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Abstract Over the past few decades, cell penetrating
peptides (CPPs) have become an important class of drug
carriers for small molecules, proteins, genes and nanopar-
ticle systems. CPPs represent a very diverse set of short
peptide sequences (10‒30 amino acids), generally classi-
fied as cationic or amphipathic, with various mechanisms
in cellular internalization. In this review, a more compre-
hensive assessment of the chemical structural character-
istics, including net cationic charge, hydrophobicity and
helicity was assembled for a large set of commonly used
CPPs, and compared to results from numerous in vivo drug
delivery studies. This detailed information can aid in the
design and selection of effective CPPs for use as transport
carriers in the delivery of different types of drug for
therapeutic applications.

Keywords cell penetrating peptides, amphipathic pep-
tides, drug delivery

1 Introduction

The term “cell-penetrating peptide” (CPP) was first used
about 30 years ago, and originated from findings that a
short cationic sequence in the HIV-1 Tat protein, termed
Tat peptide, could carry the protein into the cytosol and
nucleus of cells to transactivate reporter genes [1,2]. Since
then, the list of CPPs has been expanded to over 200
sequences, including protein derived, synthetic sequences,
or chimeric sequences containing a protein derived
sequence fused to a nuclear localization sequence (NLS)
(Table 1). The most attractive aspect of these small
peptides is their capability to carry other molecules,
regardless their molecular size, into intracellular compart-
ments including the nucleus and cytoplasm [3,4].

Obviously, CPPs can be developed into carrier-mediated
delivery systems for various types of drug from small
molecules to proteins and genes [5–7]. CPP is one of many
terms that have been used to describe peptides with
transmembrane transport properties. It appears to be a
more generally acceptable term than others, such as
membrane transduction peptide (MTP) and protein
transduction domain (PTD), which imply a specific type
of transport process at the cell membrane. However, in a
broad view, CPP represents a large diversity of peptides
that possess different mechanisms, efficiency and intracel-
lular targets in transmembrane transport [3,8–10]. The
diversity of CPPs makes the comparison of transport
mechanisms and application in drug delivery difficult.
Therefore, a systematic classification of CPPs based on
their molecular and transport characteristics is a useful way
to enable selection of a certain CPP as a transport carrier to
deliver a specific drug with well-defined molecular
properties and intracellular target of action. In general,
CPPs have been divided into 2 major types, i.e., cationic
and amphipathic peptides. However, within each type,
there are other subtypes which add further diversity of
CPPs in their transport characteristics. In this review, we
will separate CPPs into different classes based on more
detailed chemical structures. We believe that such a
classification will correlate more accurately with the
mechanism and effectiveness of a CPP as a transport
carrier in drug delivery. We will focus on the results
recently obtained from in vivo studies to justify our
classification of CPPs.

2 Sequence, structure and membrane-
binding of cationic and amphipathic CPPs

2.1 Cationic CPPs

Cationic peptides, including synthetic polylysine and
natural protamines, have a long history as carriers for
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Table 1 Examples of CPPs

Sequence Peptide name Origin %a) NCb) Helicalc) Ref.

Protein derived CPPs

GRKRKKRT 6-Oct Transcription factor Oct-6 0% + 6 No [11,12]

RRIRPRPPRLPRPRP Bac-1-15 Bactenecin 7 13% + 7 No [13]

KMDCRWRWKCCKK Crot
(27‒39)

Rattlesnake venom
(Crotamine)

46% + 5 No [14]

RKKRRRESRKKRRRES DPV3 Human superoxide dismutase 0% + 12 No [15]

RRRRNRTRRNRRRVRGC FHV coat
(35‒49)

RNA binding peptides 11% + 11 No [16–18]

ASMWERVKSIIKSSLAAASNI FHV γ
peptide

Flock house virus 52% + 2 Yes (8 THR) [19,20]

LGTYTQDFNKFHTFPQTAIGVGAP hCT (9‒32) Human calcitonin (hCT) 33% 0 No [21]

GGVCPKILKKCRRDSDCPGACICRGNGYCGSGSD MCoTI-
II(MCo)

Momordica cochinchinensis
trypsin inhibitor II

32% + 3 No [22]

VQRKRQKLMP NF-kB Transcription factor NF-kB 30% + 4 No [12]

NAKTRRHERRRKLAIERGC P22 N RNA binding peptides 26% + 6 No [16]

RQIKIWFQNRRMKWKK Penetratin
(Antp)

Antennapedia homeodomain
of drosophila

37% + 7 Yes (3 THR) [14,20,21,
23–33]

LLIILRRRIRKQAHAHSK pVEC Murine vascular
endothelial-cadherin protein

44% + 6 Yes (4 THR) [34]

PKKKRKV SV40 Transcription factor SV40 14% + 5 No [12]

RRLSYSRRRF SynB3 Protegrin 30% + 5 No [31]

GRKKRRQRRRPPQC HIV-1 Tat
(47‒57)

HIV-1 7% + 8 No [13–15,17,
21,29,33,
35–43]

VSRRRRRRGGRRRR LMWP Protamine 7% + 10 No [44]

KAAPAKKAAAKKAPAKKAAAKK HBHAc Mycobacterium
tuberculosis

44% + 10 No [45]

Chimeric CPPs

CHHHHHRKKRRQRRRHHHHHC mTat Tat+ histidine 5% + 6 No [46]

KETWWETWWTEWSQPKKKRKV Pep-1 Trp rich cluster+ SV40 NLS 28% + 3 Yes (5 THR) [47]

KETWFETWFTEWSQPKKKRKV Pep-2 Trp rich cluster+ SV40 NLS 28% + 3 Yes (5 THR) [48]

KWFETWFTEWPKKRK Pep-3 Trp rich cluster+ SV40 NLS 33% + 3 Yes (3 THR) [48]

PKKKRKVALWKTLLKKVLKA PV-S4(13) SV40 NLS+ dermaseptin
S4 peptide

45% + 9 Yes (7 THR) [40]

AAVALLPAVLLALLAPVQRKRQKLMP SN50 Signal sequence of K-FGF+
NLS of NF-kB p50 subunit

65% + 4 Yes (6 THR) [49]

AGYLLGKINLKALAALAKKIL Transportan;
TP10

Fusion of neuropeptide gala-
nin and wasp venom peptide

61% + 4 Yes (9 THR) [26,29,50]

Synthetic CPPs

WEAALAEALAEALAEHLAEALAEALEALAA GALA n/a 73% ‒7 Yes
(17 THR)

[51]

IRQRRRR IRQ n/a 29% + 5 No [52]

WEAKLAKALAKALAKHLAKALAKALKACEA KALA n/a 66% + 5 Yes
(16 THR)

[53]

KLALKLALKALKAALKLA MAP n/a 72% + 5 Yes
(12 THR)

[28,54,55]

l-Rn, d-Rn (n = 5‒16) Oligoarginine n/a 0% + n No [14,16,23,
29,30,35,41,
42,55–58]

