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Abstract Model-based diagnosis (MBD) with multiple
observations shows its significance in identifying fault location.
The existing approaches for MBD with multiple observations
use observations which is inconsistent with the prediction of the
system. In this paper, we proposed a novel diagnosis approach,
namely, the Diagnosis with Different Observations (DiagDO),
to exploit the diagnosis when given a set of pseudo normal
observations and a set of abnormal observations. Three ideas
are proposed in this paper. First, for each pseudo normal
observation, we propagate the value of system inputs and gain
fanin-free edges to shrink the size of possible faulty
components. Second, for each abnormal observation, we utilize
filtered nodes to seek surely normal components. Finally, we
encode all the surely normal components and parts of
dominated components into hard clauses and compute
diagnosis using the MaxSAT solver and MCS algorithm.
Extensive tests on the ISCAS'85 and ITC'99 benchmarks show
that our approach performs better than the state-of-the-art
algorithms.

Keywords model based diagnosis, maximum satisfiability,
top-level diagnosis, cardinality-minimal diagnosis, subset-
minimal diagnosis

1 Introduction
Automated diagnosis is a challenging problem which is
concerned with reasoning about the health state of systems,
including detecting and isolating faulty components,
identifying abnormal behavior of systems, and predicting the
behavior of systems under different conditions. Model-based
diagnosis (MBD) is a principled approach for detecting and
isolating faulty components [1], and it has a wide range of
successful practical applications, including qualitative models
[2], debugging of web services [3], discrete event systems [4],
debugging of relational specifications [5], hybrid systems [6],
and spreadsheet debugging [7], among many others.

Diagnosis approaches help in locating faults in failing
circuits. Observations with respect to the complex diagnosis
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system offer a lot of diagnostic system information, which
promotes the efficiency of deriving diagnoses. Recent works
aim at analyzing multiple observations for the identification of
fault locations [8—12]. Without a model of the diagnosed
system, some diagnosis approaches explore and learn the
system model when the system is in a normal state, which
helps in dealing with automated diagnosis [9]. In MBD with
multiple observations, the model of the diagnosed system is
built firstly. Then multiple observations about the system are
used to predict the state of components according to the
model. Recent studies of MBD with multiple observations
consider some abnormal observations which are inconsistent
with the prediction of the system. In this paper, we propose
that some pseudo normal observations which are consistent
with the prediction are also important when diagnosing a
single flipped fault. In addition, we also focus on the
information of abnormal observations which are inconsistent
with the prediction of the diagnosed system. Note that both
pseudo normal observations and abnormal observations are
observations when the system in a faulty state.

The first contribution of this paper is analyzing the
multiple pseudo normal observations. Each observation
consists of a set of system inputs and a set of system outputs.
We provide theoretical analysis for the state of components by
propagating the value of system inputs w.s.t each pseudo
normal observation. Correspondingly, we propose an approach
for partitioning components into two parts: surely normal
components and possible faulty components. The second
contribution of this paper is based on multiple abnormal
observations. We iteratively find filtered components w.r.t
each observation and theoretically analyze the reason why the
state of these filtered nodes is surely normal. The third
contribution of this paper is proposing an approach about
how to encode all the components when encoding MBD into
the propositional logic formulas. Experimental evaluation
building on the well-known ISCAS'85 benchmark and ITC'99
benchmark [13] shows that our DiagDO approach outperforms
the state-of-the-art algorithms, namely HSD and IHSD.

The paper is organized as follows. In Section 2, we
introduce the related works. In Section 3, we introduce the
notations and definitions used throughout this paper. In
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Section 4, we state a novel approach to compute a diagnosis.
In Section 5, we present the experimental results. In the last
section, we present the conclusion of the paper.

