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Abstract Protein-rich waste is an abundantly available
resource that is currently used mainly as animal feed and
fertilizers. Valorisation of protein waste to higher value
products, particularly commodity chemicals such as
precursors for polymers, has attracted significant research
efforts. Enzyme-based approaches, being environmentally-
friendly compared to their chemical counterparts, promise
sustainable processes for conversion of protein waste to
valuable chemicals. This review provides a general
overview on valorisation of protein waste and then further
summarises the use of enzymes in different stages of the
valorisation process—protein extraction and hydrolysis,
separation of individual amino acids and their ultimate
conversion into chemicals. Case studies of enzymatic
conversion are presented for different amino acids
including glutamic acid, lysine, phenylalanine, tyrosine,
arginine and aspartic acid. The review compares the
different enzyme reactors and operation modes for amino
acid conversion. The emerging opportunities and chal-
lenges in the field are discussed: engineering powerful
enzymes and integrating innovative processes for indus-
trial application at a low cost.

Keywords amino acids, protein waste, reactor, conver-
sion, commodity chemicals, enzymes

1 Introduction

As the ongoing rapid consumption of earth’s natural
resources by human activities has caused environmental
concerns, there is an urgent need to engineer sustainable
industrial processes and renewable materials. Bio-based

resources and processes, environmentally attractive alter-
natives to crude-oil based routes, could potentially change
the landscape of the chemical industry if they were made
available at a reasonably low cost. Valorisation of protein-
containing waste, a relatively under explored area, has
attracted increasing research attention as a potential route
to make chemicals [1]. Common sources of protein waste
include distiller dried grains with solubles (DDGS) from
maize & wheat, sugarcane, soybean, palm oil, grass and
animal slaughter [2]. These wastes are produced as by-
products of many industrial processes, exist in huge
quantities and are currently used merely as animal feed and
fertilizers. It is expected that with the increasing production
of biofuels in the future, there will be an abundance of
protein-containing waste [2]. It was estimated that if 10%
of the global fuel demand was fulfilled by bioethanol and
biodiesel, 100 million tonnes of protein-rich waste would
be produced every year [3].
Proteins are composed of amino acids. The fundamental

reason for considering amino acids as a raw material for
chemicals is the structure of the amino acid itself. The
structures of some amino acids are remarkably similar to a
number of synthesised chemicals. In the petrochemical
industry, some of the crude oil hydrocarbons are
derivatised with target functional groups such as amines
that are naturally present in amino acids. Therefore, it
makes sense to directly convert amino acids to chemicals
with the least amount of changes to their chemical
structure. In proteins, there are 20 different amino acids
with varying chemical properties determined by side
chains. This diversity gives a wide choice of possible
chemical precursors to make chemicals ranging from
surfactants and lubricants to industrial solvents and
precursors for plastics and polymers.
Conversion of protein waste to chemicals can be based

on different approaches: chemical, microbial and enzy-
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matic methods. This review will first present an overview
of valorisation of protein waste, followed by application of
enzymes for conversion of protein-rich biomass to
chemicals. The review will identify challenges and
opportunities in this area, highlighting the need for
powerful and yet inexpensive enzymes as well as efficient
processes for valorisation.

2 Overview on valorisation of protein waste

To date most protein wastes are primarily used as animal
feed or fertilizers. For example, DDGS, a by-product from
the bioethanol industry, is mostly sold as cattle feed [2],
although it is a poor nutrition source due to its low lysine
and high fibre content [4]. Vinasse, a by-product from
sugarcane-based bioethanol production, has been used as a
fertilizer. However, such usage has been known to lead to
ecological issues such as pollution in rivers as expected
from any nitrogen containing fertilisers [5]. Furthermore,
certain animal by-products cannot be used as animal feed
or fertilisers as a regulation requirement by European
Parliament because they may cause infectious diseases if
they reach humans [6].
From an economic point of view, the use of biomass for

the production of commodity chemicals gives it a higher
value of approximately $1000 per tonne of biomass
compared to its use in fuel production ($200‒400 per
tonne of biomass), as animal feed ($70‒200 per tonne of
biomass) and in electricity generation ($60‒150 per tonne
of biomass) [1,3,7]. Among these commodity chemicals,
styrene, 1,2-ethanediamine and acrylic acid have an
individual market of over one million tonnes worldwide
per year. Alternative products such as flavour and drug
intermediates have a higher value than commodity
chemicals, but their market scales are too small to
accommodate the sheer volume of protein waste. This
review thus focuses on valorisation of protein waste
towards commodity chemicals.