RALARALARALRALAR RALA n/a 69% + 5 No [59]
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intracellular delivery of proteins [61–63], DNA [64,65]
and small molecule drugs [66–68]. In the late 1980s,
however, it was found that arginine and lysine-rich
sequences in natural proteins were capable of carrying
the protein into the cytosol or nucleus of cells, initiating the
CPP field [1,2]. One of the first, and most well studied,
CPPs is the Tat peptide [47–57] (YGRKKRRQRRR),
which is the 11-amino acid sequence derived from the
protein transduction domain in HIV-1 virus transcriptional
factor [1,2]. The abundant arginine residues in Tat peptide
subsequently prompted the investigation into various
lengths of synthetic oligoarginine [23,42,43,58,69]
(Table 1). It was suggested that, due to the bidentate
hydrogen-bonding capacity, the guanidinium moieties in
oligoarginines may provide a stronger binding to car-
boxylic, sulfate and phosphate groups on the surface of cell
membranes (Fig. 1) [70]. The difference between oligoar-
ginine and oligolysine on membrane translocation was
observed in the early works on CPPs, where studies of the
comparison of oligoarginine and oligolysine demonstrated
the unique properties of the guanidinium group in arginine
in proteoglycan binding, including both the affinity and the
clustering of binding [71,72]. Many studies have suggested
that the binding of CPPs to glucosaminoglycan moieties in
proteoglycans is an important step for the delivery of the
peptide into the cytoplasmic compartment in the cells
[71,73]. It was further substantiated in later studies that
both the cellular uptake and the intracellular localization of
these 2 cationic oligopeptides were very different [42,74].
Using a subcellular fractionation method or by comparison

of the internalization of 4 °C versus 37 °C, it was found
that oligoarginine was localized in the cytoplasmic fraction
while oligolysine was mainly vesicular (Table 2). Other
arginine-rich CPPs, such as Tat peptide, behave similar to
oligoarginine, rather than oligolysine (Table 2). Interest-
ingly, when oligolysine was guanidinylated to convert the
ε-amino group to guanidine (Fig. 1), the intracellular
localization shifted from vesicular to cytosolic fraction
(Table 2). Further, methylation of oligoarginine (Fig. 1),
which maintains the positive charge but disrupts the
bidentate binding ability, also results in reduction of the
cytosolic localization (Table 2). Taken together, the
inclusion of arginine, rather than simply cationic charge
from a primary amino acid-containing side group such as
lysine, in the CPP sequence has been shown to be
important for access to the cytosolic compartment. This
difference in intracellular localization may explain the
different effectiveness when a biological active cargo was
carried by oligolysine or oligoarginine [75], even though
both oligopeptides are equally positively charged. Thus,
arginine-rich, rather than lysine-rich, cationic CPPs are
preferred as carriers for the delivery a biologically active
molecule into the cytoplasmic compartment.
The sequence of cationic charges in a CPP sequence is

mainly oriented in clusters of 3 or more arginine or lysine
residues adjacent to each other, as in Tat peptide, 6-Oct,
DVP peptides, SV40 protein derived CPPs and synthetic
oligoarginine CPPs (Table 1). There are only a few
examples where the cationic CPPs are distributed through-
out the CPP sequence, such as in crotamine derived CPP

(Continued)
Sequence Peptide name Origin %a) NCb) Helicalc) Ref.

Synthetic CPPs

WRWRWRWRWRWRWR RW n/a 50% + 7 No [18]

CVQWSLLRGYQPC S41 n/a 46% + 1 No [60]

a) %: %Hydrophobicity, determined as the percentage of hydrophobic amino acids/total amino acids
b) NC: Net charge
c) Helicity determined by the number of total hydrophobic residues (THR) on the same surface; Peptides with 3 or more THR may form α-helices

Fig. 1 Guanidine structure in CPPs. (A) Structural comparison of arginine and lysine side chains, along with guanidinated (Gnd)-lysine
and methylated arginine; (B) Proposed hydrogen bonding of the guanidine group of arginine with phosphate groups present at the cell
surface
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and MCoTI-II (Table 1). Previously, it has been shown that
the cationic CPPs with a clustered orientation had higher
internalization than those with a mixed orientation [76],
which may be related to the internalization mechanism and
membrane binding properties.
Membrane-binding is an important factor in determining

the effectiveness of using a CPP as a drug carrier because it
will determine the efficiency in transmembrane transport
and the cytotoxicity of the delivery system. Membrane-
binding can be considered as the first step in the transport
of CPPs into the cells. The positive charge, which is the
fundamental characteristic of most CPPs, is thought to
provide an anchor force for CPPs to adhere to the
negatively charged cell surface. Generally, the structure
of oligoarginine and oligolysine in aqueous solution is in a
random conformation [77–79]. As such, ionic interactions
have been the primary focus for their binding to cell
membranes. However, after careful analysis of the energy
requirement for membrane binding, it was found that the
force for the membrane-binding of a positively charged
polypeptide was mostly hydrogen-bonding rather than
ionic interactions [80]. The contribution from hydrogen-
bonding was especially predominant in the case of
oligoarginine compared to oligolysine, suggesting the
important role of hydrogen-bonding in the superiority of
oligoarginine in membrane transport [80].
It has long been reported that both polyarginine and

polylysine can acquire an alpha-helical conformation upon
complexation with heparin [71,81]. It has also been
reported that polylysine-heparin complexes exhibited an
unique membrane binding and transport mechanism which
was different from polylysine in cell cultures [82]. In fact,
it has been demonstrated that oligoarginine binds tightly
with the heparan sulfate moiety in proteoglycans, with a
cationic/anionic charge ratio close to 1 [81]. Therefore, it is
likely that the binding of cationic CPPs to the sulfate

groups in proteoglycan may maintain the peptide structure
in an α-helical conformation. However, the effect of such
conformation on the membrane binding and transmem-
brane transport of cationic CPPs is not known at the
present time.
As will be further discussed in the next section, due to

the negative charges in phospholipids, cationic oligoargi-
nine and oligolysine can also interact directly with lipid
bilayers [80], even though the binding to phospholipid is
much lower than that to heparan sulfate proteoglycan [71].
It was demonstrated by using solid-state NMR method
that, at physiological temperature, the binding of phos-
phoryl group in phospholipid to guanidinyl group in
arginine is much stronger than to the ε-amino group in
lysine [83]. This finding is consistent with the general
observation that arginine, rather than lysine, plays an
important role in the cross-membrane transport of cationic
CPPs.

2.2 Amphipathic CPPs

While the arginine and lysine residues in most cationic
CPPs are clustered together, they are evenly distributed
throughout the sequence in a majority of amphipathic
CPPs (Table 1). In addition to lysine and/or arginine
residues, amphipathic sequences are also rich in hydro-
phobic residues such as valine, leucine, isoleucine, alanine,
etc. Of all of the protein derived peptides, about half of
them are amphipathic, where the other half is cationic.
Interestingly however, almost all of the synthetic CPPs, as
well as chimeric sequences which contain a protein derived
sequence fused to a NLS, are amphipathic (Table 1). The
binding of amphipathic CPPs to the lipid bilayers in cell
membrane is very different from that of cationic CPPs. The
strong hydrophobic interaction and the insertion into the
lipid bilayer are observed in amphipathic, but not in

Table 2 Comparison of CPPs for cytosolic versus vesicular accumulation

CPP Direct translocation Vesicular Ref.