2 Related work

Since Reiter proposed the first MBD algorithm, many MBD
algorithms have been proposed for diagnosing complex and
large-scale systems [14-23]. One classic approach searches
diagnosis with an observation that is inconsistent with the
prediction according to the model of the system [14-21].
These methods include stochastic diagnosis algorithm [21],
the compilation-based algorithm in which OBDDs [24,25] and
DNNF [26] are two popular compilation targets, inductive
learning methods [27], SAT-based algorithm [18,28,29],
breadth-first search based algorithms [16], and conflict-
directed diagnosis algorithm [19,20]. Among these algorithms,
breadth-first search based algorithms and their improvements
make use of the tree structure, in which each node is checked
to see if it denotes a minimal diagnosis. These approaches are
complete. Obviously, they return all the solutions within
enough time. However, they needs a considerable amount of
time, which is useless to solve large real-world problems.
Today, due to improvement in CPU, some techniques are used
to parallelize the construction of the Hitting Set Tree (HS-
Tree) and this approach can compute all the diagnoses.
Compilation-based approaches successfully exploit the
hierarchy of the system and compute candidate solutions in a
DNF hierarchy. As a stochastic search algorithm to solve
MBD, SAFARI computes a diagnosis in shorter time than
many Maximum Satisfiability (MaxSAT) solvers [17,18].
SAFARI randomly removes a component to reduce the
cardinality of diagnosis until no component can be removed.
Obviously, SAFARI is not guaranteed to return a minimal
cardinality diagnosis. Motivated by the continuous
performance improvement made to propositional satisfiability
(SAT) and MaxSAT solvers, SAT-based approaches have
aroused widespread attention. In [18] Feldman compiles the
diagnosed circuit into the MaxSAT problem and states that
this approach runs longer time than SAFARI. In contrast,
SATbD proposed by Metodi considers the immediate
dominators of the circuit graph and finds out all diagnoses of
minimal cardinality efficiently [30]. In 2015, a novel
approach, named Dominator Oriented Encoding (DOE),
reduces the structure of the system by filtering some edges and
nodes [29].

Other approaches consider the MBD problem with multiple
observations [8,10—12]. The DiagCombine (DC) algorithm
[10] not only generates abundant redundant diagnoses but also
is infeasible in runtime. DC* [12] improves the performance
of the DC algorithm in terms of the running time. However,
both DC and DC* fail to guarantee to return a minimal
diagnosis. Some conflict-directed approaches, such as the
implicit Hitting Set Dualization (HSD) algorithm [12] and its
improvement, namely, the Improved implicit Hitting Set
Dualization (IHSD) algorithm [31], have led to significant
development in the field. Given a set of observations that is
inconsistent with the system model, they reduce the number of
diagnoses but have poor performance with multiple faults.

Among these algorithms, they return possible fault locations
but are not accurate. Both HSD and ITHSD have a drawback
concerning computational tractability: HSD computes an
exponentially large number of explanations which increases
the time cost. Although IHSD uses dominated relationship to
reduce the number of explanations, it needs many queries to
an NP oracle.

In this paper, we propose a diagnosis approach with multiple
observations for a single flipped fault. This novel approach not
only reduces the number of diagnoses but also improves
diagnostic accuracy.

3 Preliminaries
This paper discusses the MBD problem with multiple
observations and computes a cardinality-minimal diagnosis.

3.1 MBD problem

There are three entities in MBD: the diagnosed system
description (S D) which is expressed by a set of first-order
sentences; the set (Comps) of components in the diagnosed
system; and an observation (Obs) which is inconsistent with
the expected system behavior. The task in the MBD problem
is to find an assignment (healthy or faulty) for Comps to
explain the inconsistency between the diagnosed system and
the observation [1].

Definition 1 (Diagnosis problem). Assuming that the state of
each component ¢ € Comps is healthy, which is denoted by
—Ab(c), a diagnosis problem exists when system description
S D is inconsistent with a given observation Obs, namely:

SDAObs AN{—Ab(c)| ce Comps} EL . )

Similarly, In the MBD problem with multiple observations,
there are three entities: the diagnosed system description (S D)
which is expressed by a set of first-order sentences; the set
(Comps) of components in the diagnosed system; and a set of
the observed system behavior (ObsSet) in which each
observation is inconsistent with the expected system behavior.
The task in the MBD problem with multiple observations is to
find an assignment (healthy or faulty) for Comps to explain all
the observations. Related definitions are shown as follows:

Definition 2 (Diagnosis with multiple observations). Given an
MBD problem with multiple observations, (SD,Comps,
ObsS et), where ObsSet is a set of inconsistent observations
(Obs; represents the ith observation in the ObsSet) and S D is
the union of all systems w.r.z. each observation. A diagnosis
with multiple observations is defined as a subset of
components AC Comps when

m
Obs; N{Ab(c) | c €A} A

i=1
{=Ab(c)|ce Comps\ A}EL .

I
SDA
2

An aggregated diagnosis a is subset-minimal iff its any
subset is not an aggregated diagnosis. An aggregated
diagnosis is cardinality-minimal iff no other subset A’ C
Comps with | A" | <| A | is an aggregated diagnosis.

