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Abstract Carbon nanotubes/graphene composites have
superior mechanical, electrical and electrochemistry prop-
erties with carbon nanotubes as a hydrophobicity boosting
agent. Their extraordinary hydrophobic performance is
highly suitable for electrode applications in lithium ion
batteries and supercapacitors which often employ organic
electrolytes. Also the hydrophobic features enable the oil
enrichment for the crude oil separation from seawater. The
ever reported synthesis routes towards such a composite
either involve complicated multi-step reactions, e.g.,
chemical vapor depositions, or lead to insufficient extru-
sion of carbon nanotubes in the chemical reductions of
graphene oxide, e.g., fully embedding between the
compact graphene oxide sheets. As a consequence, the
formation of standalone carbon nanotubes over graphene
sheets remains of high interests. Herein we use the facile
flash light irradiation method to induce the reduction of
graphene oxides in the presence of carbon nanotubes.
Photographs, micrographs, X-ray diffraction, infrared
spectroscopy and thermogravimetric analysis all indicate
that graphene oxides has been reduced. And the contact
angle tests confirm the excellent hydrophobic perfor-
mances of the synthesized carbon nanotube/reduced
graphene oxide composite films. This one-step treatment
represents a straightforward and high efficiency way for
the reduction of carbon nanotubes/graphene oxides
composites.
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1 Introduction

Graphene as a 2D material, has shown excellent mechan-
ical [1], electrical [2], optical [3], chemical [4] and
electrochemistry [5,6] properties since the pioneering
works were reported more than a decade ago. Graphene
structures, e.g., monolayer membrane [7‒11], thick film
[12,13], foam, sponge and vertical walls, aerogel [14‒16]
and hydrogel have shown great success in the applications
of electrode materials in energy storage systems, e.g.,
lithium ion batteries [17,18] and supercapacitors [19,20].
Very often, the organic electrolytes [21] in the energy
storage devices require a hydrophobic electrode for
providing sufficient wetting contact and ion exchange
[22] or intercalation/deintercalation [23]. Indeed research
towards the highly hydrophobic performances remain of
great interests [24]. Also the separation of oil from water
becomes a focus for solving the environmental problems
from crude oil leakage [25]. The oil absorption requires the
hydrophobic performances from 3D graphene. However,
the intrinsic graphene oxide films have enrichful oxygen
containing groups [26,27] and are thus hydrophilic.
Therefore, strategies are in high demand for modifying
surfaces of graphene oxide to achieve a hydrophobic
surface.
Carbon nanotubes, as a super hydrophobic materials, are

ideal mixing agents to form graphene composites and
boost the hydrophobic performances of 3D graphene [28].
According to the 3D graphene types, the incorporation
mechanism of carbon nanotubes can be categorized as
chemical vapor deposition and chemical reduction. First,
the chemical vapor depositions include an initial step for
graphene foam formation over Ni foam and a following
step for coating Fe catalyst and carbon nanotube formation.
This protocol requires two steps of chemical vapor
deposition reactions, which represent a complicated
avenue. Second, the chemical reduction [29] refer to the
mixing of carbon nanotubes and graphene oxides as
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precursors prior to the hydrogel formation [30] and after a
reduction step, the carbon nanotubes/reduced graphene
oxide composite is readily formed. In this case, the carbon
nanotubes are quite often embedded inside the graphene
sheets [31], and are thus difficult to enhance the
hydrophobic surface performance. Hence it is highly
desirable to find a straightforward way for composite
synthesis and facilitate the surface accessibility of the
carbon nanotube species.
Here we use a facile flash light irradiation method to

induce the reduction of graphene oxide in the carbon
nanotubes/graphene oxide composite. The results show
that the carbon nanotubes are readily accessible to the
surface and an extraordinary hydrophobic performance is
thus obtained.

2 Experimental

2.1 Material synthesis

Graphite oxide was synthesized according to the Hum-
mers’ method [32] with modification. In details, 5 g of
graphite powder (180 mesh, Qingdao Black Dragon
Graphite Co. Ltd) and 130 mL concentrated sulfuric
acid (98%, Beijing Chemical Works) were mixed into a
1000 mL graduated beaker and mechanically stirred
continuously in an ice bath for 2 h. Then 15 g of
KMnO4 (Analytic grade, Zhengzhou Third Chemical
Reagent Factory) was added slowly, and the resulting
solution was stirred for 2 h in the ice bath. Next, the
solution was stirred at 35 °C (water bath) for 1 h to further
enhance the oxidation of graphite, termed as a mesother-
mal reaction step. Subsequently, 230 mL of deionized
water was added and the diluted suspension was heated up
to 98 °C and maintained for 30 min, termed as a
hyperthermal reaction stage. After this stage, 400 mL of
deionized water was added, and the final solution was
centrifuged and rinsed to neutral pH. Eventually, the
graphene oxide (GO) suspension formed.
The GO suspension was mixed with 2 g of multi-walled