Antp 15% 85% [74]b)

(RW)9 30% 70% [74]b)

Tat 75% 25% [74]b)

Tat 92% 8% [42]c)

(R)9 50% 50% [42]c)

(R)9 82% 18% [42]c)

(K)9 21% 79% [42]c)

Gnd-(K)9
a) 53% 48% [42]c)

(Methylated-R)9 n.d.d) > 100% (unpublished findings)

MAP n.d.d) > 100% [55]c)

a) 50% guanidine : amine modification
b) Calculated by comparing amount internalized at 4 °C versus 37 °C
c) Calculated by subcellular fractionation to separate the vesicular from cytosolic localization of internalized CPP
d) Not detectable
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cationic, CPPs [80]. In fact, for primary amphipathic CPPs,
CPPs with an α-helical conformation in aqueous solution,
the binding of the hydrophobic region on a CPP molecule
to the lipid surface of the cell membrane is considered as
the major force of interaction [84]. In this case, the CPP
molecule will insert into the lipid bilayer regardless the
strength of the ionic interaction. In contrast to cationic
CPPs which can be found in the cytosolic fractions,
amphipathic CPPs tend to be associated with vesicles
(Table 2) [55,74]. These findings can be related to the
internalization mechanism, or due to their high affinity of
the amphipathic CPPs for the lipid membranes. On the
other hand, charge interaction is important for the
membrane binding of secondary amphipathic CPPs,
which are CPPs with a random conformation in aqueous
solution but exhibit an α-helical conformation after binding
to polyanionic molecules. These molecules contain several
hydrophobic residues that are displayed on the same
surface in a helical wheel, indicating their propensity to
form helical structures. In most cases for secondary
amphipathic CPPs, the hydrophobic cluster will only be
formed when a CPP molecule complexes with anionic
components on the cell surface, such as proteoglycans and
phospholipids. Therefore, the insertion of a secondary
amphipathic CPP into the lipid bilayer on the cell surface is
dependent on the charge interaction, which makes this type
of CPPs a hybrid between primary amphipathic and
cationic CPPs. One of the most well studied and effective
secondary amphipathic CPPs is penetratin (Table 1). Many
of the unique properties of penetratin as an effective CPP
are due to both the charge and amphipathicity of this
peptide [85].

3 Cellular uptake pathways of CPPs in drug
delivery

The lack of a clearly elucidated mechanism for the
transport of CPPs across cell membrane is an indication
that cellular uptake of CPPs involves more than one
pathway. In general, there are two major pathways that are
used to describe how a CPP can be transported into the
cells, i.e., endocytosis and direct penetration through the
plasma membrane (termed “membrane transduction”)
(Fig. 2) [39,86]. For example, macropinocytosis [87,88],
micropinocytosis [89], and clathrin-mediated [38,73] and
caveolae/lipid raft-mediated [90,91] endocytosis, have
been proposed as the mechanism of CPP internalization.
Although the formation and the intracellular processing of
various endocytotic pathways are very different from each
other, the main localization of the CPP following
internalization is vesicular. The mechanism that can induce
transmembrane transport, presumably resulting in the
direct access of the CPP and its cargo into the cytosolic
compartment, is even more diverse. Due to the differences
in intracellular localization, the classification of CPPs into
endocytosed or membrane transductive polypeptides is
useful for the design of drug delivery systems to reach the
desired intracellular compartment to achieve biological
activity.
For CPP-conjugates that are internalized by endocytosis,

one of the most critical factors in determining the
effectiveness in drug delivery is the escape of either the
intact CPP-conjugates or the drug cargo from the
endosome to the cytosol [92]. The escape from endosomes
has 2 implications, i.e., to avoid lysosomal degradation and

Fig. 2 Proposed mechanisms of internalization. Endocytic internalization mechanisms including (1) macropinocytosis,
(2) micropinocytosis, (3) clathrin-mediated endocytosis, and (4) caveolar-mediated endocytosis have been shown to be involved in
CPP uptake into cells. Several endocytosis-independent mechanisms have also been proposed, including membrane destabilization
through (5) inverted micelle formation, or the (6) “carpet” model describing perturbation of the phospholipids to increase membrane
fluidity; or pore formation through (7) membrane insertion following interaction with the anionic groups of the phospholipid membrane to
form toroidal pores, or (8) formation of an α-helical structure within the membrane where hydrophilic side chains form the inner face of the
port to form a barrel stave pore
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to reach cytosolic target. Many CPPs can facilitate the
transport of cargo across endosomal membrane by either
endosomolysis [93], membrane fusion [94], or channel
formation [95]. The linker between the cargo and CPP can
also play an important role in the trans-endosomal
membrane transport. For example, in cytochrome c-MAP
conjugates, free cytochrome c was detected in cytosolic
fraction only when the cargo is conjugated to MAP via a
disulfide, but not thioether, linker [96]. In this case, MAP
as a CPP is internalized by the cell via endocytotic pathway
and is localized intracellularly in vesicular and nuclear, but
not cytosolic, compartments [97]. The disulfide linkage
can be reduced on the endosomal membrane to release the
intact cargo, cytochrome c, into the cytosol [96].
The direct penetration, or “membrane transduction”

models for CPP internalization involve strong binding of
the CPP on the outer leaflet of the lipid bilayer, followed by
entry through several different proposed mechanisms
including membrane lysis through transient formation of
pores or membrane destabilization (Fig. 2). In the proposed
transient pore formation models, the CPPs insert into the
membrane through interaction with the anionic groups of
the phospholipid membrane (“toroidal pore”), or assume
an α-helical structure within the membrane where their
hydrophilic side chains form the inner face of the port
(“barrel stave pore”) [98–100]. The destabilization meth-
ods include the “inverted micelle” model [25,101], which
postulates that the CPP remains in contact with the
membrane surface during the entire translocation, and the
“carpet” model where membrane fluidity is transiently
increased by the association of the cationic peptide with the
anionic cell surface [102]. The pore formation models,
although proposed for both cationic and amphipathic
CPPs, is generally more acceptable for the amphipathic
CPPs, since it is difficult to explain how sequences lacking
hydrophobic amino acids can interact with the lipid bilayer.
The pore formation and the cytolytic activity of anti-
microbial and cytolytic peptides, such as magainins [103–
105] and melittin [106,107], has been studied extensively
both experimentally and by molecular modulations.
Although this type of internalization may be more efficient,
as studies have shown that the internalization of amphi-
pathic CPPs is generally much higher than cationic CPPs
[55,108], it is also much more toxic [109,110]. Membrane
destabilization models, on the other hand, have gained
more interest for cationic CPPs lacking hydrophobic
residues, since the CPPs remain associated with the polar
groups of the lipid bilayer and do not contact its
hydrophobic interior. Since these mechanisms do not
lyse the membrane, they are considered to be less toxic,
but also a less efficient pathway for cell entry. Taken
together, support for all of the direct penetration models is
mainly via in vitro studies showing that CPP internaliza-
tion is energy independent, occurs at low temperatures that
inhibit endocytosis, and/or occurs in the presence of
various different types of agents that inhibit endocytosis.

