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Abstract Cloud vendors are actively adopting FPGAs into
their infrastructures for enhancing performance and efficiency.
As cloud services continue to evolve, FPGA (field
programmable gate array) systems would play an even
important role in the future. In this context, FPGA sharing in
multi-tenancy scenarios is crucial for the wide adoption of
FPGA in the cloud. Recently, many works have been done
towards effective FPGA sharing at different layers of the cloud
computing stack.

In this work, we provide a comprehensive survey of recent
works on FPGA sharing. We examine prior art from different
aspects and encapsulate relevant proposals on a few key topics.
On the one hand, we discuss representative papers on FPGA
resource sharing schemes; on the other hand, we also
summarize important SW/HW techniques that support effective
sharing. Importantly, we further analyze the system design cost
behind FPGA sharing. Finally, based on our survey, we identify
key opportunities and challenges of FPGA sharing in future
cloud scenarios.
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1 Introduction

We are now entering a booming era of cloud computing.
There is a growing enthusiasm for pursuing sustainability in
cloud scenarios. Cloud service providers (CSPs) [1-5]
integrate FPGAs into data centers for improving performance
and efficiency. Under continuous evolution of cloud service,
FPGA-based computing would play an even more important
role in the future.

Researchers and developers are actively dashing into the
region for enhancing the efficiency of cloud FPGA. Some
surveys summarize related art with specific perspectives. As
shown in Table 1, these reviewing works pay attention to
various aspects of cloud FPGA. Some of them [6,7] concern
about the applicability, and the ideal combination between the
cloud FPGAs and typical tasks. Other like [8] discusses the
trend of the architecture of future cloud FPGA. Quraish et al.
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[9] review the techniques of FPGA virtualization. A few
works [10—13] focus on the security issues of cloud FPGA.

Pre-existing surveys in literature lack adequate discussion
over the important topic of FPGA sharing. FPGA sharing in
multi-tenancy scenarios is crucial for the wide adoption of
FPGA in the cloud. These works mainly focus on a specific
optimization perspective of cloud FPGA. In recent years, a
considerable amount of works have been done towards
effective FPGA sharing at different layers of the cloud
computing stack. Comprehensive exploration of prior works in
the topic would allow a better cost-effect analysis over cloud
FPGA multi-shared implementation.

In this work, we provide a comprehensive survey on FPGA
sharing in this work. We examine prior art from different
aspects and encapsulate relevant proposals on a few key
topics. Firstly, we discuss representative papers on FPGA
resource sharing. We categorize related works based on the
organization of FPGA resources. Then, we summarize
important software and hardware techniques that support
FPGA sharing from prior works. Importantly, we take a
further step to analyze the system design cost of FPGA
sharing. We summarize the related design costs and categorize
them according to sources and processing stages.

The intended audiences of this work are: 1) The CSPs who
want to introduce new FPGA-instances depending on sharing
schemes. 2) Developers and researchers who are interested in
cloud-based FPGA systems in multi-tenancy scenarios.

We make several key contributions as follows:

e We examine the related works of resource-oriented
FPGA sharing. We discuss corresponding concepts of
shared resources and provide a classification based on
the hierarchical organization.

e We classify research works according to FPGA sharing
supports including hardware support, software support,
and security guarantee. We describe major system
optimization solutions.

e We present a preliminary cost study of sharing-based
FPGA systems. Focusing on the attribution and
processing stages, we classify these connected
expenses.

The organization of this work is shown in Fig. 1. Section 2
provides an overview of FPGA sharing. Section 3 discusses
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Table 1 Other surveys of the cloud FPGA in multi-tenancy scenarios

Related survey works Focus Year
Survey of deep learning neural networks implementation on FPGAs [6] Application 2020
Accelerating DNNs from local to virtualized FPGA in the Cloud: a survey of trends [7] Application 2021
Survey and future trends for FPGA cloud architectures [8] Architecture 2021
A survey of system architectures and techniques for FPGA virtualization [9] Virtualization 2021
Security of FPGAs in data centers [10] Security 2017
Trust in FPGA-accelerated cloud computing [11] Security 2021
Security of cloud FPGAs: a survey [12] Security 2021
SoK: secure FPGA multi-tenancy in the cloud: challenges and opportunities [13] Security 2021
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Fig. 1 The organization of this work

resource-sharing schemes. Section 4 summarizes the existing
supports for FPGA sharing. Section 5 presents the cost
analysis as a supplement. Section 6 gives a discussion of the
challenges and opportunities. Finally, we make the conclusion
in Section 7.

2 Anoverview: FPGA sharing

The call for flexibility and sustainability makes FPGA stand
out among optional processing technologies. There is a mega-
trend for cloud vendors integrating FPGA into their
infrastructures. Mainstream cloud service providers (CSPs)
[1-5] adopted this programm-able device for improving the

efficiency of cloud computing in the last decade. We provide a
brief overview of cloud FPGA in this section.