2.1 Sources and compositions of protein waste

A recent review has summarised possible sources of
protein-rich waste that can be explored for bulk chemical
production [2]. These sources range from industrial food
waste and agricultural waste to animal slaughter waste.
Depending on their origins, the amino acid composition of
protein wastes can vary dramatically. Table 1 summarises
the mass compositions of amino acids in some common
protein-rich wastes. Glutamic acid is one of the most
abundant amino acids across different sources of protein
waste. For example, it can account for 27% and 25% of
protein mass in gluten and oil palm kernel meal,
respectively. Some amino acids can have a high content
in one source but be low in another. For example, aspartic
acid is highly rich in whey protein (10.5%), but is

relatively low in wheat gluten (2.5%). Based on abundance
of amino acids in the source of protein waste, different
amino acids can be chosen as targets for conversion.
Among different sources of protein waste, an interesting

amino acid-rich source is cyanophycin. Cyanophycin is a
nitrogen storage polypeptide commonly found in cyano-
bacteria [8], and strictly it is not a protein. Cyanophycin is
composed of a poly L-aspartic acid backbone with L-
arginine side chains. It has been reported that cyanophycin
can be microbially converted into amino acids [9]. Due to
its low solubility in water, cyanophycin can be conveni-
ently separated from culture media [10], offering a
significant advantage of easy separation.

2.2 Different approaches for valorisation of protein waste

Different methods have been explored for valorisation of
protein waste. To date, most of these methods need to be
further improved before commercial applications. Based
on the action mechanism, these approaches include
chemical, fermentation and enzymatic methods. A parti-
cular process of valorisation may use one or a combination
of these methods.

2.2.1 Chemical approach

Proteins or amino acids can be converted to products via
chemical approaches [18]. The chemical approaches can be
based on either a simple reaction to make low-value
products or multiple reactions to produce higher value
chemicals. For example, the proteins in oil-free DDGS
have been chemically acetylated and then compression
moulded to form environmentally-friendly thermoplastics
[19]. Combining the low value of DDGS and low cost of
the simple reaction, this method has potential to deliver
economically competitive thermoplastics.
Multiple chemical reactions are often carried out at

different stages sequentially. One such example is the
production of succinonitrile from glutamic acid [20]. The
first stage was the synthesis of 3-cyanopropanoic amide
from glutamic acid through three-step chemical reactions:
esterification, decarboxylation and amidation. The second
stage was dehydration of 3-cyanopropanoic amide to
succinonitrile using a palladium (II) catalyst with a yield of
62%. However, this chemical process is expensive due to
the high cost of palladium catalyst (approx. $2000 for 50 g
from Alfa Aesar®) and the complex four-step reaction
process.

2.2.2 Fermentation approach

Early study of the fermentation approach often used wild
type microorganisms to make chemicals from amino acids
and/or protein. For example, yeast R. glutinis was used to
convert phenylalanine to trans-cinnamic acid with the
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amino acid as the sole nitrogen and carbon source [21], and
the trans-cinnamic acid secreted in the broth media was
extracted by ether.
Metabolic engineering has been increasingly used in

fermentation approach for valorisation of protein wastes.
By changing metabolic pathways, the conversion yield of
proteins/amino acids can be significantly improved. For
example, both metabolically engineered E. coli and C.
glutamicum have been used to make polyamines from
proteins [22]. C. glutamicum has been engineered with
different metabolic pathways to make putrescine, a
monomer for polyamide production [23]. It was found
that the ornithine decarboxylase pathway gave 40 times
higher production yield than the arginine decarboxylase
pathway. The significant difference demonstrates the
importance of metabolic engineering in improving produc-
tion yield.

2.2.3 Enzymatic approach

The use of enzymatic methods has several advantages over

chemical methods because enzymes are highly selective
and can be made from renewable sources. It has been
suggested that protein waste can be converted into
chemicals in three sequential steps: i) protein waste is
hydrolysed to its constituent amino acids, ii) a target amino
acid is isolated from the mixture and iii) the amino acid is
converted to a target chemical [1]. An alternative to this
process is to convert target amino acids to chemicals first
and then isolate the products from the mixture. A detailed
review of enzymatic conversion is presented in section 3.

