to
be proportional to the flow rate ratio of the dispersed phase
(Qd) over continuous phase (Qc). The relationship can be
expressed as follows [58,119]:

L=w ¼ εþ δ
Qd

Qc
, (10)
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where L is the length of the plug, w is the width of the
channel, and ε and d are constants depending on the
geometry. In Fig. 12, when Qd/Qc is small, the droplet size
is independent of Qd/Qc, because the value of Qd is very
small, its marginal increase does not cause an evident
change in the viscous force, and the droplet size depends
only on Qc and hc. When Qd/Qc is higher, the normalized
plug length fits well with Eq. (10) by substituting ε = 1 and
d = 1 [58], which shows that L/w is a function of only Qd/
Qc.

In the dripping regime with co-flowing, the droplet size
increases with an increase in the velocity of the dispersed
phase or decreases with an increase in the velocity of the
continuous phase [88]. Thus, the dimension of the droplet
can be modified by adjusting the input flow rates. In
addition, the flow rate ratio can demonstrate a significant
influence on droplet size distribution. For example,
Hong et al. [120] studied the droplet distribution at fixed
Cac with a co-flowing system and established that the
monodisperse emulsion could only be produced, when
Qd/Qc was over a threshold value.

5.2 Temperature

Temperature can exhibit a significant influence on the
emulsification process mainly because certain physical
properties of the fluids or emulsifiers are temperature-
dependent. The viscosity of the liquids is caused due to
continual friction between molecules located in close
proximity. When the temperature is higher, the enhanced
thermal motion of molecules can render the mutual friction
less effective [121], which leads to a viscosity decrease and
vice versa. Compared to the conventional emulsification

techniques, the ability to accurately control the temperature
is one of the main advantages of microsystems. By
developing microstructures integrated with heat control
element, the fluid viscosity can be adjusted through
efficient temperature regulation during different stages of
a continuous emulsification process [27]. By increasing or
decreasing the temperature of the fluids before or after the
breakup, the resulting viscosities can either enhance the
droplet breakup or hinder the droplet coalescence,
especially when the substance is highly viscous [122].
Sometimes, an unintentional temperature increase can
result due to the heat converted from the mechanical
energy input in the emulsification process. Therefore,
controlling the temperature is beneficial for improving the
quantity of the product.
When emulsifiers are involved in the disperse system,

the influence of temperature on the interfacial tension is not
straightforward, as the interfacial tension also depends on
the physicochemical properties of the emulsifiers. For
example, in soybean O/W emulsion, the interfacial tension
decreases with an increase in temperature, when the
nonionic emulsifier Tween 20 is used. However, it
increases with an increase in the temperature, when the
anionic emulsifier sodium oleate is used [123]. For the
nonionic emulsifier, there exists a cloud point, over which
the head groups may experience dehydration. Thus, the
solubility in the aqueous phase is reduced, and CMC
declines [108,124]. As a result, the ability of a nonionic
emulsifier in reducing the interfacial tension is limited,
which can negatively impact the emulsification process. In
addition, for emulsions containing nonionic emulsifiers,
there exists the phase transition temperature (PIT), above
or below which the emulsifiers are dissolved in oil or
aqueous phase, respectively. Thus, the O/W emulsion can
be converted to W/O type with increasing temperature. PIT
mainly depends on the type of oil phase [125]. The higher
the solubility in the oil phase, the lower the PIT. For
example, the PIT of the emulsifier polyoxyethylene
nonylphenyl ether is approximately 20°C when dissolved
in benzene. However, it is shifted to approximately 110°C
when dissolved in hexadecane because of the low
solubility [125]. It is established that when the temperature
is close to PIT, the interfacial tension attains the minimum
[126]. Therefore, controlling the emulsification tempera-
ture near PIT is desired for facilitating the emulsification
process.
Temperature control can be implemented as a part of the

emulsification system development owing to the influence
of the temperature on viscosity and interfacial tension.
With such a system, the droplet size can be adjusted via
temperature regulation, which provides a new approach for
controlling the droplet size. In the dripping regime with
flow-focusing systems, if the nozzle temperature is
precisely controlled, the relationship between the resultant
droplet size and temperature is defined as follows:

Fig. 12 Normalized length (L/w) as a function of flow rate ratio
Qd/Qc. W/O emulsion with T-junction with cross-flow (h = 33 mm,
wc = 100 mm, and wd = 50 mm). Reproduced from [58] with
permission, Copyright Royal Society of Chemistry, 2006.
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DðTÞ / 1

Ca
¼ gcðTÞ

ηcðTÞUc
, (11)

where T is the temperature,D is the diameter of the droplet,
and Uc is the characteristic speed of the continuous phase
[127,128]. According to Eq. (11), the droplet size depends
proportionally on the ratio of gc(T) to hc(T). The influence
of temperature on droplet size is the result of combined
effects of the temperature dependences of viscosity
and interfacial tension. It was reported that Nguyen
et al. [129] achieved double the droplet size by increasing
the temperature from 25°C–70°C, and Stan et al.
[127] achieved a droplet size increase by two orders
of magnitude by adjusting the temperature from 0°C–
80°C.

6 Conclusions

The emulsification process achieved via microfluidic
technology was briefly reviewed in this work. The droplet
size and the distribution of the emulsion products were
considered as the main criteria for evaluating the quality of
the emulsification process. The geometric designs demon-
strate a significant impact on the microfluidic emulsifica-
tion process. Therefore, typical microstructured devices,
including microchannel array, T-junction, flow-focusing,
co-flowing, and membrane systems were systematically
investigated. The droplet breakup is the result of competi-
tion between different forces, such as viscous, interfacial,
and inertial forces. Generally, the droplet formation or
breakup mechanisms in the aforementioned microstruc-
tures result from spontaneous transformation, pressure-
driven (also called flow-of-rate), shear-driven (also called
shearing), or Rayleigh capillary instability. Sometimes, the
breakup process can result due to a combination of these
different mechanisms. For a defined geometry, the
viscosity and mass flow rates are the most important
parameters that can considerably influence the force
balances and velocity profiles. Emulsifiers are generally
used for interfacial tension reduction, and their mass
transfer kinetics can be highly affected by the viscosity of
the phase, in which the emulsifier is dissolved before the
droplet formation. Temperature can influence emulsifica-
tion by adjusting the viscosity and interfacial tension. It
can also affect the solubility of the nonionic emulsifiers.
Particularly, the temperature dependence of viscosity is
benefited for facilitating the breakup by stabilizing the
emulsion or adjusting the droplet size. It can be expected
that the innovation or optimization of microfluidic systems
will be well promoted with the development of advanced
manufacturing techniques [130,131] and inner surface
treatment methods of microstructures. Considering the
improvement achieved on microfluidic devices, process
integration can also be regarded as an option.
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