Front. Comput. Sci., 2023, 17(4): 174105
https://doi.org/10.1007/s11704-022-2096-3

REVIEW ARTICLE

Software approaches for resilience of high performance

computing systems: a survey

Jie JIA ()2, Yi LIU'2, Guozhen ZHANG!'2, Yulin GAO'2, Depei QIAN!2

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 Sino-German Joint Software Institute, Beihang University, Beijing 100191, China

© Higher Education Press 2023

Abstract With the scaling up of high-performance
computing systems in recent years, their reliability has been
descending continuously. Therefore, system resilience has been
regarded as one of the critical challenges for large-scale HPC
systems. Various techniques and systems have been proposed
to ensure the correct execution and completion of parallel
programs. This paper provides a comprehensive survey of
existing software resilience approaches. Firstly, a classification
of software resilience approaches is presented; then we
introduce major approaches and techniques, including
checkpointing, replication, soft error resilience, algorithm-
based fault tolerance, fault detection and prediction. In addition,
challenges exposed by system-scale and heterogeneous
architecture are also discussed.

Keywords resilience, high-performance computing, fault
tolerance, challenge

1 Introduction
In the past decades, the performance of high-performance
computing (HPC) systems has been increasing continuously.
At the same time, the system scale has also grown rapidly.
E.g., according to the TOP500 list of supercomputers, the
number of processor cores of Frontier and Fugaku [1] reaches
8,730,112 and 7,630,848 respectively. Future HPC systems
consist of tens of thousands of nodes and tens of millions of
processor cores homogeneously/heterogeneously, exposing
much more severe challenges to system resilience.
Theoretically, the reliability of a HPC system depends on
the reliability of individual components and the number of
components. Considering that the reliability of components is
relatively stable under current manufacturing techniques, it
can be concluded that the bigger the system scale becomes, the
higher the probability of failure is. According to statistics,
Peta-scale HPC systems’ MTBF (Mean Time Between
Failures) is about 15 hours [2]. On the one hand, considering
the rapid increase of system scale, the MTBF of exa-scale
HPC systems will be several hours or even less. On the other

Received February 16, 2022; accepted September 6, 2022

E-mail: jj@buaa.edu.cn

hand, due to the long-running -characteristic of HPC
applications, the execution of HPC applications will more
likely be interrupted by different kinds of failures. Therefore,
it is crucial to provide resilience approaches to guarantee
parallel programs’ correct execution and completion.

Resilience involves multi-layers of HPC systems. Various
methods and systems have been proposed, either in hardware,
software, or hybrid, in which the software/hybrid approaches
mainly focus on system-/application-level reliability. This
paper surveys software resilience approaches for HPC
systems. The main contributions of this paper are as follows:

1) This paper provides a comprehensive and systematic
survey of existing software resilience approaches for HPC
systems. The approaches are introduced and summarized
according to a classification that covers not only traditional
fault-tolerant methods but also newer techniques such as silent
data corruption and ABFT methods. We believe this survey
can help researchers understand the progress and the overall
picture of HPC software resilience.

2) This paper discusses challenges for software resilience
approaches regarding recent developments of HPC systems,
mainly in scalability and heterogeneous architecture. In
addition, we discuss the emerged challenge of the fail-slow
fault, which arises along with the scaling-up of
supercomputers and needs more attention in the future.

The rest of this paper is organized as follows. Section 2
introduces the background of resilience. Section 3 presents a
taxonomy of software approaches for HPC resilience. Sections
4 — 8 introduce different resilience approaches, including
checkpointing, replication, soft error resilience, algorithm-
based fault tolerance (ABFT), fault detection and prediction.
Finally, Section 9 summarizes the challenges of current
resilience approaches and concludes the paper.

2 Background

2.1 Resilience problem of HPC systems

With the scaling up of HPC systems in recent years, the
reliability has been descending continuously. Research [3] has
demonstrated that the MTBI (Mean Time Between Interrupt)
will decrease along with increasing nodes in a HPC system.
Besides, the growth of system scale is accompanied by the

https://doi.org/10.1007/s11704-022-2096-3

2 Front. Comput. Sci.

increase of clock frequency, and the number of processor
cores and sockets in one node [4]. Currently, the world’s state-
of-the-art exa-scale supercomputer Frontier has more than
9,400 CPUs and 37,000 GPUs. However, with more
components equipped in a supercomputer, the reliability will
get worse. e 4’ is the exponential distribution of failure
probability for one component in parallel execution is
formulated as Eq. (1), where R, is the reliability of a HPC
system, m is the number of components connected in parallel
in a HPC system [5]. Furthermore, the development of the
processors also brings shrinking of manufacturing techniques
which causes more soft errors [6].

m

Ry=1-] [(1-¢*).

n=1

(1)

A study on the failure of large-scale HPC systems in the
past decade demonstrates that the newer generation of HPC
systems might have smaller MTBF than the previous
generation, mainly due to the increased number of nodes [7].
However, the failure rate can also increase, even ruling out the
impact of the number of nodes in the system. The detailed
comparison is shown in Table 1. The table shows that the
average MTBF of several Peta-scale HPC systems, XTS5,
XK6, and XK7, is about 15 hours. Particularly, if we compare
the MTBF of Jaguar XT4 and XTS5, both of which are built
with AMD processors but with a different number of nodes,
we can see that the MTBF decreases along with the increase of
system scale. According to [2], the probability of application-
failure increases by 20x when scaling applications from
10,000 to 22,000 nodes.

