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Abstract Compared to small molecule process analytical
technology (PAT) applications, biotechnology product PAT
applications have certain unique challenges and opportu-
nities. Understanding process dynamics of bioreactor cell
culture process is essential to establish an appropriate
process control strategy for biotechnology product PAT
applications. Inline spectroscopic techniques for real time
monitoring of bioreactor cell culture process have the
distinct potential to develop PAT approaches in manufac-
turing biotechnology drug products. However, the use of
inline Fourier transform infrared (FTIR) spectroscopic
techniques for bioreactor cell culture process monitoring
has not been reported. In this work, real time inline FTIR
Spectroscopy was applied to a lab scale bioreactor mAb
IgG3 cell culture fluid biomolecular dynamic model. The
technical feasibility of using FTIR Spectroscopy for real
time tracking and monitoring four key cell culture
metabolites (including glucose, glutamine, lactate, and
ammonia) and protein yield at increasing levels of
complexity (simple binary system, fully formulated
media, actual bioreactor cell culture process) was eval-

uated via a stepwise approach. The FTIR fingerprints of the
key metabolites were identified. The multivariate partial
least squares (PLS) calibration models were established to
correlate the process FTIR spectra with the concentrations
of key metabolites and protein yield of in-process samples,
either individually for each metabolite and protein or
globally for all four metabolites simultaneously. Applying
the 2nd derivative pre-processing algorithm to the FTIR
spectra helps to reduce the number of PLS latent variables
needed significantly and thus simplify the interpretation of
the PLS models. The validated PLS models show promise
in predicting the concentration profiles of glucose,
glutamine, lactate, and ammonia and protein yield over
the course of the bioreactor cell culture process. Therefore,
this work demonstrated the technical feasibility of real time
monitoring of the bioreactor cell culture process via FTIR
spectroscopy. Its implications for enabling cell culture PAT
were discussed.
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1 Introduction

Antibody biopharmaceuticals are generally produced in
mammalian cell culture. Potential sources of antibody
variability [1] may arise from the type and mode of
bioreactor (i.e., batch, fed batch, perfusion, etc.), media
composition, culture duration, engineering parameters or
inconsistent raw materials. Media formulation and raw
material lot-to-lot variability, especially with biologically
derived components, can occur and impact process
performance. Typically variability in the starting material
(i.e., harvested cell culture) can not only be passed through
the manufacturing process ultimately to drug substance,
but also challenge the downstream chromatography
impurity clearance process. The reason for the possible
challenge existing is that the downstream chromatograph
impurity clearance process may not be designed to handle
the unanticipated variability. Therefore, from a process
development and regulatory science perspective, develop-
ing strategies for optimizing culture media compositions
and adjusting bioreactor culture conditions in real time is
highly desirable. Monitoring mAb manufacturing pro-
cesses via modern process analytical technology (PAT)
tools [2,3] is one innovative approach that might be
adopted to achieve this goal. In general, there are a number
of well perceived and/or demonstrated advantages of
implementing PAT in the pharmaceutical sector [4–6] such
as acquiring real time process information, enabling in-
depth process and product understanding, achieving better
product and process design, enabling better process control
and real time release testing, etc. Compared to its
counterpart of small molecule product area where PAT
applications and implementations are wide spreading [7–
15], the adoption of PAT in biotechnology product area has
been more challenging as evidenced by its slow yet
incremental progress. For example, developing and
implementing non-invasive and inline spectroscopy-
based PAT strategies for real time monitoring and control
mammalian cell culture bioreactors for biological manu-
facturing has been challenging due to the stringent
autoclave requirement for any device to be inserted to
the bioreactor.
Near infrared spectroscopy (NIR) has gained popularity

over the last two decades because of its convenience and
relatively large volume sampling. However, due to the
facts that the bands observed in NIR predominantly arose
from stretching of O –H, C –H, and N –H bonds and the
commonality of these substructures across organic mole-
cules, the differences between NIR spectra of different
compounds are often very subtle, thus resulting in a lower
molecular selectivity than by using FTIR. In mammalian
cell cultures, the analytes most commonly and easily
measured include: (1) Carbon and energy sources, which is
glucose in most cases; (2) Nitrogen sources, which often
include glutamine and other amino acids; and (3) Waste
products such as lactate, ammonia and glutamate.

Simultaneous measurement of these in synthetic mixtures
prepared in aqueous solutions has been reported using a
FTIR spectrometer while samples were placed in rectan-
gular cells composed of Infrasi quartz [16]. Strategies to
measure those in bioprocess and other fluids have been
proposed using in situ NIR [17–20] and inline real time
Raman spectroscopy [21]. It was shown that the latter
technique was able to effectively monitor glutamine,
glutamate, glucose, lactate, ammonium, viable cell density,
and total cell density in real time, due to its outstanding
molecular selectivity as it interrogates fundamental vibra-
tional modes.
FTIR spectroscopy [22,23] can produce exquisite

molecular selectivity. In the mean while, its absorption
signals are strong. However, due to the requirement for
similar and short sample and reference light paths, the
instrument configurations are limited. Despite these
limitations, FTIR remains a sensitive and highly repro-
ducible physicochemical analytical technique that can
identify structural moieties of biomolecules on the basis of
their IR absorption. Each biomolecule will exhibit a unique
FTIR spectrum, representing the vibrations of its structural
bonds. As a promising physicochemical technique, FTIR
spectroscopy has been used for off-line monitoring
changes in biological samples [24], detection of classes
of compounds (e.g., proteins) rather than specific bio-
chemical species, and characterization of protein second-
ary structure [25] because specific regions in the IR spectra
are not only characteristic to protein secondary structure,
but they also correspond to the amount of protein in the
sample [26]. In addition, FTIR spectra can also be used to
monitor changes in sugars due to the fact the C –O
stretching in the polysaccharide region (1200–800 cm–1)
provides information on the amount of sugar present in the
samples [27]. However, all of the aforementioned FTIR
spectroscopic studies were conducted in off-line fashion.
In a study [28] published in 2010, it was shown that off-
line FTIR spectroscopy when combined with chemo-
metrics based on supervised learning (viz., partial least
squares regression (PLSR)) can be used to predict
accurately antibody production, glucose utilization, and
lactate accumulation in cultures of antibody producing
murine myeloma NS0 and CHO cell lines. However, to the
best of our knowledge, there is no existing literature that
reports real time inline process monitoring of bioreactor
cell culture process via FTIR spectroscopy.
Here, we report real time monitoring of bioreactor cell

culture process via integration of measuring inline FTIR
spectra from bioreactor cell cultures directly, parallel off-
line determinations of nutrients and antibody concentra-
tions in the media, and process chemometrics. The
calibrated partial least squares (PLS) regression models
were used to predict concentration profiles of four key cell
culture metabolites (glutamine, glucose, lactate, and
ammonia) and mAb yield over the course of bioreactor
cell culture process. These results demonstrate the
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technical feasibility of using FTIR spectroscopy for real
time monitoring medium utilization, waste product
accumulation, and protein production by bioreactor
mammalian cell cultures. The implications for enabling
cell culture real time PAT are discussed.

2 Materials and methods

2.1 Materials

Glucose (D-glucose anhydrous) and ammonium chloride
was purchased from Fisher Scientific (Fair Lawn, NJ,
USA). L-(+)-lactic acid (Free Acid), Fisher BioReagents
was purchased from Fisher HealthCare (Pittsburgh, PA,
USA). L-(+)-glutamine was purchased from Acros Organ-
ics (New Jersey, NJ, USA). Deionized (DI) water was
obtained in-house from a Millipore Advantage A10 water
purifier (18.2 MΩ resistivity). The base media consisted of
Chemically Defined (CD) Hybridoma AGT culture media
with 8 mmol/L glutamine (Gibco Life Technologies,
Grand Island, NY, USA). For cell culture operations the
base media was supplemented with individual amino
acids including 0.15 mmol/L aspartate, 0.4 mmol/L
cysteine, 0.3 mmol/L methionine, 0.7 mmol/L threonine,
0.15 mmol/L tryptophan, and 0.3 mmol/L tyrosine (Sigma-
Aldrich, St. Louis, MO) as described in Read et al. [29].
For PLS modeling of the FTIR spectra, the FTIR spectra
were subjected to the Savitzky-Golay polynomial smooth-
ing with seven points, prior to the 2nd derivative
preprocessing algorithm.