carbon nanotubes (CNTs) and ultrasonicated for 3 h and
then a homogeneous black suspension was formed. After
the filtering and drying, the CNTs/GO composite film was
formed over a filter paper. Then the composite film was
irradiated under a camera flash light for 1 h, and eventually
became expanded in volume and curved, indicating a
complete reduction of graphene oxide (Fig. 1).

2.2 Characterizations

Scanning electron microscopy (SEM) micrographs were
collected on a field emission SEM (JEOL S-4800). Surface
functional groups were determined with a Fourier trans-
form infrared (FTIR) spectrometer (Bruker Equinox 55).
The X-ray diffraction (XRD) curves were captured on a

diffractometer named Rigaku D/Max2400 with X-ray
sources from Cu Kα 1.54 Å. Raman spectra were collected
in Renishaw Raman Spectrometer. Before these measure-
ments, the composite film samples were thermally
annealed for degassing for 5 h under vacuum.

3 Results and discussion

The carbon nanotubes/graphene oxide composite film has
been readily prepared after a typical sonication of the
mixture, filtering, and drying according to the synthesis
protocol shown in Fig. 1. Before the flash irradiation, the
composite film has feature of compact and smooth surfaces
which are tailored to three shapes, i.e., square, round and
triangle (Fig. 2(a)). After the flash irradiation, the
composite film exhibits creases and bumpy surfaces
(Fig. 2(b)). Nevertheless, the flash treatment preserves
the geometry of the centimeter sized composite film which
maintained the complete structure, continuity in morphol-
ogy and homogeneity.

From a microscopic view, the carbon nanotubes/
graphene oxide composite before the flash irradiation
shows compact layer stacking of graphene oxide sheets

Fig. 1 Illustration of the synthetic route for the CNTs/rGO
composite film. rGO, reduced graphene oxide

Fig. 2 Photographs of carbon nanotube/graphene oxides com-
posite films: (a) before and (b) after flash light irradiation
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(Fig. 3(a)). However, after the flash irradiation, the
composite shows expansion along the c axis (Fig. 3(b)),
which accounts for the total volume enlargement. This
volume expansion renders the flash treated sample much
larger accessible surface areas and the accessibility of
carbon nanotubes compared with the pristine sample
(Figs. 3(c) and 3(d)). Moreover, the carbon nanotubes are
well distributed and homogeneously dispersed in the flash
treated sample, especially individual carbon nanotubes
between the graphene sheets (indicated by red arrows in
Fig. 3(d)), viz. no aggolomation is observed.
Next we investigated the surface chemical groups to

determine the reaction nature of the flash treatment. XRD
represents a powerful tool to evaluate the evolution of
graphene oxides, e.g., XRD shows that (002) planes and
(001) basal planes are dominant in graphite and graphene
oxides, respectively, whereas (002) planes become domi-
nant again in reduced graphene oxides. In this experiment,
graphene oxide shows one individual peak at 2q = 11.6°
and upon CNT mixing, this peak shifts to 9.8°. Based on
the Bragg’s law l = 2dhklsinθhkl, we calculated the basal

plane distance with derived equation dhkl = 0.5l/sinθhkl for
graphene oxide (001), viz., the d(001) equals to 0.76 nm for
pristine GO species, and 0.90 nm for CNT/GO samples.
The slightly larger spacing in CNT/GO indicates the well
dispersed incorporation of CNT between GO sheets in an
embedding way. However, this peak disappears in the flash
treated samples and instead a peak at 2θ = 26.0o becomes
the dominant peak (Fig. 4). This could be due to the few
layered stacking of graphenes or the multi walled stacking
of carbon nanotubes, i.e., d(002) = 0.34 nm. This also
indicates that the elimination of the graphene oxide phases
and the formation of a new graphene like phase. These
diffraction data agree well with previous reports, i.e., the
graphene oxide has a characteristic peak at 2θ = 11° at
(001) direction [33] and the reduced graphene oxide shows
at 2θ = 26° at (002) direction [34]. In addition, carbon
nanotubes, the composite of carbon nanotubes and
graphene oxides, and the flash treated composite all
show a peak at 2θ = 26°, which is assigned to the sp2