2.2 Malfunctions of HPC systems

The cause of malfunctions in a HPC system could be very
complicated. In the system layer, previous studies usually use
the terminology of faults, errors, and failures to describe the

Table 1 The MTBF of different HPC systems [7]

,2023, 17(4): 174105

malfunction [8-10]. The comparison of these concepts is
shown in Table 2. This section will briefly discuss the impact
of malfunctions and the most common types of errors and
failures.

The frequency and type of failures can be different in
different HPC systems [7,11-13]. Table 3 summarizes the
most common abnormal states in HPC systems. Overall, the
abnormal states of HPC systems can be divided into two
classes. One class is commonly called the fail-stop failure,
which indicates failures that cause the system or application to
stop working. The other is the soft error that makes the system
or application produce incorrect results instead of crashing or
stopping working. This kind of error is also called the fail-
continue error.

From [14,15], one can see that the distribution of failures
and errors can be varied among different HPC systems.
Software-related errors dominate in some HPC systems like
Blue Waters [16]. But in other HPC systems such as Jaguar
XT4, Jaguar XT5, Jaguar XK6, and Titan [17], hardware-
related errors are equally or more dominant across systems. As
we look inside a HPC system, the failure events are proven to
have temporal recurrence properties [18—20]. Except for
temporal recurrence, spatial recurrence properties also exist.
Some nodes are easier to fail due to hardware impairment or
an imbalanced load schedule.

3 Classification of resilience approaches
Table 4 gives the classification of typical resilience methods
and their characteristics.

Both checkpointing and replication can deal with almost all
fail-stop failures while keeping transparency to applications.
However, replication approach needs to consume at least 2x
resources, and therefore is not very attractive for large-scale
systems and applications. In addition, checkpointing can be
used together with other resilience methods to deal with soft
errors. Due to the above reasons, checkpointing is currently

Table 2 The terminology of HPC malfunctions

System MTBF(hours) Cores Nodes

Jaguar XT4 36.91 31,328 7,832 Concept Explaining

Jaguar XT5 22.67 149,504 18,688 Fault Root cause of an error, usually physical defects or software bugs
Jaguar XK5 8.93 298,592 18,688 Error Deviation from the expected result

Titan XK7 14.51 560,640 18,688 Failure Fails to deliver correct service

Table 3 Abnormal states of HPC systems

Class Meaning Typical examples Explanation

Kernel error from which the operating

Kemel panic system cannot quickly recover.

Node heartbeat fault ~ Exception when accepting the heartbeat from other nodes.
Traps Segmentation faults, trap invalid opcode.
GFS failure Failure of the global file system.
Fail-stop failure Hardware and/or software stop working Scheduler Internal bugs of job scheduler.

Node hardware failure

Interconnect conjunction

Storage failure

Acc failure Failure of accelerators or co-processors.
Storage system fails to work.

Node fails due to power/cooling-system error,
damage of hardware components, etc.

Network connection is congested.

System still works but the execution of

Soft error / Fail-continue error AU
application incorrect

SDC Undetected silent data corruption.
CFE Control flow error.
MCE Memory check exception.

Jie JIA et al.

Table 4 Classification of typical resilience approaches

Software approaches for resilience of high performance computing systems: a survey

Fault detection and

Resilience method Checkpointing Replication Soft error resilience ABFT prediction
Redundancy data System me(:imory or application Process data and message N/A Checksum of N/A
ata space algorithm
Recovery method Failure-rollback Forward recovery Error-restart Error-restart N/A
Overhead/cost Medium High Medium Low Low
i ;vath f Systems and S .
Generality Systems and applications Systems and applications applications Applications Systems and applications
dEase of use or Easy Easy Hard Hard Medium
eployment
Limitation Scalability Resource consumption and Soft error only Algorithm-dependent Rely on other recovery

scalability

methods

the most widely used resilience approach in HPC systems.
However, the scalability of checkpointing is not satisfied for
large-number of processes. The algorithm-based fault-
tolerance, or ABFT, is the most lightweight approach but
unfortunately algorithm-dependent, which means different
schemes must be proposed for different algorithms. Soft error
approaches are dedicated to soft error. Most of them focus on
how to detect the soft error, and depend on checkpointing to
recover the error. Similarly, fault detection and predication act
as an alarm or trigger. Once a fault is detected or predicated,
corresponding failure-recovery or proactive actions can be
performed.