2.2 FTIR spectroscopy

The FTIR spectra were collected using a Mettler-Toledo
ReactIR 45 m Fiber MultiplexIR with MCT Detector using
HappGenzel apodization with a DiComp diamond probe
connected via AgX 9.5 mm � 2 m silver halide fiber
(Mettler-Toledo, Columbia, MD, USA). Sampling was
acquired from 2000 to 650 cm–1 at 8 cm–1 wavenumber
resolution, 1024 scans per average, and 1� g. The starting
water spectrum was subtracted from subsequent spectra to
amplify spectral changes. The relationships between the
real time FTIR spectra and the concentrations of the
components were determined via PLS algorithm imple-
mented in the iCIR 4.1 software (Mettler-Toledo, Colum-
bia, MD, USA).

2.3 Real time inline FTIR characterization of binary
systems (individual components in water) at constant
temperature

First, 500 mL of DI water in a 1000 mL beaker was
brought to 37 °C in a water bath as measured by a glass
thermometer. Once the water temperature had stabilized,
the given dose of component was added to the beaker in

powder form and allowed to dissolve completely to form a
binary mixture of individual component and water. Spectra
were then collected via the ReactIR after the temperature
was established. The averaged spectrum was calculated to
represent the spectrum corresponding to the 1st given
concentration of the component in the binary mixture. The
next dose of the same component was added to the beaker
and was dissolved completely to increase the concentration
of the component in the binary mixture to the 2nd given
concentration. Similarly, the next set of FTIR spectra was
collected and the averaged spectrum was obtained to
represent the spectrum corresponding to the 2nd given
concentration of the specific component in its binary
mixture. This procedure was repeated until the expected
concentration range of the particular component in its
binary mixture was covered. The procedure was repeated
again for the 2nd component, the 3rd component, and the 4th

component with 500 mL of fresh DI water in a 1000 mL
beaker, respectively, until all of the binary mixtures of
component and water with expected component concen-
tration ranges were covered and FTIR spectra were
acquired. All of the individual components were added
in fixed amounts at each dose. The concentration ranges
covered in these experiments were chosen to go from zero
to triple the concentration that could be expected in an
actual cell culture batch. For details on the exact binary
mixtures that were characterized with FTIR, please refer to
the Appendix Tables A1‒A4.

2.4 Real time inline FTIR monitoring of bioreactor media
supplementation

A stepwise addition of base CD hybridoma media to the
uninoculated bioreactor study was designed to examine
how the FTIR spectroscopy responds to the pre-specified
changes of media component concentration. First the
bioreactor was charged with 4.0 L of base media, then
individual components, dissolved in base media first, were
added stepwise up to their maximum expected concentra-
tion in concentrated doses of 40 mL. After each addition, a
40 mL sample was taken for analysis on the NOVA 100
Bioanalyzer. All process controls were maintained at the
same values as they would be during a typical cell culture
process. The set points for temperatures, pH, dissolved
oxygen (DO), and agitation were 37 °C, 7.2, 30%, and
125 r/min, respectively. The higher than normal impeller
speed (75 r/min) was used to enhance the mixing of the
individual component solution with the base media.
During this stepwise addition of the media to the
bioreactor, the media in the bioreactor was monitored in
real time by the inline FTIR spectroscopy. For details
regarding the exact concentrations of individual compo-
nents in the media after each dose during the stepwise
addition process, please refer to Table 1 for glutamine and
Tables A5‒A8 in the Appendix for glucose, lactate, and
ammonium.
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2.5 Murine hybridoma culture

A murine IgG3:κ antibody-producing hybridoma adapted
to suspension culture growth in this serum-free chemically
defined media [29] was grown in 2 L spinner flasks prior to
transfer to a 7.5 L capacity Bioflo 110 bioreactor (New
Brunswick Scientific, Edison, NJ, USA). Each bioreactor
contained 4.0 L working volume of supplemented media.
Bioreactor parameters were set to maintain a gas sparge
rate of 0.5 L/h, 30% dissolved oxygen, pH 7.2, 37 °C, and
pitched blade impeller agitation at 75 r/min. Cultures were
fed by bolus addition of 25 mL of 40 g/L glucose and
40 mmol/L glutamine at 72 and 96 h to increase final
concentrations by 1 g/L and 1 mmol/L, respectively.

2.6 In-process sampling

Prior to inoculation, and at least three times within a 24 h
period throughout the culture, 10 mL samples of cell
culture fluid (CCF) were aseptically harvested from the
culture for a total of 19 samples. The concentration of
viable (VC/mL) and non-viable cells (NVC/mL) within
each time-point sample was counted with a TC20
automated cell counter (BIORAD). These values were
used to calculate the total cells concentration (TC/mL),
viable fraction (Vf), and integral viable cell days
(IVCD/mL) for each culture. Samples were clarified by
centrifugation at 2000 �g for 20 min and the resulting
supernatant was passed through a 0.22 µm PVDF filter to
remove cell debris and large aggregates.

2.7 Analytical protein A affinity chromatography

Relative concentration of the IgG3 antibody in each in-
process clarified CCF samples were assessed by analytical
scale protein A chromatography across a POROS A/20
4.8 mm column (Life Technologies) by an Agilent 1200
HPLC (Agilent Technologies, Santa Clara, CA, USA) with
UVabsorbance detected at 280 nm, as described elsewhere
[29].

2.8 Nutrient analysis

Glutamine (mmol/L), glucose (g/L), lactate (g/L), ammo-
nium ion (mmol/L), were determined in triplicate for each
in-process samples drawn from the bioreactors with an
electrode based sensor-type nutrient analyzer (Nova
Bioprofile 100 plus analyzer, Nova Biomedical, Waltham,
MA, USA). The instrument was calibrated and verified
against manufacturer supplied standards to ensure the
reliability of membranes and the robustness of the values
determined by the instrument.

2.9 Real time monitoring of the cell culture process via
FTIR spectroscopy

Prior to cell inoculation of the bioreactor, the FTIR was
allowed to equilibrate in the media at the operational set
points and base line spectra were collected every 30 min.
Upon inoculation of the bioreactor, real time FTIR spectra
were taken every 30 min throughout the 120 h cell culture
process. As stated previously, 10 mL aliquots of cell
culture fluid (CCF) were aseptically harvested from the
culture periodically (every 8 h) and were subjected to Nova
nutrient analysis. The corresponding FTIR spectra were
saved in the database of the iCIR 4.1 software (Mettler-
Toledo, Columbia, MD, USA). Data from two batches of
the bioreactor cell culture process were used to establish
the PLS model.

3 Results and discussion

3.1 Real time inline FTIR characterization of binary
systems and FTIR fingerprint identification of pure
components

Calibration measurements were run for all four major
commonly studied nutrients/waste products (glucose,
glutamine, ammonia, lactate) at concentrations from 0 to
3 times the levels expected in a typical mammalian cell

Table 1 Accumulated glutamine concentrations in the medium during the stepwise addition of glutamine—measurement and prediction

Dose # Calculated glutamine
concentration,

Ccal /(mmol$L–1)

Measured glutamine
concentration by Nova,
CNova /(mmol$L–1)

Data preprocessing
algorithms applied

PLS modeling results
based on Ccal

PLS modeling results
based on CNova

1 0 0 Spectral block: User specified
region: 1900 to 900 cm–1; single
point B/L @ Zero; mean center.