This paper uses corresponding notions about system inputs,
system outputs and system variables used in [9]. The set of



Huisi ZHOU et al.

system variables is the union of all the components’ inputs
and outputs. The union of all the components’ inputs that are
not the output of any component in the system represents the
set of the system inputs, denoted by SysIns. The values of
system inputs are set externally by the user. The system
outputs, denoted SysOuts, are the components’ outputs that are
not the input of any component in the system.

3.2 (Partial) MaxSAT problem

Given a set of m Boolean variables {x{,x7,...,X,}, a positive
literal is denoted by a variable x, of which polarity is 1, and a
negative literal is denoted by negation of a variable —x, of
which polarity is 0. A Conjunctive Normal Form (CNF)
formula is a conjunction of clauses (i.e., F=C{ACyA---
ACy), in which clause C; (1 < i < n) is a disjunction of literals
(i.e., Ci= lil \% l,'2 V.-V lij)'

MaxSAT problem is an optimisation version of SAT
problem, whose aim is to maximize the number of satisfied
clauses. The Partial MaxSAT (PMS) problem is a
generalization of MaxSAT in which clauses are divided into
hard and soft clauses and it aims at satisfying all hard clauses
and as many soft clauses as possible.

3.3 The basic model for MBD

Many recent works model MBD with MaxSAT [11,29]. In
MBD modelled by MaxSAT, S D is expressed by a set of hard
clauses, Obs is expressed by a set of unit hard clauses, and
Comps is expressed by a set of unit soft clauses. More details
about the notions of clauses have been provided in [32].

Figure 1 illustrates c17 circuit from the ISCAS'SS
benchmark with six components {G1,G>,G3,G4,Gs5,Gg}, five
system inputs {iy,i3,13,14,i5}, tWo system outputs {01,0,} and
inner unobserved system variables {z1,22,23,z4}. Equation (1)
lists the propositional formulas of the system description S D
for the c17 circuit. There are six conjuncts in Eq. (3) and each
conjunct models a single component. For example, the
subexpression in the first line means that when component G
is normal, the wire modelled by variable z; has its value by the
wires modelled by variable i} and i;.
=G| — (21 & =(i1 A i3))

=Gs = (22 © ~(i3 A ig))
=G3 - (23 © (12 A 22))
=G4 — (21 © =(is Az2))
=Gs — (01 © —(z1 A 23))
=G — (02 © (23 A24))

With multiple observations, the system description is

A3)

Fig. 1

c17 circuit.
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obtained by replicating the system description for each
observation and MaxSAT can be used for solving the union of
the clauses. We list the propositional logic formulas for
system description with multiple observations in Eq. (4). Each
line in Eq. (4) consists of multiple conjuncts. Each conjunct
represents the model of SD for each observation. In each
conjunct, we use subscript to represent the index of
observation. The scale of encoded clauses will be very large
with this model when the number of given observations is
very large. In some works, all the replied systems share
system variables but the assignment of observations is distinct,
which is effective for diagnosing with low-cardinality fault.
More details have been provided in [11].

4 Diagnosis for a single flipped fault

In this work, we assume that there is a single flipped fault in
the diagnosed system. In this setting, a set of observations that
are consistent with the prediction of the system is easily
collected. We call these observations pseudo normal
observations in the next discussion. Also, we collect a set of
observations which are inconsistent with the prediction of the
system. We call these observations abnormal observations in
the next discussion.

4.1 Diagnosis with pseudo normal observations

Recent literatures research on MBD by exploring the
inconsistent formula (2) where some observations which are
inconsistent with the prediction of the system. However, when
collecting the observations, the observer ignores pseudo
normal observations which are consistent with the prediction
of the system. When the system is in an abnormal state, there
exist some observations which are consistent with the system,
especially for the system with a single fault. In this section, we
show that pseudo normal observations and diagnoses are
closely related. Next, we introduce an approach to get some
surely normal components by analyzing pseudo normal
observations.

Given an observation, assuming that all the components are
healthy, the logic value of each edge can be computed by
propagating the value of system inputs. In this paper, all the
fanouts of a gate represent all the connections denoting the
output of this gate. All the fanins of a gate represent all the
connections denoting the input of this gate. According to the
gate type, some concepts are proposed in this paper, which is
defined as follows:

Definition 3 (Fanin-free edge). A fanin edge E of component
C is a Fanin-Free Edge if the value of E doesn’t work to the
fanout value of C. i.e., Whenever the value assigned to E is,
the output value of C remains unchanged.