4 Checkpointing

Checkpointing, or checkpointing/restart (CR), records the
snapshots of applications & systems during the execution of
applications. In case of failure, it uses the previously saved
checkpoint file to resume application execution.
Checkpointing can be triggered periodically or by specific
events such as a function call in the application or an
exception. CR is important for programs that need to run a
long time to avoid restarting from the beginning.

The checkpointing concept can be applied at all levels:
system-level checkpointing, user-level checkpointing, and ap-
plication-level checkpointing. System-level checkpointing is
implemented by the kernel. It is convenient to use and
provides resilience for all applications. User-level
checkpointing is typically implemented in parallel libraries.
The user-level resilience doesn't modify the kernel; thus, it is
easier to migrate to other HPC systems. Application-level
checkpointing means that the user needs to add checkpoint and
restart functions in their applications. Usually, it means a lot
of engineering. But it also allows the user to design more
efficient resilience checkpointing mechanisms for their
applications. The comparison of them is shown in Table 5.

Table 5 Comparison of different checkpointing level

In addition to the classic approaches, there are researches on
emerging challenges. One of them is how to support
checkpointing on heterogeneous architecture, e.g., GPUs. The
other is how to leverage multi-level checkpointing. We will
discuss those new areas in section 4.4 and 4.5 respectively.

4.1 System-level checkpointing

System-level checkpointing is implemented by the OS kernel.
It is transparent for users and needs no modification to user
codes. The synchronization between user and kernel space is
avoided because the system-level checkpointing is usually
implemented in the kernel. Many teams focus on transparently
supporting checkpoints for user applications. They typically
need to modify kernel modules and user-shared libraries to
save an entire state [24,25].

BLCR (Berkeley Lab Checkpoint/Restart) is a famous
system-level checkpointing tool for multi-threaded programs.
It allows CR through libcr.so and modified Linux kernel.
Once BLCR is fully initialized, it will spawn a callback thread
to block system calls in the kernel. When checkpointing, the
callback process sends broadcast signals to allow all threads to
enter kernel space. After that, all threads will reach three
barriers sequentially to achieve a consistent state. Upon
reaching each barrier, relevant data is saved. Finally, each
thread returns to the user space and continues execution.

Although BLCR does not support CR of network state, there
are some system-level checkpointing works [26,27] based on
BLCR, using BLCR to save system state within the node.
They use a global controller acting as a coordinator to control
numerous processes so as to support CR of MPI programs.
However, this will trigger two serious overheads: the time
spent coordinating between processes via messages
(coordination overhead); and the time spent saving the state of
entire systems to non-volatile storage (memory overhead).

Non-blocking checkpointing try to reduce the coordination

l(él\i?kpomtmg System-level User-level Application-level

Explanation Operating system in charge of A user-level library is responsible for checkpointing The application itself is in charge of
P checkpointing. and links to applications checkpointing.

Typical systems BLCR [21] DMTCP [22] FTI[23]

dCéizckpomtmg Status of entire system Status of entire application user-specified application status

Overhead High Medium Low

Transparency Transparent to applications Application ngigzl:g(zfltl ?ﬁi:gyor linked with Application needs to be modified

Portability Low Medium High

4 Front. Comput. Sci., 2023, 17(4): 174105

overhead by not reaching a globally consistent state. However,
in practice, the domino effect among processes becomes
unacceptable on restart. Non-blocking checkpointing on HPC
parallel programs incurs an overhead close to the blocking
approach.

Incremental checkpointing is one of the efficient ways to
reduce the memory overhead. There are two kinds of
incremental checkpointing, page-based and hash-based. Page-
based incremental checkpointing requires OS support to find
dirty memory pages [28]. This approach has two limitations.
Firstly, it is difficult to meet the requirement for hardware and
kernel support on some systems; Secondly, this approach
cannot track the dirty bytes in a page. The hash-based
incremental checkpointing, on the other hand, finds dirty
memory blocks by calculating the hash value of blocks at a
smaller granularity [29]. This will take more overhead,
obviously. Although incremental checkpointing save memory
usage, it consumes more computation in checkpointing, which
can be regarded as a space-time tradeoff.

4.2 User-level checkpointing

In user-level checkpointing, the application is either compiled
& linked with a modified library that integrates the checkpoint
implementation, or loaded using a checkpoint utility to track
the processes & threads of the application. The attraction of
user-level checkpointing is that there is no need to modify the
source code, while the checkpoint overhead is smaller than the
system-level checkpointing.