Component concentration
block: Mean center

Calibration model
R2 = 0.9652

Leave-one-out cross
validation model
R2 = 0.8849

PLS latent variables
based on RMSEC vs.
factors : 3 factors

Calibration model
R2 = 0.9225

Leave-one-out cross
validation model
R2 = 0.8064

PLS latent variables
based on RMSEC vs.
factors : 3 factors

2 1 2.605

3 2 3.055

4 3 4

5 4 4.56

6 5 5.67

7 6 6.04

8 7 6.37

9 8 6.6
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culture bioreactor process. Fingerprint peaks were identi-
fied from the 1st derivative spectra at the highest
concentration for each component. Calibration models
for each individual component were built using the
iCQuant package of the iCIR software (Mettler-Toledo,
Columbia, MD, USA). Table 2 shows that even in this
simple system of individual medium components, the
number of PLS latent variables required for the calibration
models of glucose, glutamine, ammonia, and lactate to
achieve R2 value greater than 0.99 are 9, 11, 6, and 7,
respectively.
In multivariate regression analysis of spectral data,

preprocessing (smoothing operation and derivatives) has
become an integral part of chemometrics modeling so as to
reduce unwanted background information (offsets, sloped
baselines) or accentuate absorption features in intrinsically
overlapping bands. It was found that such preprocessing
algorithms are often useful in reducing the number of latent
variables of the actual decomposition and lowering
residual error [30]. In this work, the 2nd derivative
preprocessing algorithm was applied to the FTIR spectra
prior to the PLS modeling to examine if the number of PLS
latent variables can be reduced to simplify the model
interpretation. For comparison, the PLS modeling results
of both with and without 2nd derivative algorithm were
listed in Table 2. It was shown that for the binary system
PLS models, the 2nd derivative preprocessing algorithm
was able to reduce the number of PLS latent variables
significantly and thus to improve the models’ interpret-
ability. However, this was achieved at the cost of lowered
cross-validation R2 values. Thus, the technical feasibility of
using FTIR spectroscopy for characterization and quanti-
fication of individual media components in the simple
binary system was demonstrated.

3.2 Real time monitoring of stepwise addition of individual
components to base media in uninoculated bioreactor

A more complex system of stepwise individual component
additions to basal media in an uninoculated bioreactor was
monitored in real time via ReactIR 45m system. The
resulted FTIR spectra were shown in Fig. 1 for the case of
stepwise addition of glutamine into the medium. As
expected, there were linear increases of certain peak
intensities during the course of stepwise addition of
individual components. PLS models were built to correlate
the FTIR spectral intensities with both the calculated (by
weight of component) and measured (by NOVA) concen-
tration values for each component, as summarized in
Table 3 for all four components and in Table 1 for
glutamine. The ReactIR system is able to follow the
addition of three components (glucose, glutamine, and
lactate) sensitively and precisely. Evidently, there is a
linear relationship between the peak intensity of presumed
component and its concentration. With 3 PLS latent
variables, the PLS models have R2 values of 0.96‒0.99. For

ammonium, its PLS model has R2 value of 0.767 with 1
PLS latent variable. For the measurement and prediction
results of glucose, lactates, and ammonium during the
stepwise addition processes, please refer to Appendix
Tables A5‒A7 for details.
It is important to note that the data available for the PLS

modeling was limited. The selection of PLS factors was
based on the plot of RMSEC vs. factors where a local or
global minimum was observed. The models could be
further improved if more data points were available within
the concentration ranges interested.

3.3 mAb IgG3 cell culture process media dynamics model

To evaluate FTIR performance in a model bioprocess, a
bench-scale murine IgG3 producing bioreactor model
culture was developed that allows measurement of in-
process samples by analytical protein A affinity chromato-
graphy, cell counts and nutrient analysis. A process
trajectory for this model bioreactor hybridoma cell culture
process is shown in Figs. 2(a)‒(b). The starting nutrient
concentrations for glucose and glutamine were 4 g/L
glucose and 5 mmol/L glutamine, respectively. Fig. 2(a)
shows that the viable cell density (VCD) follows the
typical pattern of lag (starting at 1.20E+ 5 cells/mL),
growth, plateau, and then finally death phase as nutrients
have been depleted. The IgG3 concentration in the culture
increases slowly during the period of 48 h to 114 h,
indicating a slow initial IgG3 secretion process. At 114 h,
the IgG3 concentration increases very rapidly; coinciding
with death phase period of antibody release typically seen
with this hybridoma.
As measured by a NOVA bioanalyzer, the nutrient

concentration data of four key cell culture metabolites
behaved as expected during the course of the fed-batch
model murine IgG3 hybridoma cell culture process, as
shown in Fig. 2(b). As expected, the glucose concentration
decreased due to its consumption within the initial 68 h. To
maintain the energy supply to the cell culture process,
additional glucose and glutamine stocks were introduced to
the bioreactor at 69 h and 93 h; transient feed spikes were
evident on the glucose concentration profile, but depletion
occurred subsequently (Fig. 2(b)). The concentration
profile of glutamine followed similar trends as those for
glucose. On the other hand, the concentrations of murine
IgG3 hydridoma cell culture waste products lactate and
ammonia accumulated in the bioreactor cell culture media.

3.4 FTIR spectroscopy applied to bioreactor cell culture
model

3.4.1 PLS model calibration for multiple nutrient
components

Multivariate PLS models were developed to correlate the
process FTIR spectra with the concentration data of the
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nutrients at various sampling time points. Two batches of
bioreactor cell culture processes with different starting

nutrient compositions and feeding strategies were initiated
and monitored in real time via FTIR spectroscopy. A total
of 50 FTIR spectra were acquired during the bioreactor cell
culture process for batch A and batch B, as shown in
Table 4. A total of 38 FTIR spectra acquired at various
sampling time points over the entire courses of the two
batches with corresponding nutrient compositions mea-
sured by Nova was taken as the calibration dataset for the
PLS model calibration. The rest of 12 FTIR spectra
acquired with corresponding nutrient compositions mea-
sured by Nova were taken as the testing dataset (also
termed as prediction dataset). Two governing principles
were followed during the process of selecting FTIR spectra
for the calibration dataset and testing dataset: (1) The data
points in each dataset cover the concentration ranges for
each individual components as much as possible; and (2)
For each individual components in the bioreactor cell
culture process medium, the data points were distributed
across the concentration range as uniformLy as possible.
Both the calibration dataset and testing dataset were shown
in Table 4. Two PLS modeling strategies were used,
including global PLS models (where a common set of PLS
latent variables is used for all components in the bioreactor
media simultaneously) and individual PLS models (where
a unique set of PLS latent variables is used for an
individual component in the bioreactor media). The PLS

Fig. 1 FTIR spectroscopy responses to the stepwise additions of
base CD hybridoma media with 40 mL of concentrated glutamine
solution to the bioreactor. Legends in the Figure: Sample 1, water;
Sample 2, after the 1st addition of 40 mL concentrated dose of
glutamine; Sample 3, after the 2nd addition of 40 mL concentrated
dose of glutamine; Sample 4, after the 3rd addition of 40 mL
concentrated dose of glutamine; Sample 5, after the 4th addition of
40 mL concentrated dose of glutamine; Sample 6, after the 5th

addition of 40 mL concentrated dose of glutamine; Sample 7, after
the 6th addition of 40 mL concentrated dose of glutamine; Sample
8, after the 7th addition of 40 mL concentrated dose of glutamine

Table 3 PLS model results for stepwise addition of individual components to base media in uninoculated bioreactor at constant temperature

Component Calculated concentration
range covered

Number of PLS
latent variables

PLS calibration model R2

concentration based on component
weight

concentration based on NOVA data of
in-process samples

Glucose /(g$L–1) 6–8.04 3 0.9954 0.9996

Glutamine /(mmol$L–1) 0–8 3 0.9652 0.9225

Lactate /(g$L–1) 0–20 3 0.9988 0.9982

Ammonia /(mmol$L–1) 0–10 3 0.7677 0.6956

Fig. 2 (a) Process trajectory for a representative bioreactor cell culture process and IgG3 production; (b) Glutamine, glutamate, glucose,
lactate, ammonia concentrations measured throughout the cell culture by Nova nutrient analyzer
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Table 4 Calibration dataset and testing dataset for correlating process FTIR spectra with nutrients’ concentrations at various time points during

bioreactor mAb IgG3 cell culture process of two independent batches

Batch # Tspectra acquired /h Spectra included in
calibration?