Example 1 Given a NAND gate C which has p fanin
branches, {—il,iz,i3,...,ip}, where i; is assigned value O.
Clearly, assuming that C is healthy, output(C)=1 whatever the
values assigned to the other fanins are. Especially, when more
than one fanin is assigned value 0, all the fanins of C are
Fanin-Free Edges.

Proposition 1 Given a pseudo normal observation, we
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propagate the value of observation and delete all the fanin-free
edges, if there is a path from the fanout edge of component C
to the SysOuts, C is a surely normal component.

Proof Assuming that component G’ is inserted a flipped fault
and there is a path from the fanout edge of G’ to SysOuts after
deleting all the fanin-free edges. There are two situations to be
discussed. The first situation is that the fanout of G’ is a
system out, then the observation is inconsistent with the
prediction of the system. The second situation is the fanout of
G’ is a fanin of another component G. According to the
definition of fanin-free edge, the value of fanout edges of G is
flipped. Finally, there will be a system out flipped in the
system. This hypothesis is conflicting with the fact that the
observation is consistent with the system, so G’ is a surely
normal component. mi

Remarks 1 Given a set of pseudo normal observations
PNObs= {PNObs|,PNObs;, ...,PNObs,}, let S be the set of
surely normal components for PNObs and S; be the set of

(=G1 = (g} &~ AD)) A
(-G - (@) & —-(i% Aid)))
(=G3 > (3 © ﬁ(z% Aib)))
(=G4 = (zy © ~(zy A i)
(=Gs — (oi & =(z Az%)))
(=Ge — (0, & —|(Zé AZy)))

M =

>>>>>

In this algorithm, PNObs = {PNObsy, ..., PNObsy} denotes
the set of pseudo normal observations and E denotes the
number of all the edges in the system. The maximum and
minimum value of the number of SysIns w.r.t. PNObs; are
denoted as Max and Min, respectively. The time complexity
of Algorithm 1 is O(E . Min . N) in the best case and O(E .
Max . N) in the worst case.

For the example of Algorithm 1 in Fig. 2, we insert a single
flipped fault into Gate2 and now we illustrate the process of
Algorithm 1 by a pseudo normal observation PNObs =
{iy =0,ip = 1,i3 =1,01 = 1}. In this case, by propagating the
value of observation, the output of gate2 is assigned value 0.
As a result, the edge (Gatel,Gate3) becomes fanin-free edges.
Also, the edge (Gate3,Gate4) becomes fanin-free edges.
According to proposition 1, {Gatel,Gate3} are surely normal

components.
'

i Gate3

iy Gate2 p

2

0,
Gate4

Fig.2 An example

surely normal components for PNObs;. Then, S =S| U---US,.

Remarks 2 A diagnosis contains at least one of the possible
faulty components and does not contain anyone of surely
normal components.

The method used to partition components into surely normal
components and possible faulty components with pseudo
normal observations is summarized in Algorithm 1. Let NC be
the set of surely normal components and FC be the set of
possible faulty components. For each observation PNObs; (i e
{1,...,N}), in each iteration, Algorithm 1 obtains a set of all the
edges in the system by reading a file of the system
description(to see line 3) and computes the values of all the
edges (to see line 5). By Definition 3, Algorithm 1 deletes all
the fanin-free edges temporarily. By proposition 1, some
components are identified as surely normal components.
Surely normal components are added into NC (see line 11).
Finally, Algorithm 1 returns two sets: NC and FC (see
line 17).

A (=G = (2] © (] Ai5)))
-Gy — (Zg = —|(l"3' A IZ)))
(=G3 = (Zf © ~(ZH A D))
(=G4 — (I} & (2 A i)
(=Gs = (0] © =(z] A2})))
(=G — (05 © =(z5 A7)

“)

>>>>>

[
4.2 Diagnosis with abnormal observations

Algorithm 2 builds on the recent work on the preprocessing of
the components and the edges when computing a Top-Level
Diagnosis (TLD). The DOE algorithm considers the backbone
components and blocked connections of the circuit graph.
These are useful in computing a cardinality-minimal diagnosis
[4]. In this paper, we propose that filtered nodes with respect

Algorithm 1 Partitioning components into surely normal
components and possible faulty components with pseudo nor-
mal observations
Input: S D,the system description
Input: Comps, the system component
Input: PNObsy,...,PNObsy
Output: A partitioning of the components into two parts: NC
and FC.