2.1 Timeline of cloud FPGA

The history of cloud FPGA may be traced back around a
decade. Modern FPGAs gain improvement in heterogeneity
and specific acceleration due to the development of
techniques. Researchers have begun to pay attention to the
FPGA in the cloud [14]. Microsoft has announced their public
FPGA project Catapult [15], and presented a CPU-FPGA
collaborative design as its acceleration core unit.

Following this, Intel has started a FPGA project called
hardware acceleration research program (HARP) [16]. They
put forward an emerging technology called partially
reconfiguration by dividing the hardware design into two
different bitstreams, the static part, and the dynamic part. The
partial reconfiguration allows the configuration of FPGA to be
more efficient in the cloud and lays a foundation for the fine-
grained sharing of FPGA.

Shortly afterward, the public cloud platforms complied with
the trend of FPGA cloudification and released their FPGA-
instances [1—5]. These CSPs sell the FPGA-equipped
instances in the granularity of the board. The sharing of FPGA
mainly stays in the status of coarse-grained. This monotonous
formulation diminishes the efficiency of both economy and
programming flexibility.

Recently, researchers explore on finer-grained sharing of
FPGA. Some works introduce new abstractions of the
hardware resources of FPGAs [17—19]. There also several
works [20—22] providing detailed analyses over FPGA
hardware hierarchy for enhancing effective FPGA sharing.

2.2 FPGA service model
There are a tremendous amount of works [23—26] proving the
strengths of FPGA in performance and efficiency. CSPs can
utilize FPGAs for improving the flexibility and sustainability
of their cloud services. In different cloud service models,
CSPs can provide various FPGA-oriented computing service
model for the requirements of users. Specifically, the FPGA-
based computing service model can be divided into: 1) FPGA
in lIaaS [1-3,19]. CSPs provide the computing service with
whole FPGA boards. The devices react as unconfigured
computing resources for customization. 2) FPGA in PaaS
[4,5]. CSPs provide the FPGA service by configured
development platforms. 3) FPGA in SaaS [15]. CSPs provide
the FPGA as a defined accelerator. Users can utilize the pre-
equipped function with specific APIs.

Additionally, some emerging FPGA-native service models



Jinyang GUO et al.

are also discussed in the literature. FPGA can be regarded as
the independent form of the computing service. BlastFunction
[27] and Fasten [28] extend serverless computing onto FPGA
and find a new model called FPGA-as-a-service (FaaS). Skhiri
et al. [29] propose an intermediate expression of the hardware
design which defines a new model as the IP-as-a-Service
(TPaaS).

2.3 Taxonomy of FPGA sharing

We have witnessed a growing interest in cloud-based FPGA
systems. FPGA sharing in multi-tenancy is the key for wide
adoption of FPGA in the cloud [18,30,31]. The usage of cloud
FPGA tends to be more flexible with corresponding
architectures [8].

Mechanism aside, there are still some commonalities of
FPGA sharing in different service models. We summarize
these similarities from the aspects of resource sharing
schemes, sharing supports, and system design costs as shown
in Fig. 2. In the later section, we will discuss FPGA sharing in
detail based on the taxonomy.

3 FPGA resource sharing

Modern FPGAs are complex devices with a considerable
variety of integrated technologies and resources. Many
literature works present their concerns over the sharing of
FPGA resources. In this section, we discuss different schemes
of FPGA sharing according to specific resources.

This section presents two complementary parts based on the
resource organization. We will discuss FPGA sharing
strategies based on resource organization. Prior art of
resource-oriented FPGA sharing is divided into two types,
standalone resource sharing and organized resource sharing.
Standalone resource sharing and organized resource sharing
have distinct issues. Initial FPGA resources without
organizations are known as standalone resources. Organized
resources are a subset of FPGA resources that are grouped into
partitions.

3.1 Standalone resource sharing

The works of FPGA sharing based on the standalone resource
concerns of the architecture features of the FPGAs. The
hardware resources on FPGA board can be categorized based
on the programmability [32]. Some FPGA resources are
configurable, and the others are static resources.
Programmable resources usually gather together and compose
as the dynamic region or the role namely. The counterpart
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makes up the static region or the shell. We discuss the
resource types and the specific sharing objects to analyze
standalone resource sharing. FPGA resources are shared
through specific sharing objects.

3.1.1 Resource breakdown

The prior art of FPGA based on the standalone resource pay
close attention to the manufacturing [8,20,32—36]. These
works enhance programmable configuration of FPGA in
hardware features including capacity, connectivity, and
storage. We divide the resources of FPGA depending on
functions. The resources contain logic resources, connectivity
resources, and memory resources.

Logic resource The logic resources of FPGA are used for
function customization [20,32,33]. Typical FPGA logic
resources contain the functional resources and wiring
resources which can be further divided into the pre-defined
control logic and programmable units. The pre-defined logic
contains function units such as the DSP and clock controller.
The programmable units mainly contains the LUT, register,
and the configurable I/O. A deeper level of logic sharing
involvement have been proposed by advanced LUTs logic
such as the bank of centroids represented by Romero Hung
et al. [37]. Although not directly tested within a cloud
environment, their centroid sharing logic proved effective
acceleration features when dynamically shared among
independent processing units and while dealing with complex
real-world datasets as the intervening in cloud computing.