Spectra included in
test?

Glutamine
/(mmol$L–1)

Glucose /(g$L–1) Lactate/(g$L–1) Ammonium
/(mmol$L–1)

A 0.38 Yes 7.72 4.17 0.01 0.79

A 0.88 Yes 6.17 4.84 0.01 3.45

A 16.43 Yes 5.74 4.71 0.01 3.88

A 20.43 Yes 5.65 4.72 0.01 3.94

A 24.43 Yes 5.54 4.7 0.01 4.06

A 41.93 Yes 4.78 4.57 0.01 4.39

A 44.43 Yes 4.89 4.58 0.01 4.45

A 45.60 Yes 4.84 4.46 0.01 4.4

A 48.43 Yes 4.83 4.46 0.01 4.54

A 64.43 Yes 3.6 3.99 0.01 5.47

A 68.43 Yes 3.56 4.25 0.01 5.77

A 69.43 Yes 3.34 6.23 0.01 5.7

A 72.43 Yes 3.12 5.5 0.01 5.85

A 72.77 Yes 3.11 5.42 0.01 5.93

A 88.42 Yes 1.34 5.32 0.26 8.05

A 91.42 Yes 1.25 5.31 0.29 8.21

A 95.25 Yes 1.07 5.24 0.3 8.28

A 111.42 Yes 0.78 5.19 0.3 8.48

A 192.03 Yes 1.12 4.75 0.26 8.22

A 192.20 Yes 2.57 5 0.38 8.18

A 193.20 Yes 4 4.91 0.4 8.13

A 193.87 Yes 5.43 4.93 0.36 8.1

A 194.20 Yes 5.7 4.76 0.35 7.87

A 194.37 Yes 4 4.8 0.41 16.1

A 194.87 Yes 3.92 3.88 0.54 16.865

A 195.03 Yes 4.01 4.63 0.38 17.63

A 195.20 Yes 4.15 4.58 0.41 18.76

A 209.78 Yes 3.96 4.69 0.4 16.33

A 210.28 Yes 3.97 4.54 0.96 16.05

A 210.45 Yes 3.82 4.48 1.3 15.82

A 210.62 Yes 3.85 4.42 1.44 15.34

A 214.95 Yes 3.96 4.36 1.83 15.41

A 215.28 Yes 3.74 4.35 1.97 15.4

A 215.62 Yes 2.96 4.14 3.63 14.94

A 215.95 Yes 3.37 4.07 2.93 14.91

A 217.45 Yes 3.32 4.01 3.08 14.76

B 0.05 Yes 6.79 3.9 0 0.63

B 1.00 Yes 3.7 3.86 0 4.22

B 16.50 Yes 3.15 3.62 0 4.6

B 20.38 Yes 2.97 3.48 0 4.64

B 24.55 Yes 2.74 3.35 0.21 4.77

B 41.38 Yes 1.72 2.86 0 5.18
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calibration models were validated using the leave-one-out
cross validation algorithm and were further tested by the
testing datasets.
For the global PLS modeling results generated from

testing datasets, the plots of predicted concentrations vs.

actual measured concentrations and the linear regression
equations for glucose, glutamine, lactate, and ammonium
were shown in Figs. 3 (a)‒(d), respectively. Similarly for
the individual PLS modeling results generated from testing
datasets, the plots of predicted concentrations vs. actual

(Continued)
Batch # Tspectra acquired /h Spectra included in

calibration?
Spectra included in

test?
Glutamine
/(mmol$L–1)

Glucose /(g$L–1) Lactate/(g$L–1) Ammonium
/(mmol$L–1)

B 44.72 Yes 1.35 2.78 0.61 5.49

B 66.71 Yes 0 1.9 1.26 6.21

B 69.22 Yes 0 1.81 1.32 6.18

B 69.38 Yes 2.06 3.08 1.33 6.24

B 72.38 Yes 1.39 2.95 1.41 6.75

B 89.88 Yes 0.27 2.36 1.78 7.34

B 92.71 Yes 0 2.27 1.86 7.16

B 93.38 Yes 0.41 5.28 1.81 7.96

Fig. 3 Key metabolite concentration prediction results from the global PLS calibration models using 7 PLS factors for the bioreactor cell
culture process of batch A and batch B. (a) Glucose; (b) Glutamine; (c) Lactate; (d) Ammonium
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measured concentrations and the linear regression equa-
tions for glucose, glutamine, lactate, and ammonium were
shown in Figs. 4(a)‒(d), respectively. For all of the four
metabolites studied, there is a linear relationship between
the predicted concentrations and the actual measured
concentrations, regardless the PLS modeling strategy used.
The R2 values for glucose, glutamine, lactate, and
ammonium are 0.7653, 0.7771, 0.7259, 0.7296 for the
global PLS models, and 0.9926, 0.9546, 0.9965, 0.9996
for the individual PLS models, respectively.
A comparison of figures of merits of the global and

individual PLS models is listed in Table 5. Cumulative R2

is cumulative explained variance by each factor for each
response variable in the PLS model. Apparently for all of
the four components studied, the individual PLS models
have better figures of merits (such as Root-Mean-Square
Error of Calibration (RMSEC), Root Mean Square Error of
Cross-Validation (RMSECV), Cumulative R2, R2

calibration,
R2
crossvalidation) than the global PLSmodels. This is expected,

given that individual PLS model construction uses specific
wave length regions based on the characteristic peaks of
individual components that were defined previously during
the PLS calibration process from the binary system. It was
noted that for bioreactor cell culture waste products lactate
and ammonium, their individual PLS models’ figures of
merits are getting better when the number of PLS latent
variables is increased.
The 2nd derivative preprocessing algorithm was applied

to the FTIR spectra. It was found (data not shown) that for
the real time bioreactor cell culture global PLS models, the
2nd derivative preprocessing algorithm was able to reduce
the number of PLS latent variables needed and improve the
models’ interpretability, yet with comparable and reason-
able model performance matrix as characterized by
RMSEC, RMSECV, RMSEP, and cumulated R2 value,
etc. In addition, a comparison of model performance
matrix when different numbers of PLS latent variables
were selected was summarized in Table 6.

Fig. 4 Key metabolite concentration prediction results from the individual PLS calibration models for the bioreactor cell culture process
for batch A and batch B. (a) Glucose, 4 PLS factors; (b) Glutamine, 7 PLS factors; (c) Lactate, 14 PLS factors; (d) Ammonium, 20 PLS
factors
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3.4.2 PLS model predictions of concentration profiles for
multiple cell culture metabolites during cell culture process

In this work, the bioreactor cell culture process was
continuously monitored in real time via FTIR probe. The
FTIR spectra were acquired every 10 min. However, due to
practical limitation, we did not have an auto-sampler
installed which would allow us to conduct more frequent
sampling from the bioreactor in an automatic fashion.
Instead, manual sampling was performed for two to three
times a day during the course of bioreactor cell culture
process. As such, only limited nutrient data were available
for building the PLS calibration models to correlate the
FTIR spectra with the nutrient data. Therefore a wealth of
real time FTIR spectra were left unused during the PLS
model calibration process due to limited availability of
experimental data of metabolites concentrations. However,
this situation can be useful from PLS model testing
perspective, as we could insert those unused real time
FTIR spectra into the PLS calibration models to predict the
concentrations of the four components at the time points
when the real time FTIR spectra were taken. Because of the
availability of wealthy unused process real time FTIR
spectra, the concentration profile of each and every
individual component can be predicted with much dense
data density than the sporadically available NOVA data.
Comparing these predicted concentration profiles with
experimentally measured NOVA data can be used as a
surrogated diagnosis tool, which helps to determine if the