1: (NC,FC) « (0,0);

2: forie{l,2,..,N}do

3:  Edges « Read(S D);

4. for Sysin € PNObs; do

5 Apply DFS on the edges of the system, with

source=Syslin;

6: if edge is a fanin-free Edge then
7: Delete edge from Edges.
8: end if
9: for SysOut € PNObs; do
10: if c is in the path from Sysin to S ysOut then
11: NC « NC U {c}.
12: end if
13: end for
14:  end for
15: end for

16: FC « Comps \ NC
17: return ( NC, FC)
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Algorithm 2 Partitioning components into surely normal
components and possible faulty components with abnormal
observations
Input: S D, the system description
Input: Comps, a set of the system components
Input: ABNObs;,...,ABNObsy
Output: A partitioning of the components into two parts: NC
and FC.
1: (NC,FC) « (0,0);
2: forie{l,2,.,M}do
3:  foreeSysins do
FixedEdges « e;
end for
for n € dominated nodes do
FixedEdges «— Fanout(n);
end for
9:  Find Filtered Edges and Filtered Nodes;
10:  for c € Filtered Nodes do

9 5 S R

11: NC « NC U {c};
12:  end for
13: end for

14: FC « Comps \ NC
15: return ( NC, FC)

to each observation are also useful for diagnosis with multiple
observations.

Next, we introduce corresponding concepts related to the
structure of the system and how to use filtered nodes when
diagnosing with multiple observations.

Definition 4 (Dominator). Component G, is a dominator of
G if all paths from G; to the SysOuts include G,. In other
words, G; is dominated by Gj. Especially, if all the
dominators of G1, except G, is also a dominator of G, we say
that G, is an immediate dominator of G;.

As an example in Fig. 1, G is dominated by G5 since the
unique path from G to the system output includes Gs.

Definition 5 (Backbone Node(B-Node)). Component B is a
Backbone Node(B-Node) if it is a dominated component and
its fanout has a fixed value for any TLD.

Example 2 In the case of component G; in Fig. 1, as
mentioned above, it is dominated by Gs. When given an
observation, i; and > i3 are fixed and the fanout of G is fixed
since it is dominated, then, G| becomes a B-Node.

Definition 6 (Blocked Edge(B-Edge)). A fanin edge E of
component C is a Blocked Edge (B-Edge) if the value of E
does not change the value of the fanout of C. i.e., whatever the
value assigned to E is, the output value of C remains
unchanged.

Example 3 In the case of a NAND gate G, in Fig. 1, when
given an observation Obs = {is = 0}, the output of G, must be
1 for any value of i3. So edge i3 is a B-Edge.

Definition 7 (Fixed Edge(F-Edge)]). An edge E in the system
is a Fixed Edge (F-Edge) if the value of E is fixed for any
TLD.

Remarks 3 The edges w.r.t SysIns are fixed edges. Besides,
the fanout edge of a dominated component for which all the
fanin are fixed edges is a fixed edge.

DiagDO: an efficient model based diagnosis approach with multiple observations 5

Example 4 In the case of G; in Fig. 1, when given an
observation Obs = {i; =0, i3 =1}, z; is a F-Edge since G is
dominated by Gs and i; and i3 are F-Edges.

Definition 8 (Filtered Node). A component is a Filtered Node
if all of its fanout edges are Filtered Edge.

Definition 9 (Filtered Edge). An edge is a Filtered Edge if it is
a B-Edge or its fanout component is a Filtered Node.

Example 5 As mentioned above, G; is a dominated
component. Given one observation Obs = {i; = 1}. Then, when
z1 = 0 is propagated, the value of z3 does not work to Gs, that
is, the output value of G5 is a fixed value 1. Thus, (G3,Gs) is a
B-Edge. As a result, (G3,Gs) is a filtered edge. Assume that
(G3,Gg) is also a filtered edge, component G3 becomes a
filtered node since all of its input edges are filtered edges.

Proposition 2 Filtered nodes w.r.t each observation are surely
normal components.

Proof Given a a filter node N w.r.t. an abnormal observation
ABObsp, then {N} is not a minimal diagnosis since the output
of N dose not work to the SysOut. Namely, the value of
SysOuts cannot be changed by the output of N. Thus, there
exist another component N’ which can explain the
inconsistency between the observations and prediction of the
system. Assuming that N is an element in a cardinality-
minimal diagnosis, it is conflicting with the fact that there
exists a cardinality-minimal diagnosis whose cardinality is 1,
so N is a surely normal component. ]

With a set of abnormal observations, the method used to
partition components into surely normal components and
possible faulty components is summarized in Algorithm 2. Let
NC be the set of surely normal components and FC be the set
of possible faulty components. As proposed in earlier work,
filtered nodes are used in the DOE algorithm for simplifying
the MBD problem instances when encoding MBD into the
MaxSAT problem. Algorithm 2 iteratively computes filtered
nodes w.s.t each observation and add them into NC (see line
10-12). In this algorithm, ABNObs = {ABNObsy,...,
ABNObsy} denotes the set of abnormal observations and E
denotes the number of all the edges in the system. The time
complexity of Algorithm 2 is O(E . M).