hybridized carbon structure.
FTIR spectroscopy provides the precise information

Fig. 3 SEM micrographs of carbon nanotube/graphene oxides composite films: (a) before and (b) after flash light irradiation; (c) and (d)
are the magnified micrographs of regions from (a) and (b). Red arrows indicate the carbon nanotubes embedding or standalone in graphene
sheets
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about surface functional groups with the various molecular
vibration modes. For a C = C bond, the stretching mode is
at 1600 cm‒1 [35]. There are three specific vibrational
modes of oxygen-containing groups [36]: 1350 cm‒1 for
C‒O‒H, 1050 cm‒1 for C‒O, and 1728 cm‒1 for C = O. In
this work, graphene oxide and its carbon nanotube
composite both show the C‒C bond (Fig. 5). Compared
with the composite film before and after flash irradiation,
the flash treated sample shows elimination of C = O and
C‒O bonds, which confirmed the successful conversion of
graphene. In addition, the graphene and carbon nanotubes
have been combined perfectly without any oxygen groups,
which account for the boosting in the hydrophobic
performances.

A select of the topmost of the flash treated composite
film shows a typical wrinkled structure of a reduced
graphene oxide which possesses a few layers of graphene
(Fig. 6(a)). Indeed the morphology of the flash treated
composite sample become crumpled or curved, which

greatly enlarge the surface area. Then, a browsing towards
the bulk side shows the tight combination between carbon
nanotubes and graphene sheets (Fig. 6(b)). This further
confirmed the complete reduction of the flash treated
composite sample.
Thermogravimetric analysis represents a useful tool that

can determine different carbon species with continuously
increasing combustion temperature. There are specific
combustion temperatures for amorphous carbon, surface
groups on graphene oxides, pristine graphene, and carbon
nanotubes [37]. The thermogravimetric analysis are shown
in Fig. 7 for of the individual carbon nanotubes and
graphene oxides, as well as their composites before and
after flash treatments. At 84 °C, the gravimetric weight
losses are from the liberation of water. At 233‒247 °C, the
carbon containing surface groups combust and vanish. At
481‒497 °C, the graphene burns out. At 581‒612 °C, the
carbon nanotubes burn and disappear. Compared the flash
treated composite with untreated composite, the latter
shows the combustion weight loss of surface functional
groups while the former does not, indicating the successful
removal of these functional groups in the flash induced
reduction process.
Therefore, XRD, FTIR, and thermogravimetric analysis

all indicate that the flash treatment is a reduction process of
graphene oxides. Now the mechanism illustrated in Fig. 1
turns out to be practical and generalized. With the
successful reduction of graphene oxide together with the
carbon nanotube dispersion for composite formation in one
flash light treatment, we finally investigated the hydro-
phobic performance of the carbon nanotubes/reduced
graphene oxide composite. The pristine carbon nano-
tubes/graphene oxide composite shows a hydrophilic
feature with a contact angle of 45° (Fig. 8(a)). In contrast,
the flash treated composite becomes hydrophobic with a
contact angle of 120° (Fig. 8(a)). The hydrophobic
materials with such a contact angle could be applied in
oil-water separation [38] and electrodes [39,40] for
electrochemistry systems with organic solvents.

4 Conclusions

A facile protocol has been developed to synthesize the
carbon nanotubes/reduced graphene oxide composite in
one step by flash light irradiation of the carbon nanotubes/
graphene oxides film. The synthesized composite has the
complete geometry, morphological continuity and homo-
geneity, and shows the extraordinary hydrophobic perfor-
mance. The synthesis process is green and easy to handle
without harsh conditions, and may find applications in the
preparation of electrodes for supercapacitors and lithium
ion batteries. The future tuning of the exposure time for
flash treatment would lead to the fundamental under-
standing of evolution kinetics of graphene oxides, e.g., the

Fig. 4 XRD profiles of GO, CNTs, CNTs/GO, and CNTs/rGO

Fig. 5 FTIR spectra of GO, CNTs, CNTs/GO, and CNTs/rGO
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contents of remaining oxygen groups, through thermo-
gravimetric analysis. This is important for providing a
general pattern for such a flash induced reduction of
graphene oxides. Also, another opportunity falls in the

optimization of the ratio of carbon nanotubes in the
composites, which may hold promise in further achieving a
superhydrophobic performance.
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