PLS calibration models established are suitable for
intended use or not.
The time interval for the PLS model prediction was set

as 10 min for both batch A and batch B. Given the time
interval difference between the key component concentra-
tion prediction (10 min apart) and the experimental
measurement via NOVA (at least 8 h apart), obviously
the predicted concentration profiles have much higher data
density than the available experimental measurement via
NOVA. The predicted concentration results were com-
pared to the experimental measurement data, as shown in
Fig. 5 for Batch A and Fig. 6 for batch B. It can be seen that
for both batch A and batch B, most of the predicted
concentration profiles for glucose, glutamine, lactate, and
ammonium agree well with the measured concentration
data, except for batch B lactate where lactate’s concentra-
tion was too low.
Previously it was shown that metabolites were either

consumed or produced by the batch and fed-batch mode
IgG3 hybridoma cultures [29]. Figure 2(b) is representative
of the experimentally measured concentrations of metabo-
lites via nutrient analyzer. It should be noted that the
specific consumption between batches was different due to
variability in cellular growth such as different starting
nutrient concentrations for different batches; the overall
nutrient consumption trend was consistent. For example,
the starting nutrient concentrations for various batches
were: 4 g/L glucose and 5 mmol/L glutamine for Fig. 2;
4.5 g/L glucose and 7 mmol/L glutamine for Figure 5;

Table 6 Effect of number of PLS latent variables on the global PLS model performance matrix after FTIR spectra had been subjected to the 2nd

derivative preprocessing algorithm. (Data treatments for the FTIR spectra block including mean center, variance scale, 2nd derivative, user specified

regions: 2000 to 660 cm–1, single point baseline @ 1300 cm–1; data treatments for the component concentration block including mean center and

variance scale; quantitative analysis: leave-one-out (38 samples) cross-validation; F test statistic: 95% limit = 1.13, warn if> 1.13)

Number of PLS latent
variables selected

Model performance matrix Glucose /(g$L–1) Glutamine /(mmol$L–1) Lactate /(g$L–1) Ammonium /(mmol$L–1)

4 RMSEC 1.12 0.537 0.367 2.28

RMSECV 1.56 0.651 0.452 2.77

RMSEP 1.27 0.683 0.587 1.91

R2 (Cumulative) 0.627 0.619 0.808 0.791

Mahalanobis distance: 95% limit 0.71

5 RMSEC 0.918 0.533 0.325 2.27

RMSECV 1.59 0.699 0.448 2.8

RMSEP 1.06 0.71 0.591 1.9

R2 (Cumulative) 0.748 0.625 0.849 0.792

Mahalanobis distance: 95% limit 1.15

6 RMSEC 0.913 0.321 0.324 2.13

RMSECV 1.53 0.606 0.448 2.73

RMSEP 1.05 0.693 0.586 2.05

R2 (Cumulative) 0.751 0.863 0.851 0.819

Mahalanobis distance: 95% limit 1.64
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4.25 g/L glucose and 4 mmol/L glutamine for Fig. 6. It is
important to note that the goal of the experiments was not
to generate identical cultures but to model nutrient
concentrations based on FTIR data regardless of cell
status. From multivariate model building perspective,
including certain variability is essential. It can be seen
that the global PLS calibration model can predict the key
component concentrations of the in-process samples
consistent with previous observations of their metabolism,
with R2 values of 0.828, 0.748, 0.807, and 0.886 for
glucose, glutamine, lactate, and ammonium, respectively.
The global PLS model was based on simultaneously

calibrating the same block of process FTIR spectra against
the concentrations of glucose, glutamine, lactate, and
ammonia. While this modeling method is relatively simple,
the correlation coefficient for individual component could
be limited due to lacking of focusing on component
specific wave length range. To overcome this limitation,
individual PLS models were established to correlate a
block of process FTIR spectra within component specific
wavelength regions with concentration data of a specific
component. All FTIR spectra and nutrient data were
subjected to mean center and 2nd derivative preprocessing.
Additionally, glutamine concentration data was also
subjected to variance scale preprocessing.

3.4.3 PLS model correlating the process FTIR spectra with
the concentrations of the IgG3 antibody during the bioreactor
cell culture process

A PLS model was constructed to correlate the process
FTIR spectra with the concentrations of the IgG3 antibody
of the in-process samples at various sampling points during
the bioreactor cell culture process for the four scenarios:
i) The 2nd derivative algorithm not applied, focused on
wave length region of 1900 to 796 cm–1; ii) The 2nd

derivative algorithm not applied, focused on wave length
region of 1277 to 796 cm–1; iii) The 2nd derivative
algorithm applied, focused on wave length region of
1900 to 796 cm–1; and iv) The 2nd derivative algorithm
applied, focused on wave length region of 1277 to
796 cm–1. The datasets including FTIR spectra acquired
at sampling time point and corresponding relative
concentration of IgG3 antibody assessed by protein A
chromatography for multivariate PLS model calibration
and testing were provided in Table 7. The modeling results
were summarized in Table 8. The prediction results of
mAb concentrations at various time point during the
bioreactor cell culture process for batch A and batch B
were shown in Fig. 7(a) (for 7 PLS factors, specific
wavelength regions from 1900 to 796 cm–1) and Fig. 7(b)

Fig. 5 The prediction results from individual PLS calibration models for each component in the bioreactor cell culture media for batch A
in comparison with the experimental data. (a) Glucose; (d) Glutamine; (c) Lactate; (d) Ammonium (Note: batch monitoring disruption
occurred due to unanticipated power supply disruption during the timeframe of 120‒168 h. Extrapolated data were used to bridge the gap.)

398 Front. Chem. Sci. Eng. 2015, 9(3): 386–406



(for 9 PLS factors, specific wavelength regions from 1277
to 796 cm–1).
It can see that the PLS modeling effort was quite

successful as evidenced by the PLS model’s figures of
merits. In addition, Table 8 shows that the user specified
wave length region can impact figures of merits of the
FTIR-mAb PLS model substantially, especially for the
scenarios where the 2nd derivative algorithm not applied.
When the user specified wave length region is narrowed
from (1900, 796) cm–1 to (1277, 796) cm–1, the number of
latent variables is increased from 7 to 9, which means the
PLS model’s complexity is increased a bit. However, most
figures of merits for the PLS model (including RMSEC,
RMSECV, and RMSEP) are improved substantially. The
R2 (Cum) value is increased from 0.995 to 0.999, too. This
improvement is probably due to the fact that user specified
range of (1277, 796) cm–1 covers the most characteristic
spectral range. That is, based on the literature [23] of the
FTIR spectra (1850–500 cm–1) of IgG1–IgG4 in 20 g/L
solutions, several major absorbance peaks which are
unique to biomolecule IgG3, such as 1185, 1127,
1054 cm–1, are covered and utilized.
When the 2nd derivative algorithm applied to the FTIR

spectra prior to the PLS modeling, significant improve-
ment was obtained as evidenced by the reduced number of
PLS latent variables and improved model interpretability.

The results were listed in the last two columns in Table 8
for comparison. Compared to their counterpart scenarios
where the 2nd derivative algorithms not applied, apparently
this improvement of model interpretability was achieved at
some cost of other figures of merits, i.e., increased values
for RMSEC/RMSECV/RMSEP and decreased R2

cumulative
value.