One kind of user-level checkpointing directly modifies the
linking parallel library, such as MPI. Thus, users can
transparently use the checkpointing when linked with the
library. A lot of research teams focus on modifying the MPI
library [30-36]. Those methods track the message passed by
the MPI library. Typically, there are several components in the
implementation, including a single process checkpointing
library, a process management system, and a library handling

checkpointing requests during asynchronous message
transportation.
User-level checkpointing support for inter-process

communication (IPC) gets and saves the connections of the
communication layer on user space, as well as the messages
being delivered by these connections. When restoring, on user
space, the inter-process connections are first restored and then
resend the messages being delivered. Since MPI is
implemented based on IPC, tools supporting IPC, such as
DMTCP, DejaVu [37], actually support MPI as well. Further,
although some user-level checkpointing tools were not
originally proposed for HPC systems, they can still be used on
HPC with the support for IPC and MPI libraries.

DMTCP (Distributed MultiThreaded CheckPointing) is a
user-level checkpointing tool implemented with libraries. Its
own library enables CR support for various applications such
as C/C++, python. DMTCP instruments the system call in
order to record system calls (fork, exec, ssh, etc.) of the user
program. DMTCP uses a global coordinator to which all
worker processes connect with sockets. The DmtcpCoordina-
tor sends checkpoint barrier signals to all Dmtcpworkers to
achieve a globally consistent state and save checkpoints at

runtime. Based on DMTCP, [38] adds the support for
Infiniband interconnect which is widely used in HPC with
lower runtime overhead. [39] support checkpointing and
restarting for HPC applications with combinations of all MPI
implementations and interconnect by designing a single code
with a split-process approach that allows a process to run two
different programs.

The user-level checkpoint software mentioned above needs
to recover all nodes’ processes during recovery, which costs a
large performance overhead. For MPI, Reinit [40—42] uses the
method of storing checkpoints on both the local node and
other nodes in user space, so that in the case of an error on a
few nodes, error nodes can be restarted using checkpoints
from other non-error nodes. Instead of DMTCP requiring all
nodes to be restored during recovery, the overhead of
checkpoints is reduced.

4.3 Application-level checkpointing

Application-level checkpointing (ALC) is controlled by the
source code. The kernel is not aware of the checkpointing and
restarting procedure. The ALC has a smaller performance
overhead and storage overhead compared to system-level
checkpointing and better scalability, because only the essential
variables and data structures are saved. In addition, the
application has more control over when to trigger the
checkpointing. Compared with the system-level and user-level
checkpointing, ALC is easier to migrate to different platforms.
However, users are totally aware of checkpointing and need to
modify the source code.

Early researchers [31,38,39] typically design a preprocessor
and a checkpointing library. They are aimed at MPI or
OpenMP applications on HPC, where code that saves
variables and memory is inserted into the source program by
compilation. They typically allow the programmer to decide
the time of checkpointing by inserting function calls for
setting checkpoints. One typical ALC library for HPC is FTI
[23]. The library provides many application programming
interfaces(APIs) for checkpointing. APIs provided by those
libraries are fine-grained. The user needs to place the API call
in the right place. For MPI support, FTI redesigned a set of
interfaces based on the MPI interface and MPI communicator.
These FTI interfaces can store MPI process and the
information of message passing as checkpoints using Reed-
Solomon (RS) encoding based on the MPI call. When the
node is faulty, the data lost by the faulty node is recovered by
means of RS decoding by the set checkpoint.

Bronevetsky et al. [43] further extends FTI by analyzing the
reuse of data structure at the compilation time. In this way, the
checkpoint states can be incremental. Only the dirty data
structure needs to be saved.

Typically inserting checkpoint-related code into the
application’s source code requires extensive engineering
efforts. Some researchers try to develop more easily used tools
to help insert the checkpointing code. The Domain Specific
Language (DSL [44]) automatically inserts the checkpointing
code, with which the performance is comparable to the
manually modified version. The user only needs to write a
high-level specification on when and where to checkpoint.

Jie JIA et al.

Ba [45] goes further by analyzing the source code and
providing an interactive command for user decisions. This
method specially optimizes the memory overhead and
supports multiple languages, including C/C++/MPI/OpenMP.
The tool is built on top of the ROSE compiler [46]. Ba
supports analyzing the checkpointing-and-restart logic,
changes of for-loop code, order of function calls, etc.

Craft [47] provides a library for checkpointing specific data
types, and the user can extend the data types supported. In
addition, Craft uses the asynchronous checkpointing
mechanism to reduce overhead and features node-level
checkpointing.

4.4 Heterogeneous checkpointing

Heterogeneous architecture has been widely used in HPC
systems. Unfortunately, the checkpointing with accelerators
such as GPUs is often neglected. To our knowledge,
CheCUDA [48] is the first work at checkpointing on
heterogeneous systems. Due to the fact that we cannot suspend
the GPU kernel, when saving checkpoints, it first waits for the
GPU kernel to complete, then transfers the data from GPUs to
the host and uses BLCR to preserve the status of the host and
GPUs.