For the example of Algorithm 2 in Fig. 2, we insert a single
flipped fault into Gate2. Consider an observation ABNObs =
{iy=1,ip=1,i3=1,01 =1}, the edge (Gatel,Gate3) and
(Gate2,Gate3) are assigned value 0, thus, (Gatel,Gate3) and
(Gate2,Gate3) are filtered edges. As a result, Gatel becomes
a filtered node and a surely normal component.

Note that, Proposition 1 and Proposition 2 proposed in this
paper are suitable for the cases that a single flipped fault exists
in the circuit. Proposition 1 and Proposition 2 are invalid for
other cases.

4.3 Computing a diagnosis with encoded propositional logic
formulas

Encoding MBD into the propositional logic formulas is a
necessary step for diagnosis. In this section, we introduce
details about encoding procedure. With SD and ObsS et
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encoded into hard clauses, surely normal components which
are computed by Algorithm 1 and Algorithm 2 are encoded
into hard clauses. In addition, when computing a diagnosis in
[4], dominated components are encoded into hard clauses. In
our approach, we just choose a part of dominated components
to be encoded into hard clauses (the number of encoded
clauses is decided by a parameter k). There are actually two
reasons for it: the first is that fewer soft clauses can reduce the
computation time with the MaxSAT solver. The second is that
if all the surely normal components and all the dominated
components are encoded into hard clauses, there may be no
diagnosis. After encoding the MBD into the propositional
logic formulas, we also compute diagnosis with implicit
hitting set, which is introduced in [12].

5 Experimental evaluation

In this section, we present an experimental evaluation of our
proposed approach for MBD with multiple observations. We
evaluate our algorithm using ISCSA-85 benchmark Boolean
circuit which is used in recent works [6,12,18,23,33,34] and
compare the performance of our algorithm with the state-of-
the-art algorithms, namely HSD [12], IHSD [31]. We also use
a MaxSAT solver, namely RC2 [35], and LBX algorithm [36]
which are also used in the HSD algorithm. Our experiments
were conducted on Ubuntu 16.04 Linux with Intel Xeon ES-
1607 @3.00G Hz, 16GB RAM. For each test case, we collect
the execution runtime within 1000 s.

In this paper, we evaluate algorithms when computing
cardinality-minimal aggregated diagnoses by using RC2
algorithm [35] and subset-minimal diagnosis by using LBX
algorithm [36]. To the best of our knowledge, there are no
standard data sets for MBD problem with multiple
observations. In this paper, test cases are generated by
mimicking a faulty system as in [12]. For each circuit, we
generate a single flipped fault and we randomly generate a set
of complete instantiations of system inputs and system
outputs according to the fault behavior of the system. We
generate two sets of observations, the first for collecting the
pseudo normal observations which are consistent with the
system, and the second for abnormal observations which are
inconsistent with the system. The number of observations of
the first set is 500 and the number of observations of the
second set is 1000. The run time is measured in CPU seconds.

5.1 ISCAS’85 benchmark

It is an important step to know which components are surely
normal components. We generate 50 test cases for each
circuit, respectively. We compare the average running time of
the three algorithms in the following order: the maximal
number of cardinality-minimal diagnoses were set to 1, 5 and
10, respectively. Table 1 provides detailed results to clearly
show the difference in the average running time of the three
algorithms. The first row of Table 1 is the name of test circuit.
For each algorithm, the row “#1” shows the average running
time when computing a cardinality-minimal diagnosis. The
row “#5” shows the results for at most 5 cardinality-minimal
diagnoses. The row “#10” shows the results for at most 10
cardinality-minimal diagnoses. When the time limit is reached,
the corresponding column is marked as “N/A” if the algorithm
cannot still return all the diagnosis.

For each instance, DiagDO takes less time to obtain the
cardinality-minimal diagnoses whatever the number of
cardinality-minimal diagnoses is. When the number of
cardinality-minimal diagnoses is set to 10, DiagDO proposed
in this paper outperforms both HSD and IHSD by one
magnitude. The HSD and IHSD algorithm cannot compute
more diagnoses within a reasonable time on some large scale
circuits, such as ¢3540, c6288. Except for c6288, the DiagDO
algorithm can find the cardinality-minimal diagnoses whose
number is set to 5 and 10 within the time limit. In fact, the
DiagDO algorithm performs better when computing all the
cardinality-minimal diagnoses. For almost of instances,
DiagDO can find all the cardinality-minimal diagnoses since it
shrinks the number of all the cardinality-minimal diagnoses.