3.5 Discussion

From a process control perspective [5], our observations on
process trajectory and bioreactor cell culture media
dynamics have certain important bioprocess implications.
First, the real time process monitoring strategy can help to
provide early indicator which enables us to make a go or no
go process decision. For example, consumption of the
energy source (glucose and glutamine) was predicted in
real time during the cell culture process (Figs. 5 and 6).
Under normal circumstances, the traditional feeding
strategy based on in-process sampling plus off-line nutrient
analysis is sufficient to feed the bioreactor and compensate
for consumption in a timely manner. However, under
aberrant situations such as microbial contamination where
energy source consumption is unexpectedly high, it would
be useful to get an early indicator to terminate the culture.
The pace of the availability of the glucose and glutamine

Fig. 6 The prediction results from individual PLS calibration models for each component in the bioreactor cell culture media for a batch
B carried out at a different time in comparison with the experimental data. (a) Glucose; (d) Glutamine; (c) Lactate; (d) Ammonium
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concentrations in the bioreactor media provided via
traditional sampling and analysis strategy may be too
slow to direct timely feeding. Real time monitoring and
prediction of the bioreactor cell culture nutrients can
enable the direct timely feeding. As shown in Fig. 2(b), the
modeled culture rapidly depleted glutamine well before the
96 h off-line sampling time point. The model-based
prediction could have triggered a bolus of glutamine or
feed it to a target concentration. On the other hand, by
monitoring the glucose trend more effectively to a 1 g/L
target concentration, we could have achieved more rational
feed by skipping a 72 h feed and waited until 96 h to feed,
or triggered an automated feed any time before or after
96 h. Therefore, there is no need to “break the seal” and
draw a sample, no need to keep the nutrient analyzer
calibrated or have a technician process samples. Even-
tually, we envision that a real time PAT data-loop would be
a prediction populated from modeling software via OPC

(object linking and embedding (OLE) for process control)
to realize real time feedback/feed forward process control
as highlighted in the FDA’s PAT Guidance [2]. Further-
more, the PLS regression model which links process FTIR
spectra with mAb yield can provide predicted mAb yield
based on process FTIR spectra in real time. This
information can be used to inform the process engineer
and scientists regarding whether the bioreactor cell culture
process is performed as expected or it may require certain
process control action to remedy the situation.
As discussed in the introduction section, it has been

recognized that it is challenging to develop an online real
time monitoring strategy for a complicated yet dynamic
bioreactor cell culture process. Normally, to handle the
complexity of bioreactor culture and unique characteristics
of each cell line, it is necessary to create process-specific
multivariate real time monitoring models. In this work,
PLS models were generated via a stepwise approach, i.e.,

Table 7 Calibration dataset and testing dataset for correlating process FTIR spectra with the mAb concentration at various time points during

bioreactor mAb IgG3 cell culture process

Batch # Tspectra acquired /h Spectra included in calibration? Spectra included in testing? mAb concentration /(mg$mL–1)

A 0.38 Yes 0

A 0.88 Yes 0

A 16.43 Yes 0

A 20.43 Yes 0

A 24.43 Yes 0.7843

A 41.93 Yes 2.22

A 44.43 Yes 3.16

A 48.43 Yes 4.34

A 69.43 Yes 9.07

A 72.43 Yes 10.3

A 88.42 Yes 12.3

A 91.42 Yes 12.4

A 95.25 Yes 11.9

A 111.42 Yes 12

B 0.05 Yes 0

B 1.05 Yes 0

B 16.55 Yes 0

B 20.38 Yes 0

B 24.55 Yes 0

B 41.38 Yes 0

B 66.72 Yes 0.62

B 69.22 Yes 0.67

B 69.38 Yes 0.66

B 72.38 Yes 0.74

B 89.88 Yes 2.3

B 92.72 Yes 2.32

B 93.38 Yes 2.31
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first studying the simple binary system; then looking at the
medium supplement system; afterwards examining the real
bioreactor cell culture system. This stepwise approach
allowed us to proof the concept of real time process
monitoring via FTIR spectroscopy in a rational step-by-
step fashion. Previously it was demonstrated that this
stepwise approach is useful for developing an online real
time monitoring strategy for a dynamic multicomponent
pharmaceutical anti-solvent crystallization system [31]. In

addition, this rational stepwise approach is proven useful
from a process understanding perspective. Process under-
standing is an essential element highlighted in both FDA’s
PAT Guidance [2] and ICH Q8(R2) [32].
No attempt was made to develop a calibration model

which includes the data from all of the three systems
together. If the purpose of the modeling was to generate a
model applicable to all three systems together, a different
experimental design would be needed, in which case the

Fig. 7 The prediction results from PLS calibration model for mAb concentrations produced at various time points during the bioreactor
cell culture process for batch A and batch B. (a) 7 PLS factors, model built based on specific regions from 1900 to 796 cm–1, region to
single point baseline @ 1900 cm–1. (b) 9 PLS factors, model built based on specific regions from 1277 to 796 cm–1, region to single point
baseline @ 1277 cm–1

Table 8 Comparison of the PLS models’ figures of merits for correlating process FTIR spectra with the absolute concentrations of IgG3 antibody at

various time points during the bioreactor cell culture process

Model type PLS PLS PLS PLS

Protein A measured result mAb mAb mAb mAb

FTIR spectral data preprocessing algorithm Mean center Mean center Mean center; 2nd derivative Mean center; 2nd derivative

User specified wave length regions 1900 to 796 cm–1, Single
point baseline correction

@1900 cm–1

1277 to 796 cm–1,
Single point baseline
correction @1277 cm–1

1900 to 796 cm–1, Single
point baseline correction

@1900 cm–1

1277 to 796 cm–1, Single
point baseline correction

@1277 cm–1

mAb data treatment Mean center Mean center Mean center Mean center

Method of determining PLS latent variables Minimum PRESS Minimum PRESS Minimum PRESS Minimum PRESS

Number of latent variables 7 9 4 4

Number of data points for calibration 22 22 22 22

Number of data points for testing 5 5 5 5

RMSEC /(g$L–1) 0.335 0.12 1.28 0.842

RMSECV /(g$L–1) 1.14 0.893 1.93 1.68

RMSEP /(g$L–1) 1.2 0.698 3.48 1.44

R2
Cumulative 0.995 0.999 0.922 0.966

R2
calibration 0.995 0.999 0.922 0.966

R2
testing 0.943 0.981 0.519 0.918

R2
crossvalidation 0.968 0.980 0.903 0.930
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model would be more complicated than the ones presented
in this work.
While this work exemplified the possibility of develop-

ing an integrated PAT approach for understanding the
process dynamics of a lab scale bioreactor model mAb
IgG3 cell culture process, some humility and caution is
warranted. In terms of in-depth understanding of the
complications of chemical, biological and bio-chemical
characteristics and their interactions of a bioreactor cell
culture process, there are plenty of space worthy for further
investigation. Based on this work, it is important to note
that: i) PLS regression has the desirable property that the
precision of the model parameters can be improved with
the increasing number of relevant variables and experi-
mental measurements; ii) As the first step, this work
illustrates an integrated PAT approach for real time
monitoring of a lab scale bioreactor mAb IgG3 cell culture
process. In the meanwhile, it opens up opportunities for
further improvement. For example, we could certainly add
more real time bioreactor cell culture process data from
other batches along with more offline nutrient data for PLS
model refinement. In addition, improving the ReactIR
system including its FTIR probe design would be
beneficial. Furthermore, developing innovative algorithms
for real time process control could help to realize the
ultimate goal of PAT, etc.
Some of the perceived benefits or potential advantages

for the inline FTIR-based PAT strategy could include:
i) Reducing nutrient sampling and analysis costs;
ii) Reducing sampling associated risks of microbial
contamination due to sampling; iii) Enhancing process
control with higher density and more precise nutrient data;
and iv) Facilitating process automation or terminating
aberrant cultures. In summary, by adopting a rational
stepwise approach, the technical feasibility of real time
monitoring of the bioreactor cell culture process via FTIR
spectroscopy has been demonstrated in this work.