Connectivity resource FPGA contains several network and
connectivity resources [34] for specific purposes. QuickPath
Interconnect (QPI) and Coherent Accelerator Processor
Interface (CAPI) [8] can be used to guarantee data consistency
in the FPGA-CPU shared memory. The sharing of the network
resources is mainly based on the bandwidth. For FPGA
sharing in multi-tenancy scenarios, some efforts are needed for
arranging the requests from the multi-purpose design.

The wiring resources are usually neglected. The
optimization of wiring resources is directly related to the use
and implementation results. The wiring resources are mainly
used to connect all the functional modules. The wiring
resources are used for function connection and clock
synchronization.

Memory resource The memory resources equipped in
FPGAs can be divided into two categories according to the
location, on-chip memory and off-chip memory. The on-chip
memory is used as temporary storage, and the off-chip is used
as data storage. Mostly, on-chip memory is much faster but
less available than off-chip memory.

Normal FPGAs contain two types of on-chip memory [35]:
Distributed RAM and the Block RAM (BRAM). Xilinx also
presents UltraScale serie device equipped with URAM [38].
This memory is a storage with large volume and access
efficiency.

The off-chip memory of FPGA is mainly DRAM based
storage. Several high-end devices are equipped with emerging
storage called high-bandwidth memory (HBM) (e.g., Xilinx
Alveo U280 [36] & U50 [32], and Intel Stratix 10 MX [33]).

For FPGA sharing, efficient memory access management is
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critical. For memory sharing, Ma et al. [39] use hypervisor-
based management. They introduce a functional isolation for
the maintenance of accelerators. To achieve memory sharing,
Tarafdar et al. [40] create hypervisors in the static section of
the FPGA. Another viable approach for sharing on-chip
memory exists. AXI-based memory management is presented
by Vaishnav et al. [41].

3.1.2 Resource sharing object

Sharing object is virtual resources providing an abstraction for
FPGA sharing management. In Sec 3.1.1, we have divided the
standalone resources into three categories, logic resources,
connectivity resources, and memory resources. As shown in
Table 2, the sharing of these resources is complex in
categories and configuration. FPGA resources sharing
depends on a specific sharing object. We will discuss the
FPGA sharing objects with the specific resources as follows.

Configuration sharing Configuration sharing is deployed
on the occupation of FPGA hardware. This sharing object is
typically oriented to logic resources. Logic resources are
shared temporally with configuration updating [42,43]. Works
like [52] presents a NoC-based system for run-time
reconfiguration. Tenants occupy the control in the rent period
with the corresponding configurations.

Bandwidth sharing Bandwidth sharing is based on the co-
located traffic control. Sharing degrees should be limited to
meet the requirement for efficiency. CSPs need to allocate the
co-execution carefully to avoid run out the bandwidth:

1) The migration of computing data will be time-consuming
if the network gets congestion.

2) The computing progress will be blocked if the off-chip
memory runs out of bandwidth.

Table 2 FPGA resources and the sharing object

Memory and the network resources are shared typically
based on the bandwidth. Maany studies pay attention to
connections related to the sharing of FPGA. OS4RS [53]
presents a hybrid mechanism of communication with the
implementation of both hardware and software. VFR [54]
treats the FPGA as the network component based on the BSP
protocol. Catapult [15] makes a contribution to the host
communication and network access. There are also many
works concerning the PCle controller [14,30,44—49] for
configuration control.

Capacity sharing Memory resources sharing also depends
on the storage capacity. Off-chip memories have sufficient
capacity usually. However, the sharing of on-chip memory
should be handled carefully due to the limitation of storage
capacity [51].

As shown in Fig. 3, each standalone die is connected with
memory resources. The cross-die reading will consume the
scarce wiring resource for connection. There are some
constraints for the die-crossing [36]. We should reduce or
even disable the die-crossing design in the sharing FPGA.

3.2 Organized resource sharing
Organized resource sharing is a type of resource sharing that is
based on collection of grouped FPGA resources. Die-stacking
technique is used in existing FPGAs in the cloud [1-5]. This
architecture adds a layer of complexity to the management of
FPGA resources. FPGA devices may be thought of as a
collection of sub-devices. These sub-devices are made up of
separate dies. This organization of FPGAs contains separate
logic resources, memory resources, and connectivity for a
monolithic die.