3 Enzymatic conversion of protein waste
into chemicals

3.1 Hydrolysis of proteins

Hydrolysis of proteins into amino acids is the first step in
the process of converting protein waste to chemicals. It
also helps extraction of proteins from insoluble protein
waste such as keratin. Hydrolysis can be carried out using a
chemical or enzymatic approach, or a combination of both.

Table 1 Amino acid content of some common protein-rich wastes (mass % of amino acids in protein waste)a)

Amino acid Whey protein Wheat
glutenb)

Soybean meal Feather meal Oil Palm kernel meal
protein isolatec)

DDGS Cyanophycin

Alanine 4.74 1.96 2.27 2.88 6.98 2.09 0

Arginine 2.23 2.27 3.77 6.76 5.20 1.32 46.1

Aspartic acid 10.5 2.53 6.09 4.18 11.3 1.99 39.2

Cysteine 1.51 0.12 0.86 – 5.00 0.58 0

Cystine – – – 6.58 – – 0

Glutamic acid 15.1 27.4 9.39 8.22 25.8 5.50 0

Glycine 1.65 2.55 2.20 5.18 4.53 1.16 0

Histidine 1.77 0.93 1.36 0.23 2.02 1.01 0

Isoleucine 4.57 3.02 2.28 3.94 3.40 0.91 0

Leucine 9.73 5.12 4.10 5.69 6.83 3.42 0

Lysine 8.40 3.07 3.23 1.54 5.12 1.09 0.6

Methionine 2.59 1.34 0.80 0.71 2.34 0.76 0

Phenylalanine 2.53 2.48 2.66 3.46 4.93 1.38 0

Proline 6.76 9.56 2.93 7.39 3.40 1.94 0

Serine 5.07 3.68 3.08 8.73 0.25 1.44 0

Threonine 4.89 1.79 1.67 3.45 5.32 1.19 0

Tryptophan 2.05 – – – – – –

Tyrosine 3.01 2.17 1.75 – 3.16 0.91 0

Valine 4.56 2.34 2.38 5.30 4.93 1.47 0

Total amino acid 91.66 72.33 50.82 74.24 100 28.16 85.9

Reference [11] [12] [13] [14] [15] [16] [17]

a) Amino-acid mass percentage obtained after acid hydrolysis of given protein waste. Note that the protein waste may also contain other components such as lipids and
carbohydrates, and the total percentage of amino acids is thus less than 100%. The given data should be used as an estimated guide only because the composition of
waste can vary significantly from different sources; “–”indicates that the particular amino acid was not quantified in the composition analysis, and it does not mean that
the amino acid was not present
b) Amino acid content given in mmol/g in the original literature and has been converted into mass in this table
c) Amino acid content given relative to total protein content (75.6%) in the waste, same as originally reported in the literature
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3.1.1 Chemical hydrolysis

Chemical methods can be based on either acids or alkalis,
and they have been extensively covered in literature [11–
15,24–27]. Chemical methods often require extreme
conditions and modify certain amino acids. For example,
acid hydrolysis completely destroys tryptophan and
partially damages tyrosine, serine and threonine [28].
Alkali hydrolysis can modify arginine, lysine, cysteine,
serine and threonine [29].

3.1.2 Enzymatic hydrolysis

Proteinases can break down the peptide bond of proteins.
Protein hydrolysis by proteinases is less energy intensive
compared to chemical approaches because it can be carried
out in mild conditions. Table 2 summarises a variety of
enzymes for the hydrolysis process. In a recent study, a
variety of proteases including Protex 40XL, Protex P,
Protex 5L, Protex 50FP and Protex 26L were explored for
hydrolysis and extraction of proteins in soybean meals
[30]. The first three enzymes showed optimal activity
under alkaline reaction conditions while the others under
acidic conditions. Acidic reaction conditions were found to
lower the protein’s solubility because the pH was closer to
the protein’s isoelectric point. Therefore, the alkaline
enzymes gave better protein extraction yields and were
able to extract 90% of the protein. In another study, protein
was extracted from wheat DDGS using Protex 14L, Protex
6L and Protex 51P. 57% of the proteins were broken down
into smaller peptides using Protex 6L [31]. These methods
gave a protein hydrolysate in the form of small peptides but
not amino acids.
One important group of proteinase is keratinase which

degrades insoluble keratin, the proteins in animal hairs,
skin and chicken feathers. The great diversity of
keratinases and their properties have recently been covered

in an excellent review [32], and readers are recommended
to refer to it for details on their properties and applications.
The main advantages of using enzymes over the

traditional chemical methods are (1) the reaction can be
carried out under relatively mild conditions, (2) the amino
acids do not get damaged in the process [33]. However, a
drawback of using proteases is that a single protease usage
may give a mixture of peptides instead of amino acids.
Thus a combination of enzymes may be required to fully
hydrolyse proteins.