Garg et al. [49] research transparent checkpointing of GPUs
and newer RDMA networks. They proposed a new transparent
checkpointing framework based on split processes that use the
hardware virtual memory of the host to decouple the
computation state from the external subsystem context. The
isolation between the application process and external
computation systems makes it possible for transparent
checkpointing.

Based on DMTCP, CRUM [50] and CRAC [51] are the
latest work on Nvidia GPU checkpointing, which implement
user-level checkpointing and supports CUDA’s Unified
Memory Architecture(UMA) architecture. CRUM uses a
proxy process. CRUM first intercepts all CUDA calls, sends
the CUDA calls to the proxy process, and the proxy process
actually communicates with the GPU. In this way, the
program’s data excludes the CUDA context. CRAC takes a
novel method of split process. The address space is divided
into two parts, the upper half is the CUDA application, and the
lower half is the GPU and kernel drivers. Upon checkpoint,
only the upper half memory is saved. On restart, reinitialize
the lower half and then the lower half restores the upper half
memory from the checkpoint file. We could see that CRAC
can achieve a much lower overhead than CRUM. However,
CRAC only support single-node heterogeneous checkpointing.

Heterogeneous systems need to save all GPU data to the
host when checkpointing. If multiple GPUs checkpoint
simultaneously, it will cause a bursty buffer and degrade the
performance. GPU-snapshot [52] addresses this problem by
using the idea of partitioning GPU memory, combining the
idea of incremental and asynchronous checkpointing to reduce
the total amount and peak of IO. Different from GPU-
snapshot, Heterocheckpoint [53] uses pre-copy and non-
volatile memory (NVM) to address the problem, which can
reduce the bandwidth impact by 60%.

Software approaches for resilience of high performance computing systems: a survey 5

4.5 Multi-level checkpointing

The different levels of checkpointing are not incompatible.
They can work together to achieve an optimal solution in
terms of overhead and error rates. Vaidya [54] proposes a two-
level checkpointing model. The first level is a single process
failure tolerance scheme. The processes periodically take
checkpoints that need not be consistent with each other. The
second level is the global checkpointing scheme. The
processes coordinate with each other and ensure that their
states saved on the stable storage are consistent with each
other. The first level with lower overhead handles the more
probable process errors, and the second with higher overhead
tolerates the less likely system failures.

Haines et al. [55] combines the advantages of system-level
and application-level checkpointing for the applications
exhibiting data parallelism. System-level checkpointing can
detect hardware failure and kernel failure. The application-
level checkpointing is used as a complement for reliability
when the system-level checkpointing fails to work.

Many studies have conducted a fine-grained analysis of the
efficiency, frequency, and other checkpointing issues. Di [56]
gives a theoretical analysis on the best checkpointing
configuration with two levels. One checkpoint deals with soft
errors like transient memory errors. Another checkpoint deals
with hardware crashes. Benoit [57] further extends the
theoretical analysis to the situation of multiple levels and
derives the optimal checkpointing frequency in each level. An
error at level [destroys all lower level checkpoints (from 1 to
[—1) and requires a rollback to a checkpoint at level ! or
higher. The overhead of a k-level checkpointing HPC system
can be described in Eq. (2), where A; and C; are the error rate
and checkpointing cost at level I, respectively. Based on Eq.
(2), Benoit also proposes a dynamic programming algorithm
for choosing the optimal checkpointing levels considering the
actual situation.

k
0= V2 @

=1

5 Replication
The replication technique is a space-time tradeoff technique
that increases resources used with decreased recovery time. It
uses multiple redundant copies of process/computation to
achieve resilience, enabling the program to finish in close to
normal execution time. Replication is one of the few
technologies that can handle both fail-stop and fail-continue
errors. It handles fail-stop errors by executing each copy
independently and handles fail-continue errors by comparing
the results of copies. Replication is easy to understand and can
significantly improve the mean time to interrupt (MTTI) of
applications [58]. It is mostly used for reliability assurance of
vital parts of large-scale computing. There are two major types
of replication: process-pairs and N modular redundancy
(NMR).

Process-pairs are at the process level. Process-pairs consist
of two types of processes: a primary process and a backup
process, where the backup process is a clone of the primary

6 Front. Comput. Sci., 2023, 17(4): 174105

process. The processes of each process-pair run
simultaneously on different processors. Note that the primary
process also needs to transfer messages to the backup process
through MPI. By doing so, the backup process can continue to
work when the primary process crashes. This allows the
application to continue executing even if the primary process
fails. In principle, process-pairs consume twice the number of
resources than the un-replicated execution. The output of a
process-pair is usually dependent on the primary process.
Sometimes, although the backup process is correct with the
incorrect primary output, the consequence is still wrong.
Therefore, in some areas, process-pairs can be combined with
checkpointing. When the output of the primary process and
the backup are different, we can roll back to the nearest
checkpoint and restart.

