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Abstract The ability to go from a digitized DNA
sequence to a predictable biological function is central to
synthetic biology. Genome engineering tools facilitate
rewriting and implementation of engineered DNA
sequences. Recent development of new programmable
tools to reengineer genomes has spurred myriad advances
in synthetic biology. Tools such as clustered regularly
interspace short palindromic repeats enable RNA-guided
rational redesign of organisms and implementation of
synthetic gene systems. New directed evolution methods
generate organisms with radically restructured genomes.
These restructured organisms have useful new phenotypes
for biotechnology, such as bacteriophage resistance and
increased genetic stability. Advanced DNA synthesis and
assembly methods have also enabled the construction of
fully synthetic organisms, such as J. Craig Venter Institute
(JCVI)-syn 3.0. Here we summarize the recent advances in
programmable genome engineering tools.
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1 Introduction

Synthetic biology seeks to develop new organisms through
forward genetic engineering. We can develop tools to study
complex gene regulatory networks in silico [1], however,
forward engineering of genetic systems enables us to
identify and understand emergent and unexpected phe-
nomena in biology [2,3]. The ability to manipulate DNA is
intrinsically linked to our ability to experimentally study
and forward engineer regulatory gene networks. Genome
engineering tools have allowed us to reprogram life to
explore basic science and to engineer novel organisms for

biotechnology. The field has progressed from basic
molecular cloning to programmable methods for remodel-
ing and constructing new organisms.
Implementations of stable synthetic gene circuits and

reengineering of biosynthetic pathways requires reengi-
neering of an organism [4]. Even the scenario of episomal
expression of synthetic gene constructs often also requires
strains modified from wild-type counterparts. For instance,
implementation of the genetic toggle switch requires
removal of endogenous lacI repressor via genome editing
[5,6]. Library-based investigation of gene network engi-
neering requires efficient genome integration methods
[7,8]. A convergence of programmable editing, new
directed evolution methods, rational protein engineering,
and DNA synthesis have propelled synthetic biology
forward. As the field of synthetic biology moves forward,
so will the enabling technologies. Genome engineering
will require increased specificity to move to therapeutic
applications. Evolutionary methods will need to enable
large-scale rewriting of organisms to find non-trivial
solutions to challenging problems. Proteins that efficiently
target DNA recombination will enable large-scale restruc-
turing of organisms. DNA synthesis and assembly methods
will enable production of large-synthetic constructs,
including whole genomes.
In this review, we highlight newly developed technol-

ogies enabling the rational redesign of organisms.
Clustered regularly interspace short palindromic repeats
(CRISPR) derived technologies have revolutionized our
ability to target DNA manipulation in vivo. We discuss the
state of the art CRISPR based methods for rewriting and
implementing synthetic transgenes. We describe methods
to conduct large-scale rewriting of genomes, ranging from
strategies to target genome reduction, to methods
powered by genetic randomization and evolution. Further-
more, we discuss the development of methods to generate
de novo organisms, such as the recently developed
minimal synthetic Mycoplasma mycoides genome, JCVI-
syn3.0 [9].
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2 RNA-programmable genome engineering

CRISPR and CRISPR-associated (Cas) systems function
as a prokaryotic and archaeal immune system [10–13]
CRISPR loci express a long non-coding RNA, which is
subsequently processed by Cas proteins (e.g., Cas9 of type
II CRISPR systems) [14] to form mature targeting CRISPR
RNAs (crRNAs). These crRNAs target endonuclease
activity of Cas9 (or other Cas proteins) to target DNAs.
Watson-Crick base pairing between crRNA and target
DNA combined with the presence of a PAM sequence on
the target results in Cas9 catalyzed DNA cleavage (Fig. 1
(a)) [15]. Researchers quickly saw the potential of CRISPR
systems, in particular, those involving Cas9, as other
systems require formation of large multiprotein complexes
(e.g., those of type I and III CRISPR systems) [14].
Cong and colleagues along with Mali and coworkers co-

published initial reports demonstrating the application of
engineered CRISPR systems in human cells [16,17]. They
demonstrated that CRISPR RNAs can be engineered to
target Cas9 nuclease activity to endogenous target sites.
These reports spurred the development of CRISPR based