However, a majority of the mechanistic studies are done
using artificial membranes, so it is not clear if the
processes occur in live cells. Further, the membrane
destabilization and formation of pores is generally thought
to be transient, and therefore difficult to capture and
measure.
Further complicating the understanding of the inter-

nalization mechanisms of CPPs is that most studies show
that CPPs are internalized via multiple pathways (different
types of endocytosis and/or membrane transduction)
concurrently and may depend on several factors including
the size and type of CPP, concentration used, and cell line
[111–119]. A major component in the debate over the
transport mechanism is the difficulty in quantitatively
evaluating CPP internalization. The methodology used to
study CPP transport relies on the measurement of the total
intracellular internalization using a radioactive or fluor-
escent label, the use of confocal microscopy of live cells,
or the downstream activity of a cargo molecule delivered to
the cytosolic or nuclear site [117,120]. The major pitfall in
the measurement of total internalization is the lack of
separation of the cytosolic, vesicular, or nuclear localiza-
tion. Since the CPPs are distributed to different extents in
each of the compartments, measuring the total intracellular
CPP does not distinguish each pathway independently. The
intracellular localization of cell-internalized CPPs can be
determined by the separation of the homogenized cells into
organelles and cytosol fractions, with the calibration of the
degree of organelle rupture during the homogenization
[42,43,55]. As described in Section I, cationic CPPs with
high content of arginine residues, such as oligoarginine and
Tat, are mostly found in cytosolic fraction, while CPPs
with amphipathic properties, such as MAP, are localized
exclusively in vesicular compartments (Table 2). Similar
results were obtained when the internalization of CPPs is
compared at 4 °C, where endocytosis is inhibited, versus
37 °C. For example, it was found that the internalization
the amphipathic CPP penetratin was mainly through the
vesicular route (70% vesicular), while cationic CPPs Tat
and oligoarginine were not (25% and 50% vesicular,
respectively) (Table 2) [74]. However, when applied in
drug delivery, the intracellular localization of the carrier
CPP may not reflect the location of the drug molecules.
There are several reasons that a drug-CPP conjugate

may differ from CPP in their transport pathway. First, the
charge and size of the drug will affect the transport of the
CPP in both membrane transduction and endocytosis. If
the drug molecule is negatively charged under the
physiological conditions, the positive charge of CPP will
be neutralized. This charge neutralization effect is most
obvious when a cargo of a macromolecule, such as
oligoglutamic acid [121], is conjugated to a CPP. In fact,
anionic oligopeptides have been successfully applied to
prevent the non-specific uptake of CPPs when used as a
drug carrier [76,122–126]. The charge neutralization is a
concern when CPPs are used for highly negative charged
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oligonucleotide delivery such as in gene and siRNA
therapies, and generally the CPP in the conjugate or
complex should be in excess [93,127,128]. When proteins
are the macromolecular cargoes in CPP conjugates, the
charge neutralization is usually not an issue. On the other
hand, the size of a macromolecular cargo may not affect
the internalization of CPP by endocytosis due to the size of
early endosomes. However, macromolecular drugs can
change the membrane transduction of the CPP signifi-
cantly, not only by the size but also by the hydrophilicity of
the cargo, which can interfere the insertion of peptide into
lipid bilayers [4]. Small molecular drugs, including small
peptides [75], can be transported predominately via
membrane transduction when conjugated to an arginine-
rich cationic CPP.

4 In vivo studies of CPP-mediated drug
delivery

4.1 Small molecular drug conjugates

As shown in Table 3, most of the small molecules that have
been conjugated to CPPs for in vivo studies were imaging
markers such as fluorophores or PET tracers. The imaging
studies provided not only a measurement of the biodis-
tribution of the CPPs, but also the potential as diagnostic
agents. There were very few successful studies on simple
drug-CPP conjugates in therapeutic investigation because

conventional small molecular drugs generally do not have
problem in membrane transport. However, CPPs have been
considered as carriers for drugs that are impermeable to
cell membrane or desirable for targeted delivery in cancer
treatment. Cationic oligopeptides, such as oligolysines and
oligoarginines, have long been used to increase the cellular
uptake of small impermeable molecules or to overcome the
multiple drug resistance [68,129]. For small molecular
drugs, the mechanism of the cellular uptake of a drug-
peptide conjugate is not very critical if the linkage between
the drug and CPP can be cleaved either in endosomal-
lysosomal pathway or in cytosolic compartment. There-
fore, oligoarginines or Tat-peptides are most commonly
selected CPPs for small molecular drugs due to their easy
accessibility and chemical conjugation. For the transport
across blood-brain barrier, the hydrophobicity of a CPP, as
shown in SynB3 for endomorphin-1 delivery [130], could
be an important factor.
Conjugation of CPPs to small molecule drugs is

generally made via the thiol of an incorporated cysteine
residue, or to an epsilon- or α-amine in the sequence.
Stable linkages such as maleimide [125,126,130,131,137]
or amide [125,126,130–134] are commonly utilized (Fig.
3). More recently, click chemistry reactions, such as
copper-catalyzed azide-alkyne 1,3-dipolar cycloadditions
(CuAAC) are also being applied (Fig. 3) [139]. Alter-
natively, in order to ensure an intracellular release of the
active drug, small molecular drugs are also conjugated to
CPPs by either disulfide linker [138] or acid-sensitive

Table 3 CPP-small molecule conjugates for in vivo deliverya)

CPP % Φ NC Helicalb) Drug /cargo Studies Animal model Ref.

SynB3 30% + 5 No Endomorphin-1 Brain delivery;
analgesic effect

Mouse [130]

R9-linker-E9 (linker: cleavable by
MMP2/9)

0% + 9 No Cy5/Cy7 Tumor targeting Mouse (HT-1080
xenograft)

[125]

R9-linker-E9 (linker: cleavable by
MMP2/9)

0% + 9 No Cy5/Cy7 Tumor targeting Mouse (orthotopic HNSCC
xenograft, tongue)

[131]

R11 0% + 11 No FITC Brain delivery Mouse [132]

R8-linker-E8 (linker: cleavable by
MMP2)

0% + 9 No 125I/177Lu-DOTA Infarcted
myocardium uptake

Mouse model of
myocardial infarction

[133]

hCT(9-32) 68Ga-DOTA Biodistribution; metabolism Mouse [134]

14C-R8 0% + 8 No n/a Biodistribution; metabolism Rat [135]

Tat 7% + 8 No Porphyrin Tumor accumulation Mouse (PC-3M xenograft) [136]

R8-linker-E8 (linker: cleavable by
MMP2)

0% + 8 No Cy5 Detection protease activity Mouse (asthma model) [137]

R9-linker-E9 (linker: H2O2-
cleavable small molecule)