FPGA vendors release high-end devices with the trade-off

Resource category Resource type Configuration & description Sharing object
Programmable I/O unit Configurable 1/0 port
. Programmable logic unit LUT and register .
Logic resource [42,43] ¢ Function unéiyt Pre-defined hardwagre functions Configuration
Hard core Control hard core
PCle IP PCI express control
Connectivity [14,30,44-49] NIC Network control Bandwith
Wiring resource Configurable connectivity units
Distributed RAM Multi-mode memory
Memory [15,39,50,51] DH?&A ?{f;;h;zgiﬁ;y;zfgg: Capacity & bandwith
BRAM RAM with changeable port
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Fig. 3 Floorplans of Xilinx Alveo series boards
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between capacity and economy [32]. Figure 3 illustrates the
floorplans of Xilinx Alveo series. These devices are multi-die
based and each monolithic die is called Super Logic Region
(SLR). The stacking of the dies introduces natural hardware
boundaries. Each die is an independent unit for resource
management [55]. Further, several works [21,45,47,54,56]
provide a finer-grained FPGA units. They introduce a new
resource collection called partial reconfigurable region (PRR).

We regard FPGA sharing as a unique type of hardware
sharing flexible hierarchical organization. In other words, it
has multiple granularity (the board, the die, and the PRR).
Firstly, we discuss FPGA sharing with temporal hardware
multiplexing. Secondly, we examine prior art on spatial
sharing of FPGA hardware resources.

3.2.1 FPGA sharing granularity

FPGA sharing has several levels of granularity depending on
the physical organization structure. The granularity of FPGA
sharing is summarized in Fig. 4 as board-level sharing, die-
level sharing, and PRR-level sharing.

Board-level sharing The sharing of the board-level
includes two forms, multi-board sharing and single-board
sharing [1-3,5,15]. The implementation of board-level sharing
presents as the exclusive occupation of the control during use.

Die-level sharing The sharing of the die-level is a kind of
fine-granularity spatial sharing. The device is divided into the
sub-devices of chips [20,22]. Users deploy their designs on
different dies by co-locating their functions on the same board
and accomplish their functions independently.

Coarse-grained
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PRR-level sharing The sharing of PRR-level is finer-
grained than the die-level. Users co-locate their hardware
design inner a die area [21]. This sharing level [18,31,46]
requires users to have a preliminary portrayal for resource
utilization. There are two types of PRR-level sharing,
depending on the dynamic properties. Specifically, PRR-
sharing can be divided into static PRR-sharing and dynamic
PRR sharing. We mark the former type as the SPRR and the
latter as the DPRR.

3.2.2 FPGA sharing manner

The technique for hardware multiplexing is defined as the
sharing manner. In multi-tenancy contexts, FPGA sharing
primarily uses two types of multiplexing: time-division
multiplexing (TDM) and space division multiplexing (SDM).
Temporal sharing is possible with the TDM design, while
spatial sharing is possible with the SDM design.

The flexibility of sharing implementation is ensured through
manners. These FPGA-equipped instances can be used
effectively by tenants. As a result of these sharing mechan-
isms, tenants will prefer cost-effective FPGA computing.

TDM The mechanism of TDM is used to share FPGAs
temporally. By lowering the TCO of FPGAs, FPGA temporal
sharing enables competitive cloud computing [14,56—58]. The
specific implementations are mainly based on configuration
rotation. The CSPs rely on the exchange of FPGA settings to
implement new functionality. These TDM designs concern the
scheduling of the functions due to the reconfiguration.

SDM The mechanism of SDM enables FPGAs can be

| Spatial sharing granularity

Fine-grained >

Board-level sharing

I:I Configuration memory

. Bitstream/configuration

Time |

Die-level sharing

A

FPGA

Request update

Request update

¢

A

FPGA

Board-level sharing

Die-level sharing

Fig. 4 FPGA sharing in multi-granularity
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shared spatially.FPGA spatial sharing [18,21,31,59-62] offers
lower selling costs on a small scale. SDM based on the
flexible partitions of FPGA. The spatial sharing allows
different functional designs to co-execute on the same FPGA
board. Several academic works [18,21,31,59—62] explore this
region. They present the mechanism of FPGA virtualization
[18,31] and the pooling technique [21].

4 Support for FPGA sharing

Flexible FPGA sharing requires specific systems and
techniques for support. In this section, we examine the related
supporting art and categorize the supporting techniques into
three categorises, hardware support, software support, and
security guarantee as shown in Table 3.

4.1 Hardware support

FPGA sharing tends to be diverse in manners and granularity.
The flexible FPGA sharing is based on the hardware
multiplexing. FPGA device multiplexing requires several
basic hardware supports: 1) reconfiguration, 2) connectivity,
and 3) partition.

Reconfiguration Users can update hardware configurations
with their own hardware designs. The devices are
programmed with bitstreams loading in the configuration
memory. Thus, Reconfiguration is the key hardware support
for FPGA sharing [32,33]. FPGA could be shared with
different configurations from tenants. The reconfiguration is
mainly based on the programmability of FPGA.

Efficient programmability endows FPGA with the
customization of functions. Reconfiguration [63,81] is the
crucial supporting guarantee for the design updating. The
techniques of partial reconfiguration [15,21] supports the
FPGA sharing spatially with hardware updating. Especially,
the support for partial-reconfiguration is the key to improve
the flexibility of FPGA sharing in cloud multi-tenancy
scenarios [64,66,67]. Partial reconfiguration enables the fine-
granular sharing.