technologies.
Initial reports suggested Cas9 activity was highly

specific to target sites, requiring nearly 20-out-of-20
nucleotides matching between crRNA and target DNA,
however a subsequent report showed CRISPR can readily
induce off-target mutations [18]. To circumvent, this
numerous strategies have been developed to increase
Cas9 specificity. Ran and colleagues developed a paired-
nickase system for targeting non-homologous end joining
(NHEJ), homology directed repair (HR) and non-HR
mediated integration [19]. Individual single-stranded DNA
breaks (nicks) to the chromosome are repaired without
mutagenesis. However, paired CRISPR-targeted nicks in
close proximity and in a 5' overhang orientation result in
efficient mutagenesis (Figs. 1(b) and 1(c)). Alternatively,
Tsai et al. and Guilinger et al. concurrently utilized protein
engineering to increase specificity. They showed fusion of
catalytically inactive Cas9 fused to a FokI endonuclease
domain dramatically increase DNA cleavage specificity
[20,21]. This system enables cooperative genome target-
ing, wherein double-stranded DNA cleavage requires
dimerization of FokI domains. This increases the specifi-

Fig. 1 Programmable editing of genomes. (a) A schematic of CRISPR-directed targeting with wildtype S. pyogenes Cas9. Cas9 (blue) is
targeted to a DNA sequence based on the presence of a protospacer adjacent motif (PAM, red) nucleotides matching those in a short guide
RNA (sgRNA). The target DNA sequence is written beneath. The strand matching the 20 nucleotide guide of the sgRNA is orange and the
complementary strand is black; (b) CRISPR-guided double stranded DNA breaks (DSBs) involving a recombination template have
various modalities. DSBs either induce host homology directed repair (HDR) or DSBs kill cells that have not acquired the desired edit,
wherein the full CRISPR target site is not present in the desired edit. HDR-mediated editing can be either a function of one or both of these
modalities; (c) novel mutant versions of Cas9 that mediate single-stranded DNA cleavage have been developed to target recombination in
a broad range of organisms
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city of genome editing over 140 fold over wild-type
Streptococcus pyogenes Cas9. This approach is simulta-
neously versatile and highly specific. Fu and colleagues
found an interesting alternative to increase accuracy of
CRISPR editing methods: decreasing the length of short
guide RNAs (sgRNAs) from 20 to 18 nucleotides increases
targeting specificity [22]. Furthermore truncating sgRNAs
to 14 nucleotides enables targeted DNA binding of Cas9
while avoiding DNA cleavage [23]. This enables the
development of multi-targeted Cas9 editing and regulatory
fusions. These methods will likely be greatly useful with
therapeutic application allowing simultaneous function of
Cas9 in genetic circuitry and gene knockout [23,24].
Slaymaker and coworkers developed an enhanced speci-
ficity Cas9 (eSpCas9) through rational protein reengineer-
ing [25]. Mutation of various positively charged amino
acids in the non-target DNA binding groove of S. pyogenes
Cas9 confers higher specificity of Cas9 mediated cleavage.
Similarly, Kleinstiver and colleagues described the engi-
neering of a high fidelity version of Cas9 (spCas9-HF)
through rational protein reengineering [26]. Likewise,
Kleinstiver and coworkers demonstrated in a separate
piece the directed evolution of S. pyogenes and Staphy-
lococcus aureus Cas9 to generate novel variants with
altered PAM requirements [27,28]. This may be advanta-
geous if alternative (non-NGG) PAMs are desired. Like-
wise, increasing the size of the requisite PAM region may
be useful in the creation of therapeutically relevant highly
specific Cas9s, This may be more likely to make it into
therapeutic and disease modeling use.
Synthetic biology seeks to forward engineer novel

cellular behaviors and phenotypes. This can be accom-
plished through both rewiring of endogenous gene
networks or through integration of synthetic DNAs. He
and coworkers demonstrate potential utility for CRISPR
targeted genome integration in human cell lines. They
show that double stranded DNA break (DSB) induced
NHEJ can target chromosomal integration of fluorescent
markers [29]. The system described by He and colleagues
is capable of integrating 4.6 kb of DNAwith relative high
efficiency (20%). This is accomplished by simultaneous
cleavage of a genomic target along with cleavage of a
transfected donor plasmid. NHEJ results in incorporation
of the synthetic reporter at the location of sgRNA targeted
cleavage [29]. This technique, along with other editing
modalities will be useful in the implementation of genetic
circuitry or differentiation state reporters.
After initial reports of CRISPR editing in human cells,