NMR is at the computation level. NMR creates N identical
modules (usually N = 3) that run simultaneously, and
determines the output by a voting principle. Therefore, the
result with the highest amount of N modules becomes NMR’s
final output. As we can see, the larger the N is, the more
reliable the system is. NMR is widely used to detect fail-
continue failures [59], such as the silent data corruption
(SDC). NMR can improve reliability significantly but with the
highest cost among available resilience approaches.

Replication is widely used for resilience efforts in MPI
applications. rtMPI [60] transparently provides replication for
MPI applications. rMPI library is inserted between an
application and an MPI library that uses the MPI profiling
interface at the linked time. In the case of dual redundancy, the
program is started on 2n computing nodes, and » denotes the
original execution scale. The application can see rank 0 to
rank n—1, and rMPI uses the remaining nodes to conduct
redundancy. Each redundant node is maintained by rMPI and
duplicates the work of its active partner. To avoid the
divergence results from the non-deterministic MPI functions
(e.g., receive operations with wildcard, probe operation for the
incoming messages), tMPI library coordinates and duplicates
messages between redundant nodes and forces an active node
and its mirror to return the same values for the MPI function
to the application. However, synchronization protocol and
additional messages cause very serious overhead.

MMPI [61] proposes a protocol set of redundant execution
for MPI applications. It has different replication partitioning
and comparison schemes. MMPI depends on cumbersome
source code modification for implementing these redundancy
protocols.

The biggest disadvantage of redundancy is that it consumes
more resources and is less efficient. The hot issue of
replication for HPC is to reduce the volume of replication.
Hussain [62] demonstrates through experiments that partial
replication typically yields higher performance with different
node failure rates than full replication. Elliott et al. [63]
combine partial replication with checkpointing. They proved
by fault injection within MPI applications that the proper
degree of redundancy and checkpointing frequency achieves
the maximum performance. In their experiments, 2x
redundancy worked excellently. George [64] adaptively and
dynamically alters the number of replicated process sets based

on the fault prediction to minimize energy usage. However,
the partial replication scheme needs to be customized
according to the HPC applications, and optimal partial
replication is an NP-hard problem. So partial replication
cannot make good generality.

6 Soft error resilience

The soft error, also called fail-continue error, is a kind of fault
different from the fail-stop errors. That is, the system and
application will not crash or stop running in the case of soft
errors. Instead, they produce incorrect outputs. The soft error
is generally caused by bit-flipping in memory or processor due
to radiation or hardware error. The rate of bit-flipping can
increase significantly due to the adoption of fabrication
miniaturization, aging of silicon, and the dynamic power
management cycles [65,66]. According to the error behavior
in programs, the soft errors can be divided into two types: the
control flow error (CFE) and the silent data corruption (SDC).

6.1 Control flow error
CFEs are caused by the transient and permanent faults that
occurred in hardware components (e.g., program counter,
address circuits or memory subsystem), which will affect the
correctness and predictability of instruction execution
sequence in processors.

Control-flow checking (CFC) is a critical method for
monitoring program execution flow by dividing the program
into basic blocks and assigning a pre-computed signature for
each block. Afterward, obtain the runtime signature during
program execution and compare these two signatures to
determine whether an illegal jump happens. The schemes are
used to generate signatures for basic blocks by various
methods. For example, generate a unique global static
signature for every basic block or compute given the block
code in compile time, then re-compute a runtime signature
during program execution. Suppose one CFE happens during
program execution, resulting in an illegal jump inside a basic
block. In that case, the sequence of instructions executed
differs from the one obtained at compile-time, such that
divergence appears between the pre-computed and the re-
computed signatures. Therefore, this CFE can be detected at
the end of a basic block by comparing signatures. The CFC
can be realized by hardware-based or software-based
approaches. Since hardware-based approaches are beyond the
scope of this survey, we only introduce software-based
approaches.

The software-based error detection technique employs
encoded signatures (SWTES) [67] assumes that the program is
divided into several blocks containing basic blocks and
partition blocks. It defines and considers seven types of CFEs
between these blocks during the program execution. This
technique is based on the signature assignment for each block
and signature comparison at the end of these blocks. It
consists of two primary parts, i.e., the labeling algorithm and
the signature generating step. The block signature self-
checking (BSSC) [68] method assigns a signature for each
basic block and checks for control flow at the end of the
block. It calls a subroutine at the start of the block used to
push the address of its first instruction as the signature to the

Jie JIA et al.

top of the stack or store it in a static variable. Another
subroutine is invoked at the end of the block to compare the
embedded signature and the one preserved by the entry
routine. The control-flow error detection through assertions
(CEDA) [69] method allows extra instructions embedded into
the program automatically at compile-time for constantly
updating the run-time signature, which will be compared with
the pre-assigned signature. Due to the different ways of
calculating signatures, CEDA inserts fewer instructions and
brings less overhead but higher efficiency.