Connectivity FPGA sharing in multi-tenancy manifests as
functions co-locating on the boards. Connectivity is important
to support the hardware designs for function co-location.
FPGA is equipped with abundant resources for connection

Table 3 Supports for FPGA sharing

Category Support Related work
Reconfiguration [15,21,32,33,63]
Hardware Connectivity [30,46]
Partition [1,21,55]
Isolation [64]
Migration [65,66]
Abstraction [64,67]
Software Virtualization [18,68,69]
Management [15,46,60]
Scheduling [21,44,47,56,69]
Development [18,31,47]
Data Confidentiality [70-72]
Bitstream Protection [60,73--75]
Security Power Control [76-78]
Workload Isolation [3,30,45,79]
Configuration Refresh [63,80]

[30,46] including wiring sources, PCle and NICs. The
convenient connectivity allows to co-locate hardware designs
for FPGA spatial sharing.

Partition Effective cloud-based FPGA systems usually
target on the specific devices [1,21,55]. These devices support
various partition of resources which can organize resources as
hierarchical collections. These independent collections
improve FPGA sharing flexibility with multi-granularity
which we have discussed in section 3.2.1. Board-level sharing,
die-level sharing, and PRR-level sharing are all predicated on
how FPGA resources are partitioned. For fine grained FPGA
sharing, the die-level sharing relies on the partition of the
stacked chip, and the PRR-sharing is based on a finer resource
organization inner dies.

4.2 Software support

Plenty of prior papers study the software support for FPGA
sharing in multi-tenancy scenarios which are from both
academia [14,18,30,31] and industry [15,82]. To support
FPGA sharing, researchers design cloud-based FPGA systems
for efficient resource management and hardware abstraction.
As shown in Table 4, prior art contributes wisdom of software
supports over the aspects of performance isolation, task
migration, software abstraction, resource virtualization,
resource management, tasks scheduling and development
tools.

Performance isolation Efficient schemes of isolation are
necessary for concurrent execution of tasks. Casual designs
will make the FPGA clusters suffer from the performance
degradation of the interference. Feniks system [64] for the
cloud FPGA ensure the performance with the isolation of
application region and OS region.

Task migration The live-migration of FPGA tasks helps
improving resources utilization in the cluster wide. Knodel
et al. [65] import a migration scheme for long-run task using
virtualization. Vaishnav et al. [66] introduce a technique for
lively task migration and can help the FPGA cluster benefiting
from the overlapping the computation and data movement.

Software abstraction The abstraction of software improves
the efficiency of FPGA sharing development. The work of
Coyote system [67] imports OS abstractions to FPGA and
supports secure spatial and temporal multiplexing. Fenicks
system [64] provides abstracted I/O interfaces for convenient
development to accelerators in PRRs.

Resource virtualization Several works provide flexible
virtualization. These works can be divided into three-level.
The first level only provides limited virtualization for 1/O
reuse [82,84] but omitted the virtualization of logic resources.
The second level introduces the abstraction of both the I/O and
logic resources [18,21,68]. There are the other special types
[60,69] for presenting application-oriented virtualization. They
mainly provide an API for calling the pre-defined accelerators
which can be seen as the extension of SaaS Model.

Resource management There are a few works on the
management of FPGA resources. In these works, the
management of the FPGA is various due to the controlling and
the sharing objects. But these work similarly provide the
abstraction for the hardware resource management. According
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Table 4 Software support of FPGA sharing, categorized by target partition of device
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Work SW support Organization Contorl unit Sharing manner Year Key technique
RC3E [56] RV,RM, TS PRR 1/0 S&T 2016 Hypervisor

VEFR [54] RV, RM, TS PRR /0 S&T 2016 PRR manager
RRaasS [45] RV, RM, TS, DT PRR API S&T 2016 NoC, hypervisor
hCODE [47] RV, RM, TS, DT PRR I/0 & logic S&T 2018 PRR manager
FPGApooling [21] RV, RM, TS PRR 1/0& logic S&T 2021 Pooling scheduler
Feniks [64] RV,RM,SA,PI DPRR 1/0 & logic S&T 2017 Region isolation, I/O abstraction
RACOS [46] RV, RM DPRR Accelertor API S&T 2017 PCle controller
LiveMig [66] RV, TM,TS DPRR I/0& logic S&T 2018 Live task migration
AmorphOS [30] RV, RM DPRR 1/0 S&T 2018 PCle controller, Zone manager
ViTAL [18] RV,RM, DT DPRR 1/O & logic S&T 2020 Compiler, Hypervisor
Coyote [67] RV, RM, SA, TS DPRR I/0 & logic S&T 2020 OS abstraction
Hetero-ViTAL [31] RV,RM, TS, DT DPRR 1/0 & logic S&T 2021 Hypervisor, LL Block
pvFPGA [44] RM, TS Board Accelertor API T 2013 Xen VMM
Catapult [15] RM, TS Board I/0 & Network T 2014 Resource controller
VFACC [60] RM, TS Board Accelertor APT T 2015 Hypervisor, PCle controller
Blaze [57] RM, TS, DT Board 1/0 T 2016 Run-time manager
QMC [83] RM, TS Board 1/0 & Network T 2017 Avalone connector
Migration [65] RM,TN,TS. Board API & Network T 2017 vFPGA-based Migration
RTDNN [69] RM, TS Board Accelertor API T 2018 Hypervisor
FPGAvirt [49] RM, TS Board Network T 2018 NoC, Sevice manager