0% + 9 No Fluorescein/Cy5 Imagining of
inflammation

LPS mouse model of
lung inflammation

[126]

TAT, R11 7%, 0% + 8,
+ 11

No Sodium undecahydro-
mercaptocloso-
dodecaborate

Tumor reduction via
BNCT

Glioma-bearing mouse [138]

a) BNCT: boron neutron capture therapy; Cy5: cyanine fluorescent dye no. 5; Cy7: cyanine fluorescent dye no. 7; DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid; Ga: gallium; H2O2: hydrogen peroxide; Lu: lutetium; MMP2/9: matrix metalloprotease 2/9; NC: Net charge; Φ: %Hydrophobicity, determined as the
percentage of hydrophobic amino acids/total amino acids
b) Helicity determined by the number of total hydrophobic residues (THR) on the same surface; Peptides with 3 or more THR may form α-helices
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linker [140,141] (Fig. 3). Since the release of free drug
from the conjugate is independent of the degradation of
CPPs, there may be advantages of using D-form of CPP
that is resistant to proteolytic degradation and can increase
the stability and prolong the accumulation inside the target
cells [41,142].
The lack of specific uptake by tumor cells is the major

concern in the application of CPP as a simple drug carrier
in cancer treatment [143–145]. Most CPPs show a non-
specific biodistribution in highly fenestrated organs such as
liver and spleen, possibly due to the charge and size of the
oligopeptides [146]. In many cases, this non-specific
distribution can over-power the active targeting recogni-
tion. For example, when conjugated with a tumor specific
antibody [147], or antibody fragment [148], CPP can
reduce the selective binding to the tumor antigen and
decrease the tumor localization. Therefore, a drug-CPP
conjugate may not achieve any therapeutic advantages,
unless the non-specific biodistribution due to the cationic
charge can be blocked by different masking mechanisms,
such as charge neutralization by an anionic oligopeptide
[76,122–126]. The targeted delivery effect of the masked
CPP will rely on the selective reactivation of the CPP at the
target site. For example, targeted delivery of CPPs has
been demonstrated if the removal of the masking anionic
oligopeptide can be achieved by either the presence of
specific proteases [149,150] or the mild-acidic microenvir-
onment [151–153] within the microenvironment inside a
solid tumor. For example, an activatable CPP, Rn-linker-En

(n = 8‒9), originally developed by Tsien et al.
[124,125,131,137,154,155] showed the cell binding and

internalization of oligoarginine were masked by the
oligoglutamic acid while the linker was intact. Following
selective cleavage of the linker, the cell penetrating
properties oligoarginine were revealed at the target site
(Fig. 4(A)). Based on these studies and others, the use of
enzyme specific activation of the R9/E9 complexes has
been demonstrated as a promising approach to enhance the
in vivo application of CPPs. There have been several
studies, however, that have shown that the enzymatic
activation in vivo is not tumor selective and may also occur
in the vascular compartment [156]. An alternate approach
utilizes a pH-sensitive masking peptide containing histi-
dine-glutamic acid repeats (“(HE)n”) fused to a cationic or
amphipathic CPP (oligoarginine or model amphipathic
peptide, respectively) [122,123,157]. In this design, the
(HE)n sequence is net-negative at physiological pH 7.4,
thus masking the cationic charge of the CPP sequence.
However, at mildly acidic pH< 7.0, the protonation of the
histidine residues neutralizes the masking sequence to
reveal the cationic charge of the CPP (Fig. 4(B)). The CPP
along with its fused cargo (i.e., small molecule drug or
diagnostic imaging agent, peptide or protein drug) can then
exert its high binding and internalization directly at the
mildly acidic site.

4.2 Proteins and peptides

One of the major hurdles in the development of protein and
peptide drugs is the poor absorption across biological
barriers due to the size and hydrophilicity [160].
Conceivably, CPP technology is an ideal approach to

Fig. 3 Examples of linkers in small molecule-CPP conjugates. Stable linkers for small-molecule CPPs include the thioether linkage,
which is achieved utilizing a maleimido-reactive group, the triazole linker by use of copper-catalyzed azide-alkyne 1,3-dipolar
cycloaddition (CuAAC) click chemistry, and the amide linkage using carbodiimides and/or N-hydroxysuccinimide esters. Cleavable
linkers include those cleaved in acidic pH such as the hydrazone linker, obtained by reaction of an aldehyde with a hydrazide, and the cis-
aconityl linker, obtained by reaction of citraconic anhydride with an amine. Disulfide linkers formed between two thiols, which are
cleaved under reducing conditions are also used
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overcome the absorption limit. Proteins or peptides can be
linked to CPP by chemical conjugation methods. In fact,
chemical conjugation with a CPP carrier has been
demonstrated to increase the pulmonary absorption of
insulin in vivo [41]. There are also promising in vivo and in
situ studies on the use of Tat peptide and low molecular
weight protamine to deliver insulin across intestinal
epithelia [161–163].
However, chemical conjugation of a protein with a CPP

most likely will produce a heterogeneous product. There-
fore, recombinant technology to fuse a protein drug with a
CPP domain is a common technology to prepare a fusion
product with one protein drug domain and one CPP
domain. When constructing a CPP-fused recombinant
protein, several factors have to be considered. First, the
order of CPP and protein in the fusion protein may be
important for the expression efficiency. Generally, the
protein domain can be located in either end of the CPP

Fig. 4 Examples of masking strategies to target CPP-drug delivery systems. Due to their high cationic charge, CPPs are non-specifically
internalized in many types of cells and tissues. This non-specific distribution can overpower the targeting recognition when combined with
other active targeting approaches. One approach in overcoming this issue is by shielding the charge of the CPP until the complex reaches
the target site. (A) In this example, the cationic charge of oligoarginine was masked by linkage to oligoglutamic acid through a protease-
sensitive peptide sequence [124,125,131,137,154,155], or a hydrogen peroxide sensitive group [126]. Upon cleavage, the oligoarginine
and oligoglutamic acid dissociate, revealing the cationic charge of oligoarginine. (B) Alternatively, the cationic charge of the CPP was
masked by linkage to a histidine-glutamic acid copolymer sequence [122,123,157]. At physiological pH 7.4, the histidine is neutral while
the glutamic acid is negative; therefore the net anionic copolymer masks the cationic charge of the CPP. With cationic histidine and anionic
glutamic acid at mildly acidic pH 6.5‒7, the copolymer net charge is neutral, unmasking cationic charge of the CPP. (C) In this example,
the small chain PEG-CPPs are linked to lipids in a liposome via a stable linkage, and also targeted by conjugation with a long chain PEG-
antibody via a cleavable linker (e.g., protease sensitive [158] or acidic pH-labile [159]). In this design, the CPP conjugated to a small PEG
chain is masked by the longer PEG chain linked to a targeting agent. Once the liposomes accumulate near the surface of the target site, the
targeting agent-long PEG chain conjugate is cleaved, revealing the CPP to drive the internalization
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sequence. However, it has been observed in E. coli
expression system that, in the preparation of fusion
proteins with MAP, an amphipathic CPP, the MAP domain
must be placed after the protein. Fusion proteins with MAP
at the N-termini could not be expressed, possibly due to the
cytotoxicity of MAP [164]. Another factor to be
considered for the construction of CPP-fusion proteins is
the interference of charges and hydrophobicity of CPP on
the conformation or bioactivity of the protein drug.
Therefore, a proper linker between the CPP and the
protein drug may be required in order to achieve a highly
active fusion protein for in vivo studies [165].
Due to the large molecular size, proteins either