4 Conclusions

The technical feasibility of using FTIR spectroscopy to
track and monitor four key cell culture metabolites
(including glucose, glutamine, lactate, and ammonia) and
mAb yield of a bioreactor model mAb IgG3 cell culture
process in real time was demonstrated via a rational
stepwise approach. The level of complexity of the
experiments was increased incrementally. The simple
binary system of individual metabolite dissolved in water
was taken for the 1st case where no dynamic consumption
is expected. The stepwise addition of media to the
uninoculated bioreactor was taken as the 2nd case to
mimic the bioreactor charging process and test the
sensitivity and specificity of the FTIR spectroscopy. As
the 3rd yet most complicated case, the FTIR spectroscopy
was applied to the actual bioreactor cell culture process for

real time process monitoring, during which nutrient
dynamics (such as energy source is depleted and waste
product is accumulated during the course) is expected.
Offline determinations of in-process nutrients and mAb
yield were used to correlate with real time process FTIR
spectra to establish multivariate PLS calibration models.
The technical feasibility of using FTIR spectroscopy for
characterization and quantification of individual media
components was demonstrated in the 1st case. In addition,
the capability of using FTIR spectroscopy to follow the
addition of three components (glucose, glutamine, and
lactate) to the un-inoculated bioreactor in real time
sensitively and precisely was demonstrated via the 2nd

case. For the 3rd case, the multivariate calibration models
established show promise in predicting the concentration
profiles of glucose, glutamine, lactate, ammonia, and mAb
yield in real time during the entire course of the bioreactor
cell culture process. Our data analysis shown that applying
the 2nd derivative pre-processing algorithm to the FTIR
spectra helps to reduce the number of PLS latent variables
needed significantly and thus simplify the interpretation of
the PLS models.
Finally, the important bioprocess implications of our

work were discussed from process understanding and
process control perspectives, such as providing early
indicator which enables us to make a go or no go process
decision, etc. In summary, this work illustrates that
combining real time FTIR process monitoring, bioreactor
in-process sample characterization, and process chemo-
metrics can accelerate understanding cell culture process
dynamics and provide vital information for enhanced
process control.
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Appendix

For details on the exact binary mixtures that were
characterized with FTIR, please refer to Appendix Tables
A1–A4. For the measurement and prediction results of
glucose, lactates, and ammonium during the stepwise
addition processes, please refer to Appendix Tables A5–
A7.
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Table A4 Accumulated ammonium concentrations in the binary

system after each dose

Dose # Amount of ammonium
chloride added /mg

Calculated ammonium concentration
/(mmol$L–1)

1 26.7 0.998

2 26.7 1.997

3 26.7 2.995

4 26.7 3.993

5 26.7 4.991

6 26.7 5.990

7 26.7 6.988

8 53.4 8.985

9 26.7 9.983

10 133.5 14.974

11 133.5 19.966

12 267 29.949

Table A3 Accumulated lactate concentrations in the binary system

after each dose

Dose # Amount of Lactic acid
added /mg

Calculated lactate concentration
/(mmol$L–1)

1 31.9 0.708

2 31.9 1.417

3 30.5 2.094

4 32.1 2.806

5 31.9 2.837

6 30.4 4.190

7 30.8 4.873

8 32 5.584

9 30.6 6.263

10 32.7 6.989

11 159.4 10.528

12 156.2 14.067

13 315.2 21.066

Table A1 Accumulated glucose concentrations in the binary system

after each dose

Dose # Amount of glucose
added /mg

Calculated glucose concentration
/(g$L–1)

1 350 0.7

2 350 1.4

3 350 2.1

4 350 2.8

5 350 3.5

6 350 4.2

7 350 4.9

8 350 5.6

9 350 6.3

10 350 7

11 1750 10.5

12 1750 14

13 3500 21

Table A2 Accumulated glutamine concentrations in the binary system

after each dose

Dose # Amount of glutamine
added /mg

Calculated Concentration
/(mmol$L–1)

1 51 0.872

2 51 1.396

3 51 2.094

4 51 2.792

5 51 3.490

6 51 4.188

7 51 4.886

8 51 5.584

9 51 6.282

10 51 6.932

11 255 10.469

12 255 13.959

13 511 20.953

Huiquan Wu et al. Real time monitoring of bioreactor via infrared spectroscopy 403



References

1. FDA/ICH. Guidance for Industry Q11 Development and Manufac-

ture of Drug Substances. FDA, 2012. Available at: http://www.fda.

gov/downloads/Drugs/Guidances/UCM261078.pdf (accessed on

07/28/2015)

2. FDA. Guidance for Industry PAT—A Framework for Innovative

Pharmaceutical Development, Manufacturing, and Quality Assur-

ance. FDA, 2004. Available at: http://www.fda.gov/downloads/

Drugs/Guidances/ucm070305.pdf (accessed on 07/28/2015)

3. FDA. Advancing Regulatory Science at FDA: A Strategic Plan.

FDA, 2011. Available at: http://www.fda.gov/downloads/sciencer-

esearch/specialtopics/regulatoryscience/ucm268225.pdf (accessed

on 07/28/2015)

4. Wu H Q, Khan M A, Hussain A S. Process control perspective for

process analytical technology: Integration of chemical engineering

practice into semiconductor and pharmaceutical industries. Chemi-

cal Engineering Communications, 2007, 194(6): 760–779

Table A7 Accumulated ammonium concentrations in the medium during the stepwise addition of ammonium chloride—measurement and

prediction

Dose # Calculated ammonium
concentration,

Ccal /(mmol$L–1)

Measured ammonium
concentration by Nova,
CNova /(mmol$L–1)

Data preprocessing
algorithms applied

PLS modeling results
based on Ccal

PLS modeling results
based on CNova

1 0 0 Spectral block: User
specified region: 1900 to
900 cm–1; single point B/L
@ Zero; mean center.

Component concentration
block: Mean center

Calibration model R2 = 0.7677;
Leave-one-out cross validation

model R2 = 0.6822;
PLS latent variables based on
RMSEC vs. factors: 1 factor

Calibration model R2 = 0.6956;
Leave-one-out cross validation

model R2 = 0.5196;
PLS latent variables based on
RMSEC vs. factors: 1 factor

2 2 2.99

3 4 4.98

4 6 8.24

5 8 9.27

6 10 12.95

Table A6 Accumulated lactate concentrations in the medium during the stepwise addition of lactic acid—measurement and prediction

Dose # Calculated lactate
concentration,
Ccal /(g$L

–1)

Measured lactate
concentration by Nova,

CNova /(g$L
–1)

Data preprocessing algorithms
applied

PLS modeling results
based on Ccal

PLS modeling results
based on CNova

1 0 0 Spectral block: User specified region:
1900 to 900 cm–1; single point B/L @

Zero; mean center.
Component concentration block:

Mean center

Calibration model R2 = 0.9988
Leave-one-out cross validation

model R2 = 0.8638
PLS latent variables based on
RMSEC vs. factors: 3 factors

Calibration model R2 = 0.9982
Leave-one-out cross validation

model R2 = 0.9230
PLS latent variables based on
RMSEC vs. factors: 3 factors

2 4 0.59

3 8 1.16

4 12 1.53

5 16 1.84

6 20 2.16

Table A5 Accumulated glucose concentrations in the medium during the stepwise addition of glucose—measurement and prediction

Dose # Calculated glucose
concentration,
Ccal/(g$L

–1)

Measured glucose
concentration by

Nova, CNova /(g$L
–1)

Data preprocessing algorithms
applied

PLS modeling results
based on Ccal

PLS modeling results
based on CNova

1 6 N/A Spectral block: User specified
region: 1900 to 900 cm–1; single
point B/L @ Zero; mean center.
Component concentration block:

Mean center

Calibration model R2 = 0.9954
Leave-one-out cross validation

model R2 = 0.5785
PLS latent variables based on
RMSEC vs. factors: 3 factors

Calibration model R2 = 0.9996
Leave-one-out cross validation

model R2 = 0.3680
PLS latent variables based on
RMSEC vs. factors: 3 factors

2 6 N/A

3 6.04 4.12

4 6.08 4.4

5 6.58 5.37

6 7.07 5.80

7 7.56 6.38

8 8.04 6.95

404 Front. Chem. Sci. Eng. 2015, 9(3): 386–406



5. Read E K, Park J T, Shah R B, Riley B S, Brorson K A, Rathore A S.

Process analytical technology (PAT) for biopharmaceutical pro-

ducts: Part I. Concepts and applications. Biotechnology and

Bioengineering, 2010, 105(2): 276–284

6. Glassey J, Gernaey K V, Clemens C, Schulz T W, Oliveira R,

Striedner G, Mandenius C F. Process analytical technology (PAT)

for biopharmaceuticals. Biotechnology Journal, 2011, 6(4): 369–

377

7. Simon L L, Pataki H, Marosi G, Meemken F, Hungerbühler K,

Baiker A, Tummala S, Glennon B, Kuentz M, Steele G, Kramer H J

M, Rydzak J W, Chen Z, Morris J, Kjell F, Singh R, Gani R,

Gernaey K V, Louhi-Kultanen M, O’Reilly J, Sandler N, Antikainen

O, Yliruusi J, Frohberg P, Ulrich J, Braatz R D, Leyssens T, von

Stosch M, Oliveira R, Tan R B H, Wu H, Khan M, O’Grady D,

Pandey A, Westra R, Delle-Case E, Pape D, Angelosante D, Maret

Y, Steiger O, Lenner M, Abbou-Oucherif K, Nagy Z K, Litster J D,

Kamaraju V K, Chiu M S. Assessment of recent process analytical

technology (PAT) trends: A multiauthor review. Organic Process

Research & Development, 2015, 19(1): 3–62

8. Wu H, Dong Z, Li H, Khan M A. An integrated process analytical

technology (PAT) approach for pharmaceutical crystallization

process understanding to ensure product quality and safety: FDA

scientist’s perspective. Organic Process Research & Development,

2015, 19(1): 89–101

9. Wu H, Heilweil E, Hussain A S, Khan M A. Process analytical

technology (PAT): Quantification approaches in Terahertz spectro-

scopy for pharmaceutical application. Journal of Pharmaceutical

Sciences, 2007, 97(2): 970–984

10. Wu H, Khan M A. THz spectroscopy: An emerging technology for

pharmaceutical development and pharmaceutical process analytical

technology (PAT) applications. Journal of Molecular Structure,

2012, 1020: 112–120

11. Wu H, Khan M A. Quality-by-design (QbD): An integrated

approach for evaluation of powder blending process kinetics and

determination of powder blending end-point. Journal of Pharma-

ceutical Sciences, 2009, 98(8): 2784–2798

12. Wu H, White M, Khan M A. An integrated process analytical

technology (PAT) approach for process dynamics-related measure-

ment error and process design space development for a pharma-

ceutical powder blending bed. Organic Process Research &

Development, 2015, 19(1): 215–226

13. Wu H, White M, Khan M A. Quality-by-design (QbD): An

integrated process analytical technology (PAT) approach for a

dynamic pharmaceutical co-precipitation process characterization

and process design space development. International Journal of

Pharmaceutics, 2011, 405(1-2): 63–78

14. Wu H, White M, Berendt R, Foringer R, Khan M A. An integrated

PAT approach for nucleation induction time measurement and

nucleation mechanism assessment for a dynamic multi-component

pharmaceutical antisolvent crystallization system. Industrial &

Engineering Chemistry Research, 2014, 53(4): 1688–1701

15. Wu H, Lyon R C, Khan M A, Voytilla R, Drennen J III. Integration

of near-infrared spectroscopy and mechanistic modeling for

predicting film-coating and dissolution of modified release tablets.

Industrial & Engineering Chemistry Research. Accepted for

publication on May 19, 2015. http://pubs.acs.org/doi/abs/10.1021/

ie504680m

16. Chung H, Arnold M A, Rhiel M, Murhammer D W. Simultaneous

measurements of glucose, glutamine, ammonia, lactate, and

glutamate in aqueous solutions by near-infrared spectroscopy.

Applied Spectroscopy, 1996, 50(2): 270–276

17. Cervera A E, Petersen N, Lantz A E, Larsen A, Gernaey K V.

Application of near-infrared spectroscopy for monitoring and

control of cell culture and fermentation. Biotechnology Progress,

2009, 25(6): 1561–1581

18. Liu K Z, Mantsch H H. Simultaneous quantitation from infrared

spectra of glucose concentrations, lactate concentrations, and

lecithin/sphingomyelin ratios in amniotic fluid. American Journal

of Obstetrics and Gynecology, 1999, 180(3): 696–702

19. Petersen N, Odman P, Padrell A E, Stocks S, Lantz A E, Gernaey K

V. In situ near infrared spectroscopy for analyte-specific monitoring

of glucose and ammonium in streptomyces coelicolor fermentations.

Biotechnology Progress, 2010, 26(1): 263–271

20. Jose G E, Folque F, Menezes J C, Werz S, Strauss U, Hakemeyer C.

Predicting mab product yields from cultivation media components,

using near-infrared and 2D-fluorescence spectroscopies. Biotech-

nology Progress, 2011, 27(5): 1339–1346

21. Abu-Absi N R, Kenty B M, Cuellar M E, Borys M C, Sakhamuri S,

Strachan D J, Hausladen M C, Li Z J. Real time monitoring of

multiple parameters in mammalian cell culture bioreactors using an

in-line Raman spectroscopy probe. Biotechnology and Bioengineer-

ing, 2011, 108(5): 1215–1221

22. Budinova G, Salva J, Volka K. Application of molecular spectro-

scopy in the mid-infrared region to the determination of glucose and

cholesterol in whole blood and in blood serum. Applied Spectro-

scopy, 1997, 51(5): 631–635

23. Petibois C, Cazorla G, Cassaigne A, Deleris G. Plasma protein

contents determined by Fourier-transform infrared spectrometry.

Clinical Chemistry, 2001, 47(4): 730–738

24. Ellis D I, Goodacre R. Metabolic fingerprinting in disease diagnosis:

Biomedical applications of infrared and Raman spectroscopy.

Analyst (London), 2006, 131(8): 875–885

25. Haris P I, Chapman D. Does Fourier-transform infrared-spectro-

scopy provide useful information on protein structures. Trends in

Biochemical Sciences, 1992, 17(9): 328–333

26. Gross-Selbeck S, Margreiter G, Obinger C, Bayer K. Fast

quantification of recombinant protein inclusion bodies within intact

cells by FTIR spectroscopy. Biotechnology Progress, 2007, 23(3):

762–766

27. Stuart B H, Ando D J, eds. Biological Applications of Infrared

Spectroscopy. New York: John Wiley & Sons, Inc., 1997, 191

28. Sellick C A, Hansen R, Jarvis R M, Maqsood A R, Stephens G M,

Dickson A J, Goodacre R. Rapid monitoring of recombinant

antibody production by mammalian cell cultures using fourier

transform infrared spectroscopy and chemometrics. Biotechnology

and Bioengineering, 2010, 106(3): 432–442

29. Read E K, Bradley S A, Smitka T A, Agarabi C D, Lute S C,

Brorson K A. Fermentanomics informed amino acid supplementa-

tion of an antibody producing mammalian cell culture. Biotechnol-

ogy Progress, 2013, 29(3): 745–753

Huiquan Wu et al. Real time monitoring of bioreactor via infrared spectroscopy 405



30. Delwiche S R, Reeves J B III. A graphical method to evaluate

spectral proprecessing in multivariate regression calibrations:

example with Savtzky-Golay filters and partial least squares

regression. Applied Spectroscopy, 2010, 64(1): 73–82

31. Wu H, Khan M A. Quality-by-design (QbD): An integrated process

analytical technology (PAT) approach for real-time monitoring

and mapping the state of a pharmaceutical co-precipitation

process. Journal of Pharmaceutical Sciences, 2010, 99(3): 1516–

1534

32. FDA/ICH. Guidance for Industry Q8(R2) Pharmaceutical Devel-

opment. FDA, 2009. Available at: http://www.fda.gov/downloads/

Drugs/Guidances/ucm073507.pdf (accessed on 07/28/2015)

406 Front. Chem. Sci. Eng. 2015, 9(3): 386–406


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32