3.1.3 Combination of enzymatic and chemical hydrolysis

Combination of enzymatic and chemical hydrolysis can
overcome disadvantages of the individual methods. A
recent study has compared different hydrolysis methods to
produce glutamic acid from wheat gluten [12]. A
combination of enzymatic treatment and dilute acid
treatment (1 mol/L HCl) avoided the use of high
concentration of HCl (6 mol/L). In the first step, proteins
were hydrolysed by enzymes at neutral pH, which released
approx. 48% glutamic acid. In the second step, the protein
solution was further treated by 1 mol/L HCl, giving a
combined yield of 80%. The attempt to use a lower
concentration of 0.1 mol/L HCl in the second step was not
successful, suggesting more research are needed to enable
hydrolysis at a milder condition.

3.2 Separation of individual amino acids

Hydrolysis of proteins leads to a mixture of amino acids
whose composition can vary dramatically depending on
their sources (Table 1). In theory, these amino acids can be
isolated based on their size, solubility, hydrophobicity and
electrochemical characteristics. For example, amino acids
were separated into three different groups (acidic, basic
and neutral) by electrodialysis using ion exchange

Table 2 Typical enzymes used in protein hydrolysis

Protein waste Enzyme Hydrolysis condition Ref.

pH Temperature /°C

Feather meals Keratinasea) Neutral to alkaline 40‒60 [32]

Whey protein isolate Corolase PP 8.0 50 [34]

Wheat gluten Alcalase 2.4 L FG 8.5 55 [12]

Validase FP concentrate 6.0 55

M Amano SD 7.0 40

Peptidase R 7.0 40

Flavourzyme 1000 L 7.0 55

DDGS Protex 14L 7.5 50 [31]

Protex 6L 7.5 50

Protex 51P 7.5 50

a) Keratinase is a large family of proteinase that degrades keratin and their optimal pH and temperature can vary significantly from different sources. See details in [32]
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membranes [35]. In this method a problem occurred in the
presence of arginine which interacted with cation exchange
membranes and decreased separation efficiency of electro-
dialysis [36]. A specially designed electro membrane with
a higher swelling degree was successfully used to over-
come this problem [37]. Although chromatography
technique is highly efficient in isolation of individual
amino acids, it is unsuitable for large scale production of
commodity chemicals due to the associated high cost. For
practical applications at an industrial scale, there is an
unmet need of amino acid isolation at a low cost.
To facilitate easier separation of amino acids, modifica-

tions of the amino acids have been explored. Such
approaches often involve the selective conversion of a
particular amino acid into an easy separable form. For such
purpose, enzymes have been used to change amino acids’
properties such as charges and solubilities. For example,
lysine decarboxylase was added to a mixture of two basic
amino acids––lysine and arginine, and selectively con-
verted lysine into 1,5-pentanediamine which had a
different charge and was subsequently separated from
arginine by electrodialysis [38,39]. Similarly, glutamic
acid decarboxylase was used to aid separation of a mixture
of glutamic acid and aspartic acid [40]. The enzyme
converted glutamic acid to less negatively charged γ-
aminobutyric acid which was separated by electrodialysis
using a mixed matrix membrane.
Despite these efforts, further research is needed to

develop low-cost separation processes that can be operated
at a large scale. Most reported methods dealt with a model
system containing two or a few amino acids rather than a
mixture of 20 amino acids. To date the available separation
methods are still too expensive, making the overall
valorisation process economically uncompetitive. As

pointed out by Tuck et al, there is an urgent need of
innovation in the isolation process [1].

3.3 Enzymatic conversion of amino acids to bulk organic
compounds

Amino acids can be converted to different products such as
flavours, drug intermediate or bulk chemicals. For
example, amino acids can be converted to aromatic
compounds using enzymes produced by lactic acid
bacteria present in cheese [41], giving a particular variety
of cheese its unique taste and flavour. These aromatic
compounds are however not considered to be large-volume
chemicals and will not be discussed further in this review.
Note that the amino acids mentioned in this review are L-
isomers unless stated otherwise. Table 3 summarises a few
amino acids that have been enzymatically converted to
chemicals, and they are reviewed as case studies in this
section.