After detecting a CFE, control should be transferred back to
the block where the illegal branch happens. However, it is not
enough to just correct the CFE because the program may fail
due to the data corruption caused by the CFEs.

The automatic correction of CFEs (ACCE) divides the
program code into functions with one or more basic blocks.
ACCE uses CEDA to detect CFEs, automatically executes a
predefined function termed as error-handler, and transfers the
control to this function, next transfers to the basic block where
the illegal jump happens. Automatic correction of control-flow
errors with duplication (ACCED) is an extension of ACCE. It
is used to detect data corruption and correct it by duplicating
instructions. However, not all data corruptions can be
detected, and this method results in serious performance
overhead (more than 100%).

Although there are some researches [70] for automatic
detection & correction of CFEs, the complexity and overhead
of CFEs correction make them not applicable to large-scale
HPC systems. The feasible solution is combining CFE
detection approaches with checkpointing. Considering
checkpointing as a CFEs correction approach, we can roll
back to the previous checkpoint after detecting CFEs.

6.2 Silent data corruption

In silent data corruption (SDC), bit-flipping occurs in
application data (e.g., a matrix) which will not cause abnormal
behavior but produce error results. Therefore, SDC is more
difficult to detect than the CFE.

Given the definition of SDC, it cannot be detected at low-
level hardware or software stacks. One approach to detect the
SDC is outlier detection. The idea of this approach is: higher-
level software can discover outliers by leveraging properties
of the data dynamics, and these outliers indicate the
appearance of data corruption. [71] proposes an SDC
detection meth-od based on data monitoring, by which it
learns normal dynamic of their datasets and quickly locate
abnormalities. [72] utilizes historical data to build a trend
model of data change for predicting the data point’s value in
the next iteration(temp-oral or spatial neighbor point next to
the current one) and then compares the predictive value with
the actual value derived from program execution. Therefore,
SDC can be determined if the difference between the two
values is beyond a given threshold.

Table 6 Software solutions for SDC challenge

Software approaches for resilience of high performance computing systems: a survey 7

Another approach combines the replication mechanism with
message verification to detect SDC. Most of them are
implemented in MPI-layer. This kind of approach assumes
that any data corruption in a process will cause contaminated
messages which will be transmitted to other processes.
Therefore, data corruption can be detected by comparing the
messages of the equivalent ranks from different replications.
Typical works include rMPI [60], MMPI [61], VoplexMPI
[73] and MR-MPI [74]. tMPI and MMPI are introduced in
Section 5.

Berrocal [75] proposes a partial replication mechanism to
reduce the overhead of full replication in SDC detection. It
consists of two adaptive algorithms. In one of them, the
number of the processes to be replicated is invariant through
the whole execution. In another, this number can change
dynamically. To improve the overall recall rate and,
meanwhile, lead to a small overhead on time and space, the
processes expected to be replicated should be chosen carefully
according to their data behaviors.

The third approach tracks access to memory pages and uses
the hash-value of pages to detect data corruption in those
pages. To some extent, this approach is a software-
implemented page-level memory checking mechanism.
Typical works include LIBSDC [76], FlipSphere [77], and
Mini-ckpt [78].

LIBSDC [76] protects against SDC in memory at the system
level. It intercepts access operations to memory pages and
triggers signals if these pages are within the scope of
protection. The handler of the signal is responsible for
computing a hash value of the memory page, then comparing
this value with the last known good one to see whether
divergence appears. This method is only suitable for DRAM
but not for other components (e.g., CPU, registers, and logical
devices). Besides, it lacks the corresponding mechanism to
determine whether the divergence is caused by SDC or
calculation operations.

Based on LIBSDC, FlipSphere [77] traces page accesses by
using MMU and removes the least recently used page
permissions when a new page is accessed, to provide
software-based level protection.

Mini-ckpt [78] considers that applications cannot continue if
SDC happens in the memory occupied by the operating
system and causes kernel panic. For avoiding rollback,
recovery, and calculation loss, mini-ckpt records the kernel
state information of the running application to non-volatile
memory. Afterward, restart the kernel and recover the target
application’s execution state. This method requires
modifications to the operating system kernel. The overhead it
introduced relies on the procedure of the error handler after a
kernel panic.

Here, we make a comparison of checkpoint/restart,
replication and ABFT in SDC challenge, shown in Table 6,
and ABFT will be presented in the next section.