* PI means performance isolation, TM means task migration, SA means software abstraction, RV means resource virtualization.
RM means resource management, TS means task scheduling, DT means development tools.

to the categories of the resources, these works can be divided
into three types. Specifically, these techonologies contains
logic resource management [47,54], connectivity resource
management [15,46,49,60,83], and memory resource
management [21,39].

Task scheduling The scheduling is an important issue for
the requirement in multi-tenancy scenarios. Some works
[44,56,69] extend the mechanism of VM, and provide their
scheduling strategies. There are also several emerging
scheduling-based techniques. Zhao et al. presented an
accelerator oriented controller and scheduler based on the
hCODE system [47]. Zhu et al. [21] provided a scheduler for
FPGA resource pooling.

Development tools Some works extend the existing
software stack of the cloud computing [44,45,47]. Other
works present their unique designs. ViTal [18] and the hetero-
Vital [31] provide emerging compiling tools with the block-
based abstraction of hardware and software. Blaze [57]
presents a run-time manager by implementing the controller
on the static region of the FPGA.

Furthermore, prior art based on FPGA sharing may be
separated into two categories: works for general purpose and
works for domain-specific applications. Many FPGA sharing-
related works are carried out for a specific purpose. There are
some works designed for the general purpose. AmorphOS [30]
shows the interests in the wide field, including CNN and
Bitcoin. FPGAvirt [49] presents an all-purpose NoC. VFR
[54] shows the concern for the efficiency of the compiler.
There are a few works focusing on the application for specific
domains. A series of works [18,31] present their wisdom in
the region of machine learning. Some works also take part in
the popular realm of graph processing [15,68].

4.3 Security guarantee
Security is the concerning problem with priority for FPGA
sharing in multi-tenancy scenarios. CSPs and users would

suffer losses due to potential threats. FPGA sharing not only
involves traditional issues of hardware and software, but the
security guarantee is also important. Threats from open
programming are severe. Researchers and developers
extensively pay attention to the security problem of FPGA
sharing [10,13,85]. The common threats include network
strikes, hardware attacks, software attacks, and assets leaks.

As shown in Table 3, the corresponding methods handling
these threats include but are not limited to the workload
isolation [3,30,45,79], bitstream protection [60,73—75], power
control [76,86], and configuration refresh [76,86].
Additionally, security issues vary from sharing granularity.
The board-level sharing mainly concerns configuration
protection. FPGA boards are shared with the rotation of the
hardware occupation. The configuration memory of FPGA
should be emptied to avoid the ghost circuit [73]. As for finer-
grained sharing, the management of FPGA needs to be
handled carefully. There are severe threats to the co-execution
of tasks. As countermeasures, effective power control [63,80]
and function isolation [10,74,87] are required.

Data confidentiality Data confidentiality is crucial in the
virtualized FPGA sharing virtualized. Yazdanshenas et al.
[70,71] focus on this issue and import a data protection by
encrypting/decrypting users’ application. Zhao et al. [72] also
provide similar security measures for protecting the FPGA
computing in the cloud.

Bitstream protection The protection of FPGA bitstreams is
a preventive solution for defending the potentially destructive.
State-of-the-art FPGA sharing systems provide bitstream
protection with data verification [73,74]. Bitstreams validation
can guarantee the designs are harmless and complete. Specific
implementations for bitstream validation contain the methods
of DRCs and virus scanners. However, these methods require
access to the client IP designs, which would introduce IP
conflicts [13].
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There are also other effective methods for FPGA bitstreams
protection. As an intermediate of the bitstream, IPs are also
important. To protect IPs, SeRFI [75] introduces an obfuscate
mechanism with a finite state machine to protect IP. There are
a number of encryption-based security options. VFACC [60]
uses encryption to validate memory accesses and only permits
legitimate memory accesses.

Power control Power control acts as countermeasures for
power-related threats. The malicious tenant can leverage the
power leakage to construct a covert channel between
malicious co-tenants [55]. FPGA sharing in multi-tenancy
scenarios suffers for the power leakage attacks. Prior art
provide solutions including voltage-based active fences [76],
the run-time frequency tuning [77], and network of RO-based
sensors for attack detection [78].

Workload isolation Workload isolation is used to defense
the software attacks in execution. There are potential
malicious co-tenants stealing or even damaging the data [10].
Existing cloud-based FPGA systems [3,30,45,79] often
implement mechanisms to isolate applications and to
randomise this isolation. The isolation enhances the
independence of data and hardware design. CSPs can then
provide clients with sufficient guarantees that their assets and
data remain contained in secure without manipulation during
processing.