3.3.1 Glutamic acid

Glutamic acid, due to its high content in protein waste
sources [2], is one of the top candidates for bulk chemical
production. Two typical chemicals converted from gluta-
mic acid (1), γ-aminobutyric acid (2) and α-ketoglutaric
(3), are shown in Fig. 1. γ-Aminobutyric acid can be
further used to make products including sedatives [59],
acrylonitrile [60], succinonitrile [20] and N-methyl-
pyrrolidone [61]. α-Ketoglutaric acid has been suggested
for applications such as a protection against cyanide
poisoning [62] and wound healing [63]. It can also be
polymerised into poly(triol α-ketoglutarate), a biodegrad-
able biomaterials [64].

Table 3 A summary of enzymatic conversions of amino acids to chemicals

Amino acid Chemical Enzymes Source of enzyme Ref.

Glutamic acid γ-Aminobutyric acid Glutamic acid decarboxylase E. coli ATCC 11246 [42,43]

E. coli DH5α [44–47]

Glutamic acid α-Ketoglutaric acid Amino acid deaminase P. mirabilis KCTC 2566 [48]

Glutamate α-Ketoglutarate Glutamate dehydrogenase C. symbiosum [49]

NADH oxidase L. sanfranciscensis [49]

Lysine 5-Aminovaleric acid Lysine α-oxidase T. viride [50]

Lysine 5-Aminovaleric acid Lysine monooxygenase and 5-Aminovaler-
amide amidohydrolase

P. putida KT2440 [51]

Lysine Cadaverine dicarboxylate Lysine decarboxylase Not disclosed [52]

Phenylalanine Cinnamic acid Phenylalanine ammonia lyase Not disclosed [53]

Tyrosine Para-hydroxycinnamic acid Tyrosine ammonia lyase R. glutinis [54]

P. chrysosporium [54]

Arginine Ornithine Arginine amidinohydrolase B. subtilis KY 3281 [10,55]

Aspartic acid β-Alanine Aspartate α-decarboxylase E. coli W [56,57]

Aspartate β-Alanine Aspartate α-decarboxylase C. glutamicum [58]
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γ-Aminobutyric acid: Glutamic acid α-decarboxylase
(GAD) was used to make γ-aminobutyric acid from
glutamic acid [42]. GAD is a pyridoxal 5′-phosphate
(PLP)-dependent enzyme with an optimal enzyme activity
under acidic conditions [65]. The enzyme was expressed in
E. coli [43], and the purified enzyme was then immobilised
on two different materials: Eupergit by covalent bond
formation and calcium alginate by gel entrapment [42]. It
was found that the enzyme entrapped in calcium alginate
performed better than immobilised on Eupergit. The
conversion reaction was carried out in water without
addition of buffer to make the process more economic.
Using a fed-batch mode, a yield of 35 g γ-aminobutyric
acid L–1$h–1 was achieved [42]. The same salt buffer-free
approach was used to make γ-aminobutyric acid in a batch
mode by another group [44]. Using engineered GAD with
hyper activity, the batch mode reached 100% conversion
after 3 h, giving a yield of 34.3 g γ-aminobutyric acid
L–1$h–1 [44], which was close to the yield delivered by the
fed-batch mode [42].
α-Ketoglutaric acid: Both whole cells and free enzymes

have been used for production of α-ketoglutaric acid. In a
study using whole cells biocatalytic technique [48], L-
amino acid deaminase was expressed using E. coli and B.
subtilis systems encoded with a gene from P. mirabilis
KCTC 2566 [48]. The recombinant enzyme showed a
higher specific activity in B. subtilis than in E. coli,
possibly due to better protein refolding ability of the
former [66]. A maximum yield of 4.65 g/L of α-
ketoglutaric acid was obtained after optimisation of the
conversion process. Immobilisation of whole cells was
carried out using alginate to test reusability of the

biocatalysts. It was found that the immobilised cells
retained just about 25% of its activity after 4 cycles [48].
α-Ketoglutaric acid has also been produced from

glutamic acid using purified enzymes [49]. The reaction
was performed using a coupled enzyme system comprising
glutamate dehydrogenase and NADH oxidase. The oxida-
tion of glutamic acid was catalysed by glutamate
dehydrogenase with simultaneous reduction of cofactor
NAD+ to NADH. In parallel, NADH oxidase regenerated
NADH back to NAD+ using molecular oxygen in the
buffer as a co-substrate. This coupled enzyme system
enabled continuous reaction without extra addition of
NAD+. It was observed that it took 18 h to completely
convert 5 mmol/L glutamate to α-ketoglutarate. The slow
production rate was due to feedback inhibition.