numerous reports came out employing engineered
CRISPR systems in other organisms. Jiang and colleagues
demonstrated CRISPR-Cas9 systems can direct recombi-
nation between the genome of Streptococcus pneumoniae
and exogenous editing templates. This enabled selection
marker free editing of multiple genomic targets. Likewise,
they showed CRISPR-Cas9 can assist the lambda Red
recombineering system for Escherichia coli by selecting

for desired edits of the genome [30]. More recently it was
demonstrated that CRISPR-Cas9 systems could augment
potential sizes of genome integrations. Building off work
that demonstrated use of SceI meganuclease can work
cooperatively with the lambda Red recombination
machinery to integrate large, 7 kb, synthetic constructs
[31]. Bassalo and coworkers demonstrated cooperative use
of lambda Red and CRISPR target DNA cleavage. They
show CRISPR increases DNA editing efficiency up to
95%, wherein 50 out of 50 clones contain the correct
integration. Furthermore they demonstrate integration of a
10 kb isobutanol biosynthetic pathway, using CRISPR
combined with lambda Red [32]. Rapid implementation of
full biosynthetic pathways, such as that for isobutanol
described in Bassalo et al., was not possible through basic
lambda Red mediated recombination. However, incorpora-
tion of CRISPR targeted DNA cleavage with lambda Red
can target integration with ease and efficiency. The ability
for single step integration of large-synthetic constructs is
necessary for synthetic biologist to create complex new
cellular functions. In E. coli, multiple works have
demonstrated CRISPR working cooperatively with the
lambda Red homologous recombination machinery, how-
ever, we took a different approach and developed a system
to target endogenous E. coli homologous recombination.
We demonstrated that nicking Cas9 mutant (Cas9D10A) can
be easily guided to genomic loci and, when dual-targeted,
can efficiently direct large-scale recombination across the
bacterial genome [33].
CRISPR-guided genome engineering has become an

indispensible tool for non-model bacteria. For instance,
Wang et al. and Li et al. demonstrate CRISPR as a tractable
genome-engineering tool for Clostridium beijerinckii
[34,35]. C. beijerinckii is an industrially useful organism
for the production of acetone, butanol, and ethanol that
previously lacked easily programmable methods for
genome engineering [36]. Wang et al. show targeted
gene deletion in C. beijerinckii using plasmid delivered
1 kb homology sequences. Because homolgous recombi-
nation rates are low in C. beijerinckii , the use of Cas9
enables high efficiency selection of edited clones [35].
Similarly, Li and colleagues show Cas9 nickase can target
gene deletion via HR. They generate deletions ranging
from 20 to 1149 bp in multiple clostridium species [34].
Mougiakos and colleagues provide an extensive review
focusing on CRISPR’s development from a bacterial
immune system to a prokaryotic genome engineering
technology [37]. Likewise, Choi and Lee provide a
comprehensive description of the published methods
using CRISPR systems for bacterial genome engineering
[38]. Collectively CRISPR has functioned so reliably as a
genome engineering platform in bacteria, it will expedite
combinatoric reverse genetics studies and forward engi-
neering of new organisms for synthetic biology [39].
CRISPR-guided genome engineering’s influence

extends beyond bacteria into fungi also. Saccharomyces
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cerevisiae (yeast) is a model fungus with tremendous
biotechnological potential. Likewise, the eukaryotic cell
physiology of yeast has allowed it to serve as a “proxy-
organism” for the development of genome engineering
tools [40]. It was not long after initial development of
CRISPR systems that Dicarlo and coworkers demonstrated
CRISPR-targeted double stranded DNA breaks can be
used for simultaneous induction and selection of genome
edits via homologous recombination [41]. Bao et al.
demonstrated up to 3 simultaneous edits at a time in
S. cerevisiae [42]. Subsequent works have demonstrated
multi-pathway assembly employing CRISPR systems with
up to 6 exogenous DNA sequences combined simulta-
neously or conversely removal of large genetic fragements
[43]. Work from Jakociunas and colleagues demonstrated
the power of CRISPR genome engineering strategies in
yeast, enabling the assembly of 15 parts simultaneously
[44]. They demonstrate assembly of a multipart carotenoid
pathway generating S. cerevisiae capable of producing red
pigment. The authors also demonstrate engineering
tyrosine production through simultaneous pathway assem-
bly and deletion of competing metabolic processes [44].
Tsarmpopoulos and coworkers demonstrated in an inter-
esting study that exogenous bacterial genomes can be
edited inside S. cerevisiae [45]. Similarly Kannan et al.
demonstrated CRISPR-guided editing in yeast combined
with genome transplantation can be employed to study 16S
rRNA structures in M. mycoides [46]. The methods
described offer an efficient way to reengineer the minimal
genomes and organisms recalcitrant to manipulation for
basic science and forward genetic engineering. CRISPR
systems have become an indispensible molecular instru-
ment for the combinatoric rewriting and construction of
new genetic systems.