Configuration refresh The configuration refresh guarantee
the accuracy of the configuration updating [32,33]. Prior art
adopts this scheme to avoid the ghost circuit and design leaks.
FPGA is configured with the bitstream. The function of the
FPGA hardware updates through bitstream downloading into
the configuration memory. Configuration refresh can avoid
ghost circuit without the false implementation [63,80].
Importantly, emptying the FPGA configuration can protect
tenants from assets leaks in the release stage.

5 Cost of FPGA sharing

We categorize the cost-related works, and summarize the
parameters of the cost issues. As shown in Table 5, we divided
the processing into stages and summarize related costs. There
are three processing stages including preparation, execution
and release. Each stage generates their own costs.

We discuss related works of FPGA sharing technologically
in the previous sections. The cost problem is also an open
region for research in cloud computing [91]. FPGA sharing
impacts the costs from several aforementioned aspects. In this
section, we analyze the cost of FPGA sharing.

FPGA sharing costs can be classified based on the
processing stage, including preparation costs, execution costs,

and post costs (such as costs in releases). The discrepancies in
quantification may be seen in these FPGA sharing-related
charges. Money costs can be quantified for some costs that are
present in the form of expenditure capital. The other manifests
as overhead and consumption, and their measurement is linked
to the length of time and occupation. These costs includes
FPGA idle time, energy consumption, safety maintenance, and
performance overhead are all included in these expenses.
Despite the fact that these costs are not direct commercial
expenses, they may be transformed to a unified form of money
cost depending on the duration and consumption.

5.1 Preparation costs

Preparation costs are generated in the preparation. These costs
are mainly expressed as the consumption of the money.
Typically, these costs include facility expenditure, labor cost,
and software development expenditure. Several developers
and researchers [15,82] show their concerns over the cost
issue macroscopically. CSPs [1-4] release their FPGA-
equipped computing instances based on the considerations
over the costs of FPGA deployment.

Cloud FPGA systems should be installed with particular
supports to meet efficiency and security needs. The
deployment of hardware supports, software supports, and
security guarantees account for the majority of the preparatory
expenditures. The following is a breakdown of the costs.

Facility expenditure These costs are mainly used for the
hardware deployment. CSPs [1-5,15,82] show concerns of
this region, and release their FPGA instances considering the
facility costs. These costs can be quantified by the amount of
the facility purchase money.

Prevention costs These security costs contain encryption
costs [73,74] and function isolation costs [3]. Security
guarantee in preparation are mainly used to separate the
hardware design of tenants. These hidden costs appear as
encryption and functional isolation overheads, which may be
measured as resource occupancy and development fees.

Labor costs FPGA sharing necessitates software support
[14,18,30,31], which would cost money in terms of
engineering. Management, virtualization, and communication
expenses are all affected by FPGA sharing.

5.2 Execution costs

Execution expenses are incurred during the execution process.
During run-time, these costs are represented as overheads. The
criteria for FPGA sharing hguanzhave an influence on
execution costs. Execution costs are rarely immediately
quantifiable in terms of money. These overheads come from

Table 5 Costs of FPGA sharing, categorised by the execution stage, cost type and quantification

Stage Cost types Source Explanation Quantity Related work
Hardware Expenditure of Facility Money Cost ($) [1--5,15,82]
Preparation Prep. Costs Security Prevention Costs: Encryption/Isolation Overhead (0 & $) [3,73,74]
Software Development Labor Costs Money Cost ($) [14,18,30,31]
Execution Exec. Costs Security Power Control/Assets Protection Overhead (O & D) [76,77,86]
Software Scheduling/Data/Execution Overhead (D) [21,49,88,89]
Release Post Costs Security Configuration Memory Refresh Overhead (D) [11,80,90]

* O represents the occupation, D represents the duration, and $ represents Dollars.
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the consumption or the occupation of resources in processing.
Several works present their concern towards these execution
related costs. Mocha [88] provides a sensible cost model to
illustrate the issue of cost-efficiency of cloud FPGA
computing. Shepovalov et al. [89] execute tasks in the cloud
and provide their thinking over the economic computing.
There are also some works concerning the overheads of the
virtualization of FPGA. QMC [83] provides a method to
quantify the cost of virtualization. Vital [18] provides the
comparison between several virtualization overheads of
existing techniques. Execution expenses are mostly derived
from two sources.

Maintenance costs To guarantee the service quality in
multi-tenant scenarios, FPGA sharing security measures need
to be taken into account [11,13,73,80]. The countermeasures
for severe threats will increase the burden for maintenance.
Some security are directly base on the encryption [10,74,87].
Several safety defenses of treats rely on consuming more
resources to the area. There are also other security guarantees
require specific SW/HW supports [3,90], which improves the
costs for supporting deployment.