3.3.2 Lysine

As shown in Fig. 2, lysine (4) can be converted to 5-
aminovaleric acid (5) or cadaverine (6). 5-aminovaleric
acid is a precursor of valerolactam, a building block for
nylon-5 production [67]. Cadaverine is used in industry for
the production of polyamides, chelating agents and
additives [68].
5-Aminovaleric acid: Lysine α-oxidase was used to

oxidise lysine to produce 5-aminovaleric acid [50]. An
aqueous solution of a mixture of lysine free base and lysine
monohydrochloride was chosen as the buffer since the
enzyme showed the best activity under this condition. A
conversion yield of 95% was achieved after 5 days of
reaction. The enzyme was also immobilised onto epoxy-
activated Sepabeads EC-EP and could be reused [50].

Fig. 1 Conversion of glutamic acid to γ-aminobutyric acid and α-ketoglutaric acid
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Liu et al. proposed an alternative method to produce 5-
aminovalerate using a coupled system of two enzymes
[51]. Lysine was first oxidised to form 5-aminovaleramide
by lysine monooxygenase and then converted to 5-
aminovalerate by 5-aminovaleramide amidohydrolase.
Both enzymes were expressed using recombinant E. coli
and purified before use. 87% of the lysine was converted to
5-aminovalerate after 12 h under optimised conditions,
significantly shorter than the 5 days reported in [50].
However, some of the intermediate 5-aminovaleramide
accumulated in the reaction mixture indicating that the
second enzyme might have decreased activity due to
deactivation or inhibition.
Cadaverine: Conversion of lysine to pentamethylene-

diamine, commonly known as cadaverine, is also an

attractive route. An enzymatic method using lysine
decarboxylase to produce cadaverine dicarboxylate in the
presence of dicarboxylic acid has been described in a
patent [52]. The whole cell approach has also been
reported to make cadaverine [68].

3.3.3 Phenylalanine and tyrosine

As shown in Fig. 3, phenylalanine (7) and tyrosine (9) can
be converted to multifunctional aromatic compounds such
as cinnamic acid (8) and para-hydroxycinnamic acid (10),
both of which have a variety of industrial applications
including production of liquid crystalline polymers,
elastomers, adhesives, pharmaceuticals and biocosmetics
[69,70].

Fig. 2 Conversion of lysine to 5-aminovaleric acid and cadaverine

Fig. 3 Conversion of phenylalanine to cinnamic acid and tyrosine to para-hydroxycinnamic acid
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A thermostable tyrosine ammonia lyase was used to
make para-hydroxycinnamic acid from tyrosine [54]. This
enzyme was produced in E. coli transformed with a gene
from wood rotting fungus, P. chrysosporium, and could
withstand 3–4 h exposure to 55‒60 °C. In contrast, the
enzyme from yeast R. glutinis lost activity under the same
condition. The high thermostability of the enzyme from P.
chrysosporium makes it an attractive choice because the
higher reaction temperature increased both substrate
solubility and enzyme activity.

3.3.4 Arginine

In a two-step reaction in Fig. 4, arginine (11) is hydrolysed
by arginase (arginine amidinohydrolase) to ornithine (12),
followed by decarboxylation into 1,4-diaminobutane (13),
a precursor for nylon-4, 6.
Ornithine: In a study by Könst et al. [10], the reaction to

form ornithine was carried out using both free and
immobilised arginase from B. subtilis. Among three
epoxy-activated matrices used for immobilisation, Sepa-
bead EC-EP showed the best immobilisation results with
enhanced stability for arginase. The second reaction, which
converted the ornithine to 1,4-diaminobutane, was realised
using ornithine decarboxylase expressed in E. coli using a
gene from T. brucei [71].

3.3.5 Aspartic acid

As shown in Fig. 5, decarboxylation of aspartic acid (14)
produces β-alanine (15) (3-aminopropionic acid), an

intermediate that can be converted to nitrogen containing
chemicals such as acrylamide or acrylonitrile. L-aspartate
α-decarboxylase was used to convert aspartic acid to β-
alanine [56]. This enzyme was highly stable and retained
activity after 1 h at 70 °C or 24 h at 60 °C. However, the
enzyme had low activity due to low turnover numbers of
the enzyme (2390 s–1) [56]. In a separate work by Shen et
al. [58], L-aspartate α-decarboxylase from C. glutamicum
was used for the same conversion. It was found that the
enzyme was mostly active at 55 °C, but lost 38% activity
after 12 h. A direct comparison of the enzymes from these
two sources is difficult because the two studies used
different reaction conditions. Nevertheless, the enzyme
from C. glutamicum seems to have a higher activity at
room temperature, but is less thermostable, compared to
the one from E. coli. This difference suggests that
engineering of the enzyme is needed to achieve both
high activity and stability in a single enzyme.