3 Engineering through evolution

Evolution is the fundamental force that has driven the
development of all life. Engineering through evolution has
tremendous potential to enable researchers to identify non-
intuitive and non-trivial solutions to biological problems
[48]. For instance, biosynthetic pathways and genetic
circuitry may require evolutionary optimization to reach a
desired function [49]. Wang and colleagues demonstrated a
method that can employ MAGE to rewrite the E. coli
genome [47]. Using lambda Red recombineering machin-
ery, this system integrated recoding oligonucleotides into
the E. coli genome [50,51]. The MAGE system facilitates
efficient diversification and rewriting of the genome. This
generates populations of cells with diversified phenotypes,
which can be leveraged to identify and select organisms
with desired traits (Fig. 2(b)). For instance, in the initial
implementations of MAGE the authors developed an
E. coli strain capable of better producing lycopene, a
commercially useful pigment. Following the first devel-

opment of MAGE, the same group reported removal of all
UAG stop codons in E. coli via combining MAGE and
bacterial conjugation in a method called Conjugative
Assembly Genome Engineering (CAGE) [52]. Removal of
all endogenous UAG stop codons renders E. coli resistant
to various bacteriophages and frees the codon for
researchers to study in vivo incorporation of new amino
acids. Generating novel codon variants will be useful for
engineering proteins with synthetic amino acids. Recoded
organisms are resistant to bacteriophages and are geneti-
cally orthogonal to their natural counterparts, making
sharing traits by horizontal gene transfer highly unlikely
[53]. This suggests great biotechnological and ex vitro
potential for recoded organisms.
More recently, Farzadfard and Lu developed a novel

genome-rewriting platform for E. coli called synthetic
cellular recorders integrating biological events (SCRIBE)
[54]. The SCRIBE system utilizes a reverse transcriptase
along with a retron template RNA cassette to generate
single stranded DNAs and the lambda Beta gene to
facilitate DNA incorporation in lagging strand synthesis.
This enables targeted and chemically controllable bacterial
genome rewriting. The system was originally applied to
generate in vivo analog memory in bacterial populations.
The population of bacterial cells function as “recorders”
where genome rewriting is linearly proportional to time of
retron induction. It is foreseeable that this system becomes
useful in the detection of specific compounds or pathogens
and perhaps most interestingly as a tool for inducible
genome editing and evolution of organisms. More recently,
Perli and colleagues demonstrated human cell genetic
recording [55]. Self-targeting sgRNAs (stgRNAs) form
indel mutations in response to environmental stimuli. This
enables detection and quantification of inflammation
response to lipopolysccharide. This suggests potential
application of mammalian SCRIBE as a biological
recorder and for the investigation of DNA sequence
evolution. Fundamentally, SCRIBE systems demonstrate
how genome engineering technologies can be utilized in
synthetic biology as “recorders” and analog memory units
in gene circuitry.
Evolution of organisms also employs large-scale genetic

rearrangements and genome minimization if advantageous.
Work by Richard Lenski and colleagues on E. coli has
demonstrated reductive genome evolution over years in
laboratory culture [56–58]. Tools to target this have been
developed to enable de novo generation of bacteria and
other microorganisms with large-scale changes from their
progenitors. Genome reduction strategies may be advanta-
geous to synthetic biology by removing non-essential
genetic and metabolic burden to cells (Fig. 2(a)). Lambda
Red recombineering tools can be employed to target
genome reduction. Posfai and colleagues have demon-
strated that 15% of the E. coli genome can be removed
[59]. This leads to emergent phenotypes such as increased
transformation efficiency and increased genome stability
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[60]. This, like the minimal mycoplasma genome, will
likely become a valuable tool for the generation of
organisms with stable genetic content (i.e., lacking
transposable elements, and perhaps reduced mutation
rates) devoted to production of various bio-compounds.
Alternatively, our group has demonstrated that CRISPR-
guided nicking can target endogenous homolgous recom-
bination. This enabled removal of 133 kb, 3%, of the
E. coli genome via a single plasmid transformation [33].
Collectively these methods provide research and develop-
ment tools for the creation of novel organisms. Concur-
rently, these tools are useful for the investigation of
systems level reengineering of organisms [61].