conjugated or fused with CPP are internalized mostly by
endocytotic pathway regardless the CPP properties. There-
fore, a mechanism allowing protein and peptide drugs to
escape the endosomes and reach intracellular target sites is
an important factor for the biological activity of the
conjugate or fusion proteins. This factor has already been
discussed in Section III. Therefore, it is not surprising that
more than 30% of all CPPs in fusion proteins with the
successful in vivo delivery, as shown in Table 4, are
hydrophobic or amphipathic in nature. If Tat peptide, a
prototype of CPP, will be removed from Table 4, the
majority of CPP in the fusion protein production are
amphipathic, i.e., penetratin and Pep-1, which possess the
endosomolytic activity [8,166].

4.3 Non-covalent complex formation

Due to the high positive charge and, in some cases,
hydrophobicity, CPPs can form stable complex with other
macromolecules, including polypeptides and polynucleo-
tides. A majority of the non-covalently linked complexes
for CPP-mediated drug delivery in vivo use negatively
charged DNA or siRNA along with mainly cationic CPPs,
however there are a few examples of CPP-protein
complexes as well (Table 5).
CPPs are capable of condensing DNA or RNA to form

polyplexes [93,128]. Despite their extensive evaluation in
vitro, there are few examples of their application for in vivo
delivery. The main hindrances in the successful application
of CPP-DNA/RNA complexes are (i) low stability of the
polyplexes in vivo [188] (ii) the low efficiency of transport
to the nucleus (DNA polyplexes) or cytosol (siRNA
polyplexes) [188], (iii) the charge neutralization of the CPP
which reduces its cell internalization properties [76].
Therefore, simply mixing CPPs and DNA/RNA is not
sufficient for successful drug delivery, and many of the
CPP-polyplexes consist of multiple components with
multifunctional properties. In early works, a large excess
of CPP was used to maintain a ratio of multiple CPP to
each polynucleotide in the complex formation
[93,127,128]. However, this type of complex may still
exhibit a poor stability in the plasma. In fact, many early
studies of siRNA-CPP complex were carried out in cell

cultures with serum-free medium [189], which would be
difficult to translate into in vivo application. In order to
avoid the requirement of a large excess of CPP in the
complex, one approach was to form a polyplex of siRNA
from a non-CPP polycations, e.g., oligolysines, with a
defined number of grafted CPP (Fig. 5) [190]. The
advantages of this type of complex are (i) a molar charge
ratio of 1 : 1 between the phosphate group in siRNA and
amino-group in oligolysine can be achieved so that the
charge on CPP will not be neutralized, (ii) the number of
grafted CPP can be determined to provide efficient cellular
uptake with less toxicity, and (iii) oligolysine is readily
digested by cellular proteases and thus a naked siRNA can
be released inside the cell to deplete specific mRNA. Like
protein-CPP fusion protein, siRNA and CPP complex is
internalized by mammalian cells mostly through the
process of endocytosis. The complex must be able to
escape from endosome in order to reach its target, i.e.,
cytosolic compartment. Therefore, CPPs with amphipathic
properties, such as penetratin or MAP, showed a much
better functional uptake by the cell, presumably due to the
endosomolytic activity that allowed the siRNA escaped
from endosomes. CPP-mediated cellular uptake of oligo-
nucleotide is currently one of the most promising
approaches in siRNA delivery [191]. In another approach
by Yang et al., multifunctional polyplexes included a
cationic polymer to aid in DNA condensation, polyethy-
lene glycol (PEG) and poly(γ-glutamic acid) for stabiliza-
tion, a histidine-modified Tat CPP to increase uptake, and a
nuclear localization sequence to improve nuclear transport
[46]. This delivery platform was able to achieve in vivo
Luciferase gene transfection efficiency in Balb/c mice.
The examples of non-covalent CPP complexes with

peptide drugs tested in vivo are aimed at improving their
oral delivery. Oral delivery of protein or peptide drugs
remains an unanswered challenge, mainly due to the poor
absorption across the intestinal epithelium and the rapid
proteolytic degradation of proteins in the gastrointestinal
track [192]. The ability of CPPs to increase the oral
bioavailability of peptide drugs has been tested in vivo
following co-mixing of the CPP and peptide cargos. In a
study by Nielsen et al., an orally dosed mixture of insulin
and the CPP penetratin in mice exhibited a blood glucose
lowering effect [186]. The study showed that, following
non-covalent mixing of the protein and CPP, hypocalcemic
and blood glucose lowering effects could be achieved. The
increased bioavailability was attributed to both the
increased stability in the GI track, as evidenced by the
increased half-life of the CPP/INS mixture compared to
INS alone, and the enhanced absorption across the
intestinal epithelium via the CPP.

4.4 Nano particles

For the application of CPP to nanoparticle delivery, the
major goal is to increase the uptake by target cells.
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Therefore, it is not surprising that all of the in vivo studies
as listed in Table 6 used highly cationic CPP as a transport
enhancer. Another issue in conjugation of CPP to the
surface of nanoparticle is that it should not interfere with
the stability of nanoparticle, especially self-assembled
nanoparticles. This could be a concern when hydrophobic
and amphipathic CPPs will be used for the surface
modification of nanoparticles because the self-assembly
of many nanoparticles is mediated by hydrophobic
interaction.
CPP-based nanoparticles mainly involve the delivery of

liposomes, but also include quantum dots (QDs), poly-
meric nanoparticles composed of poly(lactic-co-glycolic
acid) (PLGA), polycaprolactic acid (PLA), or polyethylene
glycol (PEG), and gold or silver nanoparticles. For
liposomal delivery, the majority of the applications
combine CPPs along with other stabilizers (e.g., PEG,
chitosan, PLGA), or targeting agents (e.g., integrin,
transferrin, angiopep-2) into the delivery system. There
are several examples of utilizing these multifunctional
liposomes as targeted carriers, where the lipids of the
liposomes are fused to a CPP-small PEG chain conjugate

Table 4 CPP-fusion proteins for in vivo deliverya)

CPP % Φ NC Helicalb) Drug /cargo Delivery system Studies Animal model Ref.