In details, the comparison of HSD, IHSD, and DiagDO in
terms of running time is shown in Figs. 3—12 when computing
a cardinality-minimal diagnosis. We collect the execution
runtime in 1000 seconds with different algorithms, which is
presented on a logarithmic scale by the y-axis and the x-axis is
the number of instances for each circuit. DiagDO exhibits
improved performance compared with the HSD and IHSD for
almost all instances except for c6288.

To figure out the reason, we count the average number of
surely normal components computed by Algorithm 1 and
Algorithm 2, respectively. The results are presented in Table 2.
As observed in Table 2, Algorithm 1 is able to identify more
surely normal components than Algorithm 2. Algorithm 2 fails
to find a surely normal component for the c499 circuit. Both

Table 1 The average running time that all algorithms computes cardinality-minimal diagnoses when building on the ISCAS'85 benchmark

Lo HSD IHSD DiagDO
Circuit

#1 #5 #10 #1 #5 #10 #1 #5 #10

c432 0.006 0.0179 0.0285 0.0049 0.0211 0.0351 0.0042 0.0042 0.0041
c499 0.018 0.0492 0.0906 0.0159 0.0456 0.149 0.0133 0.0132 0.0133
c880 0.0088 0.0184 0.0179 0.0074 0.0076 0.0076 0.0044 0.0047 0.0046
c1355 0.038 0.1194 0.2402 0.0276 0.0934 0.292 0.0243 0.025 0.0251
c1908 0.0750 0.3013 0.5609 0.0551 0.2678 0.5593 0.0488 0.0492 0.0491
€2670 0.0903 0.2753 0.5094 0.0677 0.2146 0.2862 0.0671 0.0682 0.0684
c3540 0.0902 N/A N/A 0.0690 N/A N/A 0.0628 0.0681 0.0686
c5315 0.1984 2.1801 2.8642 0.1385 0.6005 2.1789 0.1299 0.1414 0.1494
c6288 0.6493 N/A N/A 0.5639 N/A N/A 0.5636 N/A N/A
c7552 0.3944 0.6203 0.627 0.2985 0.4762 0.4772 0.2809 0.2904 0.2904
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Table 2 The number of surely normal observations with Algorithm 1 and
Algorithm 2, respectively

Circuit with Algorithm 2 with Algorithm 1
c432 59 159
c499 0 184
c880 233 380
c1355 208 510
c1908 101 839
€2670 482 1009
c3540 849 1528
c5315 1359 2201
c6288 0 0
c7552 631 3375

Algorithm 1 and Algorithm 2 can not identify a surely normal
component for the ¢6288 circuit. It seems that this approach
may be perturbed by the structure of the system.

When computing subset-minimal diagnoses, Algorithm 2 is
useless for finding surely normal components. We generate 30
test cases for each circuit and we computes surely normal
components only using Algorithm 1.

We compare the average running time of the three
algorithms in the following order: the maximal number of
subset-minimal diagnoses were set to 1, 5, 10, and 15,
respectively. Table 3 provides detailed results to clearly show
the difference in the average running time of the two
algorithms. The first row of Table 3 is the name of test circuit.
For each algorithm, the row “#1” shows the average running
time when computing a subset-minimal diagnosis. The row
“#5” shows the results for at most 5 subset-minimal diagnoses.
The row “#10” shows the results for at most 10 subset-
minimal diagnoses. The row “#15” shows the results for at
most 10 cardinality-minimal diagnoses. When the time limit is
reached, the corresponding column is marked as “N/A” if the
algorithm cannot still return all the diagnosis. Note that, in this
subsection, DiagDO does not compare with the IHSD
algorithm since IHSD aims at computing cardinality-minimal
diagnoses.