4 Recombinase based engineering

Recombinases have functioned as an indispensible tool for
efficient and precise genetic manipulation in a broad range
of organisms. Bacterial suicide vectors often employ
bacteriophage-derived recombinases to facilitate efficient

site-specific integration [62]. These systems enable
genome integration of large-synthetic constructs and can
be easily designed into experimental workflows for
restructuring organisms. Santos and colleagues demon-
strated recombinase assisted genome engineering can
generate E. coli capable of alginate metabolism and
ethanol production with higher titers than typical plasmid
based expression experimental regimes [63,64]. Enyeart
et al. demonstrated that targetron technology and Cre-lox
recombinase systems can be used synergistically to
restructure bacterial genomes [65]. This system enables
large-scale deletion (up to 120 kb), targeted inversion (1.2
Mb), and translocation of targeted loci. Using this system
they demonstrated a programmable and efficient way to
remodel the genomes of E. coli, S. aureus, Bacillus
subtilis, and Shewanella oneidensis [65]. Krishnakumar
and colleagues at the Craig Venter Institute developed a
technology for large-scale bacterial genome restructuring.
This system utilizes Cre-lox sites located on a donor vector
and the genome. This allows targeted replacement of large
genomic fragments with synthetic fragments [66].

Fig. 2 Large-scale reengineering of organisms. (a) Genome reduction methods, such as methods employing CRE recombinase, lambda
Red recombineering, and CRISPR-nickases, have enabled large-scale reductions to the E. coli genome. Genome reduction methods look
to investigate the emergent phenotypes by removal of large numbers of non-essential genes. These methods may identify novel organisms
and phenotypes for synthetic biology; (b) multiplex automated genome engineering (MAGE) offers itself as a powerful tool for coupling
DNA synthesis, targeted editing, and evolution. MAGE functions as an iterative process. Recoding oligo nucleotides are electroporated
into E. coli, which are then screened for a desired phenotype. This process is repeated to maximize output from a biosynthetic pathway or
to systematically replace DNA sequences (adapted from [47]); (c) synthetic chromosome rearrangement and modification by loxP-
mediated evolution (SCRaMbLE) is a promising tool for investigating evolution and combinatorial genetics. loxP sites (blue squares) are
placed around genes (various color rectangles), induction of CRE recombinases leads to recombination between loxP sites resulting in
deletions, inversions, duplications, and translocations. Resulting clones from this method can be screened for desired phenotypes; (d)
forward genome construction methods such as yeast assembly enabled construction of large-subgenomic fragments. The efficiency of
yeast homologous recombination enables connection of multiple fragments. Homolgoue fragments are connected via yeast HDR to a
bacterial artificial chromosome (BAC, orange) and yeast artificial chromosome (YAC, blue) sequence. These circular fragments can
measure up to 1 megabase and be propagated in S. cerevisiae. These assemblies can be transferred to recipient organisms via various
methods
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Recombinases methods extend beyond application in
bacteria into mammalian cell lines and full organisms.
Recombinases based methods can work cooperatively with
evolutionary genome engineering methods [67]. They
have enabled large-scale genome restructuring in
S. cerevisiae. Dymond and colleagues developed synthetic
chromosome rearrangement and modification by loxP-
mediated evolution (SCRaMbLE) [67]. The authors
systematically placed loxP sites in the 3’ UTRs of genes
on of the right arm of synthetic yeast chromsome IX
(synIXR) and the left arm of semi-synthetic chromsome VI
(semi-synVIL). They demonstrated induction of SCRaM-
bLE generates highly diverse genotypes with numerous
genomic deletions, duplications, and transpositions
(Fig. 2(c)). The SCRaMbLE method offers itself as a tool
for studying higher order combinatorial genetics and for
large-scale reengineering of eukaryotic genomes. Cre
recombinase is an auspicious protein, and because of
comprehensive biochemical understanding from years of
research, it is also being investigated as a tool for gene
therapy. For example, Karpinksi and colleagues recently
created Brec1 recombinase [68]. Brec1 was created by
directed evolution of Cre recombinase to target Human
immunodeficiency virus (HIV) LTRs. It is shown that
expression of Brec1 in patient-derived HIV+ cells leads to
proviral excision and curing of the virus.