4 Processes for enzymatic conversion

In addition to activities and physical properties of
enzymes, another important consideration is the operation
modes used in the enzymatic conversion. While both free
and immobilised enzymes can be selected for the
valorisation, some reactor types such as a fixed bed will
require immobilised enzymes. Enzyme immobilisation
technologies are matured technologies and are extensively
covered in the literature [72,73], and will not be repeated in
this review. Instead, we will focus on the compatibilities of

Fig. 4 Conversion of arginine to ornithine to diaminobutane

Fig. 5 Conversion of aspartic acid to β-alanine
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the form of enzymes with the intended reactors and
operation modes.
The operation modes for an enzyme-based reaction

include stirred tank reactors, membrane reactors, packed
bed reactors and fluidised bed reactors [74,75]. The choice
of the type of reactor depends on the intended process,
nature of the chemical reaction and the enzyme’s
vulnerability to inhibition by external factors [76]. For
details, readers are recommended to read some excellent
reviews published previously [75,77,78]. Herein, we
present analyses of reactors for their specific application
for amino acid conversion.
An important consideration in determining the type of

reactor for a given system is how to achieve the optimised
reaction conditions (pH, temperature, and concentration of
substrates and products). Usually, a salt-buffer may be used
in small reactors to control pH values. However, using
buffer for pH control for scale-up operations is not
economically viable. Furthermore, the use of buffer
complicates the purification of the final product
[42,44,46]. Thus, a reactor that can achieve optimised
reaction conditions at the lowest possible cost is highly
desirable.

4.1 Stirred tank reactor

The stirred tank reactor is the simplest reactor commonly
used for enzymatic reactions [74]. This reactor system is
often used in a batch mode for enzymatic conversions of
amino acid including glutamate [44,49], aspartate [56], and
lysine [50]. One disadvantage of the batch mode is that
reaction conditions such as pH and substrate concentration
changes with time, decreasing activity of enzymes as it
departs from the optimal condition. The second disadvan-
tage is that some enzymes can be inhibited by the substrate,
product or other substances present in the reaction media.
For example, aspartate-α-decarboxylase, the enzyme that
converts aspartic acid into β-alanine, is inhibited by high
substrate concentration [58]. Batch mode has a high
concentration of the substrate and a high concentration of
the product at the early and late stage of reaction,
respectively, and these conditions are unfavourable if
there are substrate/product inhibitions.
To overcome these two problems, a fed-batch mode can

be used instead of the batch mode. As substrate is
gradually fed into the reactor, the substrate concentration
can be kept low to minimise its inhibition effect on
enzyme. Reaction conditions such as the pH can also be
retained in a desired range. Using a fed-batch mode, Shen
et al. attenuated the enzyme inhibition by aspartic acid and
retained pH at an optimum value, delivering a high
conversion yield of 97.2% [58]. Their results demonstrate
the importance of operation mode in enzymatic conversion
of amino acids.
Continuous stirred tank reactor (CSTR) is another

option for a stirred tank reactor. Lammens et al. compared

a CSTR and fed-batch reactor for the conversion of
glutamic acid into γ-aminobutyric acid [42]. Although each
tank had a conversion yield of only 80%, a cascade of three
CSTRs gave a total conversion yield of 99%. The high
overall yield of a series of CSTRs, however, came at a
price: the reaction rates of the second and third stages were
very low due to lowered concentrations of the substrate
(smaller than the Km value of the immobilised enzyme),
decreasing the volumetric productivity for CSTRs. In
contrast, a simple fed-batch reactor achieved a better
productivity as the substrate concentration could remain
higher [42]. However, it should be noted that there is an
accumulation of the product in a fed-batch mode, and it
may not be a suitable mode if enzyme is inhibited by the
product.