Note that HSD is time-consuming when computing all the
subset-minimal diagnosis. In details, when computing at most
10 subset-minimal diagnosis, the execution runtime with
different algorithms are presented in Fig. 13. Y-axis presents
the runtime in seconds and the x-axis is the number of
instances for each circuit. DiagDO proposed in this paper
outperforms HSD with performance gains that most often
range between 1 and 2 orders of magnitude. DiagDO
outperforms HSD in the 95.3% of the instances. Most of the
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Fig. 13 Runtime of HSD and DiagDO

Table 3 The average running time that all algorithms computes subset-minimal diagnoses when building on the ISCAS'85 benchmark

. HSD DiagDO

Circuit

#1 #5 #10 #15 #1 #5 #10 #15
c432 0.0018 0.0095 0.0417 0.0196 0.0013 0.0013 0.0036 0.0013
c499 0.0061 0.0234 0.1317 0.0659 0.0043 0.0043 0.0416 0.0043
c880 0.0033 0.0066 0.0169 0.0068 0.0016 0.0017 0.0065 0.0019
cl355 0.0226 0.0989 0.4023 0.1998 0.0082 0.0083 0.1905 0.0078
c1908 0.302 0.425 14314 0.6571 0.0161 0.0169 0.0481 0.1669
c2670 0.0307 0.0917 0.4908 0.2441 0.022 0.2274 0.0689 0.02294
c3540 0.0312 1.1744 5.5455 1.6556 0.0213 0.0216 0.1271 0.22
c5315 0.0627 0.7252 3.8817 1.147 0.0451 0.0453 0.132 0.045
c6288 16.5406 17.6502 20.5641 19.5629 1.4152 2.1187 20.5561 3.6791
c7552 0.1363 0.2082 0.6065 0.2081 0.0968 0.0974 0.2871 0.0973
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Table 4 The total running time that all algorithms computes cardinality-minimal diagnoses when building on the ITC'99 benchmark

Cireui HSD IHSD DiagDO
freult #cardinality-minimal #subset-minimal #cardinality-minimal #subset-minimal #cardinality-minimal #subset-minimal

bl4 1.87 1.79 1.67 1.63 1.55 1.52

bl5 21.42 21.86 17.44 17.77 16.10 16.49

bl17 151.36 155.30 119.04 118.74 119.46 118.53

bl18 290.37 276.70 201.88 156.63 131.82 132.93

b19 271.37 274.71 243.10 262.92 219.52 202.12

b20 63.23 63.04 50.61 50.43 47.18 47.50

b21 64.45 63.47 51.87 51.27 48.58 48.08

b22 95.81 97.25 77.02 78.35 71.76 73.36

instances for which DlagDO has the same performance as the Acknowledgements This work was supported by the National Natural

HSD are derived from c6288, because Algorithm 1 fails to Science Foundation of China (Grant Nos. 62076108, 61972360, and
61872159).

find any surely normal components for c6288.
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5.2 ITC’99 benchmark
We evaluate algorithms on the ITC’99 benchmark and
generate 50 test cases for each circuit, respectively. We also
compare the total running time of the three algorithms when
computing a cardinality-minimal diagnosis and computing a
subset-minimal diagnosis, respectively. Table 4 provides
detailed results. When the number of cardinality-minimal
diagnoses is more than 1, it is hard for some test cases to get
diagnoses within 1000s. Table 4 just lists the results that are
computed within 1000s. The first row of Table 4 is the name
of the test circuit. For each algorithm, the row “#cardinality-
minimal” shows the total running time when computing a
cardinality-minimal diagnosis. The row “#subset-minimal”
shows the results for computing a subset-minimal diagnosis.
Compared with HSD and THSD, DiagDO gets diagnoses
within less time when computing a cardinality-minimal
diagnosis and computing a subset-minimal diagnosis,
respectively. When the number of cardinality-minimal
diagnoses is more than 5, all algorithms get diagnoses with
more time. We do not list the results for these test circuits in
Table 4. In fact, for the test cases that are computed within
1000s, the DiagDO algorithm performs better than the HSD
algorithm and IHSD algorithm. This result indicates that the
DiagDO algorithm is effective in identifying fault location
when a single component is faulty.

6 Conclusions

This paper focuses on the MBD problem by handling a set of
pseudo normal observations and a set of abnormal
observations at the same time. When there is a single flipped
fault, we proposed three ideas for diagnosis. First, when
observing a set of normal observations, we focus on reasoning
about a set of surely components and finally encode them into
hard clauses. Second, when observing a set of abnormal
observations, we analyze the structure of the system and
encode some components into hard clauses. Finally, some
dominated components are encoded into hard clauses, which
reduces the solution space for computing a diagnosis. In this
paper, we detail the DiagDO approach and provide a
conclusive experimental comparison about its performance
with respect to the state-of-the-art algorithms. Experimental
results show an effective improved performance of DiagDO
with respect to HSD and THSD.
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