5 Fully synthetic organisms

Perhaps one of the most promising aspects of genome
engineering coupled with synthetic biology is the de novo
design and construction of new organisms. The methods to
accomplish this, have in large part been undertaken by
Synthetic Genomics, who have developed a series of novel
methods for identifying the minimal set of genes needed
for a genome and in vitro and in vivo assembly of large
synthetic DNA molecules [69]. To facilitate large-scale in
vitro DNA assembly, Daniel Gibson et al. developed
Gibson DNA Assembly to assemble DNA molecules
nearly half a megabase [69]. To accomplish this, T5
exonuclease removes nucleotides from substrate DNA
molecules. This reveals single-stranded DNA homologies
and allows hybridization between separate DNA mole-
cules. Meanwhile, Phusion DNA polymerase adds nucleo-
tides counter to the exonuclease and Taq ligase catalyzes
formation of phosphodiester linkages thus connecting
DNA molecules.
To create the synthetic genome, Lartigue and colleagues

developed a method to transfer whole genomes between
bacteria via digestion of cells in agarose plugs and
polyethylene glycol (PEG) mediated transformation [70].
More recently, Lartigue and coworkers described and
updated method for genome transplantation wherein
whole bacterial chromosomes are transplanted to yeast.

S. cerevisiae is an extremely effective host for homologous
recombination experiments and propagation of large DNA
molecules [71]. In this study they demonstrated the utility
of yeast HR by removing a type III restriction enzyme gene
that renders M. mycoides cells resistant to introduction of
exogenous DNA molecules. In addition, Karas et al.
recently described a protocol for direct cell-to-cell transfer
of genomes [72]. This method utilizes PEG mediated
cellular fusion, thus reducing the likelihood of chromo-
some damage caused during the DNA purification process.
To go from synthetic DNA sequences to a full genome,

Gibson and coworkers utilized a hierarchical DNA
assembly scheme with a mixture of in vitro and in yeast
DNA construction (Fig. 2(d)). The 1-megabase synthetic
M. Mycoides genome (JCVI-syn1.0) was transplanted into
recipient Mycoplasma capricolum cells. This represented
the first assembly scheme going entirely from synthetic
DNA sequence to full genome of an organism [73]. More
recently, Hutchinson and coworkers revealed a new
minimal genome, JCVI-syn3.0. Here they reduced the
size of the 1 megabase M. mycoides genome to 531
kilobases [9]. This substantial reduction of genome size
was accomplished by genome redesign informed by TN5
transposon mutagenesis studies of JCVI-syn1.0. Collec-
tively the tools for genome construction developed by the
J. Craig Venter Institute provide a framework for synthetic
biologist to go from digitized DNA sequence to full
genomes.

6 Conclusions and future perspectives

As circuits progress and become more complex, editing
and genome redesign schemes will require more and more
power. Systematic rational and combinatoric design
coupled with evolutionary based engineering methods
will enable production of microbes with larger synthetic
gene networks [48,75,76]. Technologies that allow us to go
from digitized DNA sequence to biological implementa-
tion are central to synthetic biology. CRISPR systems with
high specificity will become the most tractable for
implementing biological devices in human cell systems
[77]. CRISPR based genome engineering methods make
rapid construction of biosynthetic pathways possible (See
Table 1). Genome engineering tools like MAGE enable
optimization of biosynthetic pathways and will become
more prevalent as automated workflows become more
commonplace. Coupling of MAGE with CAGE has made
removal of all UAG stop codons from the E. coli genome
possible (See Table 1). Freeing of various codons is a step
towards engineering organisms with orthogonal genetic
code from their outside counter parts. This is an important
hurdle synthetic biology faces in eventual application
outside the laboratory. Large-scale genome reduction and
construction of minimal genomes will enable creation of
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designer bacterial strains with reduced metabolic burden
and increased genetic stability [60].
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