Management overheads Fine control increases the
development costs in software [15,46]. CSPs need extra
expenditure for developing the supporting system. These
systems are required for providing the appropriate abstract and
resource management. Importantly, specific spatial sharing
calls for the effective management of fine-grained partitions
[18,21,30,45,46,56]. The supporting development will add up
maintenance costs. The temporal sharing [14,56] needs to
properly allocate the contention resources. FPGA-instances
price will be influenced by the management based on the
consideration. The sharing of FPGA sharing will lead to
higher network pressure inner hardware.

5.3 Postcost

Post expenses are considered for asset protection in the release
stage,. Computing jobs complete the processing with results at
this stage. For function updates, the configuration of co-
locating designs would be evicted. Design protection is a
serious challenge to FPGA sharing in multi-tenancy. With
side-channeling, the evil tenants or suppliers would steal the
design assets [10,13]. To avoid design leaks at the release
stage, post protection is required.

Post-protection costs The release’s FPGA sharing expenses
are influenced by security needs. In monetary terms, post-
expenses are rarely readily quantified. Post expenses are rarely
immediately quantifiable in monetary terms. Configuration
memory refresh is the major source of post-processing
expenses. One apparent way to prevent design assets from
leaking is to update configuration memory [11,80,90]. The
duration may be used to calculate these overheads.

6 Challenges and opportunities

Although many prior technologies have been studied for the
optimization of FPGA sharing in different aspects, several
challenges remain open. In this section, we identify the
following challenges and opportunities for developing FPGA
sharing in the cloud with high cost-efficiency.
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New FPGA configuration mechanism It is crucial to
explore a new FPGA configuration mechanism to mitigate the
huge overhead. The future deployment of FPGAs in cloud can
be a hybrid model. The configuration switches when FPGAs
are temporally shared by different applications is unavoidable
time-consuming. Developers can configure FPGA according
to the characterization of sharing applications. For small-scale
tasks, they consume little on-chip area, which can configured
as a whole in FPGA proactively. While for large-scale tasks,
developers need to partially configure FPGAs to support the
common components of sharing applications with other
components remaining un-configured. The pre-configured
FPGA can reduce the configuration overhead.

Fine-grained resource sharing Fine-grained resource
sharing is the key to FPGA sharing. The fine-grained resource
sharing not only requires appropriate hardware abstraction, but
also needs to handle resources sharing in real-time system. In
this case, the current FPGA virtualization is not enough to
support fine-grained resource sharing in multi-tenancy
scenarios which will cause communication blocking, clock
blocking and other issues.

In addition to FPGA virtualization, another opportunity for
fine-grained resource sharing is kernel-level FPGA hardware
development. The FPGA kernel is the code form of the
hardware circuit running on the FPGA board. With kernel
integration and kernel fusion, one can manage the FPGA
resources in the kernel level and save resources. In this case,
the FPGA sharing system should be able to identify the
characterization of applications and fuse their kernel without
performance degradation.

Compilation-based FPGA sharing Compilation is an
important step in FPGA developing, especially in FPGA
sharing. Leveraging the compilation optimization can enhance
the performance and efficiency of FPGA sharing. Different
from single application compilation in FPGA, the compilation
techniques in FPGA sharing should consider the optimization
space of multi application which shares the same FPGA. By
adding another layer of abstraction, the compiler can provide
isolation without sacrificing performance. The multiple FPGA
“roles” do not have to be physically isolated from each other,
thus making placement of LUTs and wiring much easier [92].
In addition to the optimization mechanism of compilation,
optimizing the compilation tools and compilation performance
is also a non-trivial problem.

Security and resiliency The security guarantee is a
common challenge in multi-tenancy scenarios. Especially for
FPGA, the sharing granularity is finer than other hardware and
platforms. The open hardware configuration process of FPGA
makes the hardware a hidden trouble in cloud sharing
scenarios. An efficient FPGA sharing require the resiliency,
and a mechanism should cover the security problems
including bypass attacks, design leaks, power attacks and
others.

Cost efficiency Prior art of the FPGA sharing usually
focuses on the feasibility of implementation. The optimization
of resource utilization is an open research region. Developers
should design new optimization mechanisms to improve the
utilization of FPGAs using FPGA sharing. Expect for
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utilization improvement, performance-per-dollar is also a
high-profile interest of cloud computing. The costs of FPGA
sharing have various sources. Correspondingly, there are
many opportunities for optimizing the cost-efficiency of cloud
FPGA in multi-tenants scenarios. However, very limited
works focus on the optimization over cost problems.

7 Conclusion

In this work, we examine FPGA implementation in the cloud
and summarized the characteristics of FPGA sharing. In multi-
tenancy scenarios, FPGA sharing plays an important role. We
discuss the related works of FPGA sharing based on the
organization of resources. FPGA sharing has flexibility in
manners and granularity. We also provide a detailed analysis
of the SW/HW sharing support for sharing and discuss design
cost. Finally, combined with our observations, we present the
key challenges and opportunities of FPGA sharing.
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