Tat 7% + 8 No Gelonin Tat-gelonin+
CEA-heparin
complex

Tumor targeting
&

reduction

Mouse (LS174T
xenograft)

[167]

Tat 7% + 8 No HaFGF Fusion protein Intranasal delivery Rat [168]

R8-linker-E8

(linker: cleavable
by MMP2)

0% + 8 No MMAE Fusion protein with
integrin targeting
cyclic peptide

Tumor regression Mouse (mDA-MB-
231 xenograft)

[154]

Tat 7% + 8 No β-galactosidase Fusion protein PK; tissue distribution Mouse [169]

Tat 7% + 8 No BCL6 peptide
inhibitor

Fusion protein Tissue penetration;
tumor regression

Mouse (DLBCL
xenograft)

[170]

Penetratin 37% + 7 Yes p53(17‒26) Fusion protein Tumor regression Mouse (TUC-3
xenograft)

[171]

Tat 7% + 8 No [(KLAKLAK)2-
DEVD]3

Fusion protein Apoptosis at tumor site Mouse (B16-F10
xenograft)

[172]

Tat 7% + 8 No AHPN Fusion protein Tumor growth inhibition Mouse (435.eB
xenografts)

[173]

Penetratin 37% + 7 Yes NBD peptide Fusion protein Anti-inflammatory effect Colitis-induced
mouse model

[174]

Penetratin 37% + 7 Yes NBD peptide Fusion protein Prevention of
nigrostriatal degeneration

Parkinson’s disease
mouse model

[175]

Tat 7% + 8 No BH4 peptide Fusion protein Immunosupression Mouse sepsis model [176]

Tat 7% + 8 No STAT-6-IP Fusion protein Inhibition of lung
inflammation

Allergic rhinitis and
asthma mouse model

[177]

d-R9 0% + 9 No Insulin Fusion protein Decreased blood
glucose levels

Diabetic rat model [41]

(HE)10-MAP-GST 72% + 5 Yes GST Fusion protein Tumor targeting Mouse (MDA-
MB-231 xenograft)

[122]

Bac 13% + 7 No p21 peptide ELP-fusion protein Tumor targeting;
survival time

Mouse (S2013
xenograft)

[178]

d-Tat 7% + 8 No AlexaFluor-488
(fluorophore),

QSY7 (quencher)

Fusion peptide with
activatable probe
containing DEVD

sequence

Imaging of caspase
activity

Rat [179]

Pep-1 28% + 3 Yes HO-1 Fusion protein Prevention of
intestinal ischemia

Rat [180]

Pep-1 28% + 3 Yes HO-1 Fusion protein Reduced myocardial
infarct size

Ischemic rats [181]

a) AHNP: anti-HER-2/neu peptide mimetic; BCL6: B-cell lymphoma 6 protein; BH4: Bcl-2 homology domain 4; CEA: anti-carcinoembryonic antigen monoclonal
antibody; DEVD: caspase recognition sequence; ELP: elastin-like polypeptide; GST: glutathione S-transferase; HaFGF: human acidic fibroblast growth factor; HO-1:
Heme oxygenase-1; MMAE: monomethyl auristatin E; MMP2: matrix metalloprotease 2; NBD: NC: Net charge; NF-kB essential modulator (NEMO)-binding domain;
PK: pharmacokinetics; STAT-6-IP: STAT-6 inhibitory peptide; Φ: %Hydrophobicity, determined as the percentage of hydrophobic amino acids/total amino acids
b) Helicity determined by the number of total hydrophobic residues (THR) on the same surface; Peptides with 3 or more THR may form α-helices
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via a stable linkage, and also to a targeting agent-long PEG
chain conjugate via a linkage that is cleavable (e.g.,
protease sensitive [158], acidic pH-labile [159]) (Fig. 4
(C)). In this design, the CPP conjugated to a small PEG
chain is masked by the longer PEG chain linked to a
targeting agent. Once the liposomes accumulate near the
surface of the target site, the targeting agent-long PEG
chain conjugate is cleaved, revealing the CPP to drive the
internalization (Fig. 3).
Although there are not yet many examples of their in

vivo use, QD have been extensively studied in vivo due to
their value in serving as an alternative to traditional
fluorescent dyes for animal imaging assays. QDs are 1–
6 nm sized nanoparticles exhibiting broad absorption
spectra with high quantum yields, narrow emission peaks

and resistance to photobleaching. QDs can also be surface
functionalized by a variety of reactive moieties, enabling
simple conjugation with CPPs [193].
Similar to CPP-RNA/DNA complexes, CPP-nanoparti-

cles are mainly internalized via endocytosis due to their
large size. Therefore, one of the main concerns with CPP-
mediated nanoparticle delivery is escape from the endo-
some. Several groups are working on strategies to
incorporate an endosome-disrupting component into the
nanoparticle delivery system. In these examples, endoso-
molytic agents such as sucrose and chloroquine, or
fusogenic peptides such as melittin and GALA which
form pores in the mildly acidic endosomal environment,
are incorporated into the design of the nanocarrier systems
in order to improve endosomal escape [194].

5 Summary and future perspective

Over the past few decades, CPPs have grown into an
important field for drug delivery applications to carry
molecules into the cytosol or nucleus of cells. Due to the
large number of CPPs, diversity of their sequences and
differences in internalization mechanisms, there is no
systematic approach in selecting a specific CPP for a
specific drug. Depending on the intracellular site of action
for a bioactive drug, different CPPs may be more optimal
carriers to achieve biological activity. Cationic CPPs such
as oligoarginine and Tat generally have lower internaliza-
tion efficiency than amphipathic CPPs such as penetratin
or MAP. However, cationic CPPs are generally favored
over amphipathic CPPs due to their lower toxicity. For
most in vivo applications including small molecular drugs,
non-covalent complexes, and nanoparticles, the CPPs

Table 5 Non-covalent CPP-complexes for in vivo deliverya)

CPP % Φ NC Helicalb) Drug /cargo Other components Studies Animal model Ref.

RALA 66% + 5 Yes pDNA n/a Gene expression Mouse [182]

R8 0% + 8 No P53 pDNA,
AVPI, and Dox

n/a Gene expression;
tumor regression

Mouse (MCF7
xenograft)

[183]

Mannose-Tat-PEI1800
+ DNA

7% + 8 No DNA Mannose-CPP-PEI
conjugate complexed

with DNA

Dendritic cell
targeting following

transdermal
microneedle delivery

Mice [184]

mTat, Importin NLS DNA DNA complex with
PPMS, PEG, PGA

Gene transfection
efficiency

Mouse [46]

R9-linker-PEG
(linker: cleavable
by MMP2)

0% + 9 No siRNA n/a Tumor targeting &
regression

Mouse (orthotopic
MDA-MB-231
xenograft)

[185]

Penetratin 37% + 7 Yes Insulin n/a Oral delivery Mouse [186]

Tat 7% + 8 No sCT Mixture with poliovirus
coat protein peptide

Oral delivery Rat [187]

a) AVPI: apoptotic peptide; DNA: deoxyribonucleic acid; Dox: doxorubicin; FITC: fluorescein isothiocyanate; MMP2/9: matrix metalloprotease 2/9; NC: Net charge;
PEG: polyethylene glycol; PGA: polyglutamic acid; PEI: poly(ethyleneimine); PPMS: polyamine-coester; sCT: salmon calcitonin. Φ:%Hydrophobicity, determined as
the percentage of hydrophobic amino acids/total amino acids
b) Helicity determined by the number of total hydrophobic residues (THR) on the same surface; Peptides with 3 or more THR may form α-helices