4.2 Membrane reactor

A membrane reactor uses a semipermeable membrane to
retain the enzyme while allowing permeability of the
substrates and products in or out of the reactor. A rather
unique feature of the membrane reactor is that it can
separate the final product from the free enzyme through
careful reactor design and a selection of suitable
membranes. Könst et al. used a membrane reactor to
convert arginine to ornithine in a continuous mode [10]. A
cellulose ultrafiltration membrane with a 10 kDa cut off
was used to retain the free enzyme. Compared to the same
enzyme immobilised on Sepabeads EC-EP used in the
same membrane reactor, the conversion using free enzyme
shows a similar operational stability. It was reported that
after 72 h operation, neither the free nor immobilised
enzyme showed a significant loss in activity, suggesting
immobilisation was not necessary in this membrane
reactor. Therefore, the membrane reactor offers the
advantage in saving the cost of enzyme immobilisation
in comparison to processes that use immobilised enzymes
to reuse enzyme.

4.3 Fixed bed reactor

Since the operation of the fixed bed reactor requires the
reaction solution to pass the enzyme-loaded bed, enzymes
have to be immobilised on particles before being used in a
fixed bed reactor. Recently, Teng et al. encapsulated
glutamate α-decarboxylase into calcium alginate beads
which were then packed into a glass column [79]. A
reactant solution containing glutamic acid was pumped
through the column. The product, γ-aminobutyric acid
from the column reached a steady state concentration of
0.54 mmol/L. The concentration of the product was lower
than that predicted based purely on the enzyme kinetics. A
possible reason for this was likely to be the diffusion
limitations of the feed and product molecules in and out of
alginate beads in the column, which was expected to
decrease the overall conversion rate.
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Although other reactors such as fluidised bed reactors
have been used for various other enzymatic conversions
[74], their use in enzymatic amino acid conversions have
not been sufficiently explored yet.

5 Perspectives and conclusions

Literature reports have proven the concept of enzymatic
valorisation of protein wastes into chemicals. Among
different valorisation strategies, enzymatic approach has
the potential to bring high value products in an
environmentally friendly manner. However, the enzymatic
approach is still in an early stage towards practical
applications, and there are a number of challenges that
need to be overcome before it can be broadly used on an
industrial scale.
The first challenge is to engineer economically compe-

titive enzymes that are tailored for amino acid conversion.
This requires the engineered enzyme to have the following
attributes: i) A high selectivity to convert a specific amino
acid to the final product or intermediates, ii) A high activity
to enable fast reactions, iii) A high stability under variable
reactor conditions for operation over a prolonged period,
and iv) A recoverable form that allows reuse of enzymes
(through either enzyme immobilisation or a membrane
process). Protein engineering, particularly directed evolu-
tion, is expected to play an important role to bring enzymes
such attributes [80]. Given that there are 20 amino acids in
the mixture of protein hydrolysis solution, a library of
enzymes with each targeting a specific amino acid will be
needed to fully utilise all amino acids existing in protein
waste.
The second challenge is to achieve reasonable value of

valorisation at a low cost. While it is desirable to get the
most value out of protein wastes, a process design that
targets only those products of highest price may not
necessarily be the best strategy. High value products, such
as fine chemicals or drug intermediates, have a relatively
small market and do not require large volumes of protein
wastes. For this reason, Tuck et al. have suggested that
production of bulk chemicals should be given a higher
priority than fine chemicals in valorisation of protein waste
[1]. The valorisation process needs to be engineered to
operate at a low cost in order to make production of bulk
chemicals viable. It not only requires cheap enzymes at a
large quantity, but also requires further engineering to
produce reusable enzymes in immobilised forms to stay
cost-competitive. New immobilisation strategies, perhaps
by better control of the surface orientation of the enzymes,
could be a promising option [81,82].
The third challenge is to increase the efficiency of the

overall valorisation process. The current valorisation
approach requires multiple steps including protein hydro-
lysis, separation of the mixture of amino acids, and
conversion of individual amino acids to chemicals.

Although it is technically possible to realise each step,
the efficiency of the overall process is still very low. In
addition to cost considerations, the designed process will
need to have a low carbon footprint compared to existing
methods to allow long term sustainability. While incre-
mental innovation will be helpful here, disruptive inven-
tions are needed to have a true breakthrough in process
development. A smart way that can integrate the multiple
steps to intensify the processes on an industrial scale is
urgently needed. For example, integration of the separation
and conversion steps could dramatically improve the
efficiency of the overall process. These challenges present
many opportunities for chemical engineers to take new
approaches to come up with game-changing inventions
towards cost-competitive and sustainable processes for
valorisation of protein waste.
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