Fig. 5 Poly-L-lysine (PLL)-CPP siRNA Polyplexes. In order to
overcome the issue of charge neutralization of the CPP upon
complexation with siRNA, a multi-component polyplex consisting
of siRNA, 21mer PLL modified to incorporate CPP conjugation
sites, and a CPP was designed. PLL was first reacted with the
amine-to-thiol crosslinker, N-succinimidyl 3-(2-pyridyldithio)
propionate to form pyridyldithiol (PDP)-activated PLL, and then
complexed with siRNA to form a neutral polyplex. Cysteine-
terminal CPPs were then conjugated to the siRNA-polyplex via a
reducible disulfide bond in order to allow for separation of the
carrier CPPs from the PLL-siRNA polyplex following access to
the reductive cytosolic compartment [190]
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utilized are cationic CPPs. In the case of small molecules,
the size of the cargo is not as likely to reduce the
internalization efficiency of the CPP, and therefore the less
efficient cationic CPPs are sufficient to obtain bioactivity.
Non-covalent complexes with anionic DNA or RNA rely
heavily on charge-charge interactions, and therefore the
cationic CPPs are also predominantly utilized as carriers
for these types of macromolecules as well. However, care

must be taken in these applications to ensure the net
cationic charge of the CPP is not completely neutralized.
For nanoparticle applications, the design allow for
attachment of many CPPs to the surface. Therefore, the
lower efficiency can be overcome by increasing the
number of CPPs per nanoparticle. For proteins and peptide
drugs, however, the majority of CPPs utilized have some
hydrophobic components incorporated. In order to retain

Table 6 CPP-modified Nanoparticles for in vivo deliverya)

CPP % Φ NCb) Helical Drug/cargo Nanoparticle Studies Animal model Ref.

R9-linker-E8

(linker: cleavable
by uPA)

0% + 9 No PTX PLA-PEG Tumor targeting
& reduction

Glioma-bearing
mouse

[195]

R8-linker-E8

(linker: cleavable
by MMP2)

0% + 8 No Coumarin-6 LRP1 coated PEG-PCL Tumor targeting Mouse (U87
xenograft)

[196]

IRQ sCT SLN, CSK-targeted Oral delivery Rat [197]

R8 0% + 8 No sCT Chitosan-modified
liposome

Oral delivery Rat [198]

R8-linker-E8

(linker: cleavable
by MMP2)

0% + 8 No Dox Angiopep-2 targeted
PEG-PCL

Tumor targeting
& regression

Glioma-bearing
mouse

[199]

Tat 7% + 8 No Dox Disulfide-linked
PEG-liposome

Tumor targeting
& regression

Mouse xenograft [200]

Tat 7% + 8 No Dox Transferrin-liposome Tumor targeting
& regression

Glioma-bearing mice [201]

R8 0% + 8 No PTX Integrin-targeted liposome Tumor targeting;
survival time

Glioma-bearing mice [202]

Tat 7% + 8 No DiD dye Transferrin and
cholesterol-PEG modified

liposome

Tumor targeting Mouse (HepG2
xenograft)

[203]

R11 0% + 11 No p53 gene Ad5 Tumor regression Mouse (EH-GB2
xenograft)

[204]

R8 0% + 8 No Dox PEG-modified liposome Tumor regression Mouse (C26
xenograft)

[205]

Penetratin 37% + 7 Yes Dox NGR-targeted
thermosensitive

Liposome

In vivo tumor
regression

Mouse (HT-1080
xenograft)

[200]

R8 0% + 8 No Dox HPMA copolymer
with CPP-polyanion
(heparin sulfate,
hyaluronic acid,

fucoidan,
polyglutamic acid)

Survival time Mouse (B16-F10
xenograft)

[206]

R7 0% + 7 No Vincristine sulfate PLGA-PEG folate
conjugate

Tumor regression Mouse (MCF7
xenograft)

[207]

Tat 7% + 8 No Dox PEG-PE-linked to
liposome via Hz-linker

Tumor regression Mouse (SKOV-3
xenograft)

[159]

R8 0% + 8 No α-galactosyl-
ceramide

Liposomes Improved immune
response

Mouse [208]

a) Ad5: adenovirus type 5; CSK: C-Src kinase; DiD: dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine-4-chlorobenzenesulfonate; Dox: doxorubicin; HPMA: N-(2-
Hysroxypropyl) methacrylamide; Hz: hydrazone pH sensitive linker; LRP1: low density lipoprotein receptor-related protein; MMP2: matrix metalloprotease 2; NC:
Net charge; NGR peptide: asparagine-glycine-arginine; targets vascular antigen aminopeptidase N; PCL: polycaprolactic acid; PE: phosphatidylethanolamine; PEG:
polyethylene glycol; PLA: polylactic acid; PLGA: poly(lactic-co-glycolic acid); PTX: paclitaxel; sCT: salmon calcitonin; SLN: solid lipid nanoparticle; uPA:
urokinase-type plasminogen activator; % Φ: %Hydrophobicity, determined as the percentage of hydrophobic amino acids/total amino acids
b) Helicity determined by the number of total hydrophobic residues (THR) on the same surface; Peptides with 3 or more THR may form α-helices
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biological activity, there is usually a limited number of
modification sites allowed on a protein or peptide.
Therefore, recombinant fusion protein technique, rather
than the chemical linkage, is generally applied for the
preparation of protein-CPP conjugates. CPP fusion
proteins are mostly internalized by endocytosis process
and their escape from endosomes is critical for reaching the
cytoplasmic target. Therefore, due to the higher inter-
nalization efficiency and endosomolytic activity, the
amphipathic CPPs are generally necessary to attain
sufficient bioactivity of protein-CPP fusion proteins.
In this review, we focus on the selection of different

classes of CPP as effective carriers for in vivo delivery of
various types of drug cargoes. The selection of appropriate
CPPs is important for the increase of cellular uptake and
intracellular delivery of specific types of drug molecules,
and is the first step in the design of an effective CPP-
mediated delivery system. However, there are other factors
that can also influence the success of using CPPs as in vivo
drug carriers. One of the challenges is to increase the
localization of CPP-targeted drug at the disease tissues, for
example at tumor sites for anti-cancer therapeutics. Most,
if not all, CPPs have non-selective biodistribution and are
preferentially taken up by tissues with high permeability,
such as liver and spleen. The non-selective tissue
distribution can override other active targeting action,
such as antigen- or receptor-mediated drug delivery.
Several approaches have been proposed for the design of
tumor-selective CPPs, as we have discussed in Section 4.1
of this review. Even though the effectiveness of those
targeting strategies in cancer therapy is still yet to be
demonstrated, these recent studies have indicated the
feasibility of tumor-targeted localization of CPP in animal
models (see Section 4.1). Therefore, with the combination
of the selection of an appropriate CPP for the drug and a
design of an effective mechanism for tumor targeting, it
can be anticipated that a CPP-mediated drug delivery in
cancer treatment with clinical applications will be achieved
in the near future.
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