Approach Advantages Disadvantages

Checkpoint/restart No hardware features required, less or no program modification Requires large storage space and high time overhead
Replication Simple and straightforward High overhead, including running time, computing resources
ABFT Low-overhead Required program code modifications, and poor portability

8 Front. Comput. Sci., 2023, 17(4): 174105

7 Algorithm-based fault tolerance
Considering that for most scientific applications, the execution
process is multiple calls of a limited number of underlying
algorithms due to their generality. The algorithm-based fault
tolerance (ABFT) indicates resilience approaches dedicated to
specific algorithms. It is based on the relationship between the
input data and checksum of a particular algorithm to detect
and correct errors. If the checksum is incorrect, an error has
occurred. The first ABFT scheme [79] uses a row-column
checksum to detect and correct errors in matrix operations
such as multiplication, transpose, and LU decomposition on
multiprocessor systems. Compared to checkpointing and
replication, ABFT can ensure resilience with the lowest cost.
Unfortunately, it is algorithm-specific, which requires extra
effort to design different schemes for different algorithms.
Compared with checkpointing or replication, ABFT is lower
in overhead and easier in computation complexity. However,
ABFT can only deal with errors with limited corruption.

7.1 ABFT for linear algebra

On the basis of ABFT for matrix multiplication, [80-82]
extend ABFT to matrix decomposition and basic linear
algebra operations such as LU, QR, Cholesky. These schemes
are for offline problems. Offline means that the detection and
correction of errors occur after the matrix operation and can be
used for general matrix decomposition problems without
considering specific algorithms. Although offline ABFT
techniques usually have a minimal runtime overhead, they
cannot prevent the propagation and accumulation of errors.
When the number of failures exceeds the checksum correction
capability, matrix re-computation is required, so ABFT is
insufficient to provide fault tolerance for large-scale long-
running applications.

Therefore, [83,84] focus on online variants of matrix
multiplication. Online means that fault detection and
correction are performed continuously during the
computation, not only at the end of the computation. Online
variants need to design ABFT schemes based on specific
matrix algorithms to detect and correct errors timely to prevent
error propagation. For example, [83] uses the iterative method
for the Krylov subspace to dynamically verify the orthogonal
relationship and residuals of the program during the
calculation.

Besides ABFT for dense linear algebra, recent work also
concerns sparse matrix. Many scientific applications on HPC
usually involve sparse linear algebra, so it is important to
develop the ABFT scheme for sparse linear algebra. Due to
the different data structures of sparse matrices (e.g., CSR,
COO0), traditional ABFT schemes are not suitable for sparse
matrices. Recent researches reduce the runtime cost of error
detection and correction for the data structures and calculation
characteristics of the sparse matrix for SpMV [85], PCG [86],
etc.

It should be pointed out that many ABFT studies mainly
focus on fault tolerance at the integrated circuit level rather
than HPC systems. In HPC systems, most parallel matrix
algorithms, such as Cannon, Fox, High Performance Linpack
(HPL), etc., divide the matrix into blocks and assign blocks to

different nodes and processes to achieve scalability and
flexibility. Therefore, we cannot directly use traditional ABFT
mechanisms based on checksums of rows and columns on
HPC systems.

Zhu [87] proposes a matrix fault-tolerant mechanism for
large-scale parallel systems based on block-checksum. He
divides the matrix into blocks and adds checksums in each
block. These blocks are then put into the parallel matrix
multiplication. In the mathematical operations, the
computation of block-checksum is 1/k of the original row-
column ABFT, where k is the size of the block. However, the
larger the k, the more prone to rounding errors. To achieve a
balance between accuracy and efficiency, he proposes an
approach to selecting the appropriate size of blocks.

Furthermore, the blocked-based checksum is used to
implement FT-PBLAS [88], a fault-tolerant version of
PBLAS.

7.2 ABFT for fail-stop errors

Most traditional ABFTs need to maintain the relationship of
checksum during the computation, making them only suitable
for fail-continue errors. Because the relationship is not
available for fail-stop failures [89]. By using redundant
checksum in memory during computation, researchers [90,91]
can recover the failed processor when processing fail-stop
failures, and realize diskless checkpointing. For instance, [90]
sums the vector data of all processes according to a certain
weight to get vector y, and saves vector y to another process;
When a process X crashes, the data of X can be recovered by
the vector y. In the case of a single process crash, diskless
checkpoints can avoid storage overhead and greatly reduce the
time required for rollback. It is possible to recover data from
multiple processes based on mathematical methods.

Davies et al. [92] demonstrate that the checksum is
maintained at each step of the computation for the right-
looking LU factorization algorithm. Based on this, they
propose a scheme to tolerate the failure-stop Errors of
Cholesky decomposition based on HPL’s two-dimensional
block-cyclic distribution. After one process crashes, it can
recover data from the original matrix and U. Although the
scheme is specific to matrix operations, it can offer lower
overhead than diskless checkpoints.

7.3 ABFT on heterogeneous architecture

Similar to traditional homogeneous systems, heterogeneous
systems often have errors. There have been some studies on
ABFT schemes for heterogeneous systems in recent years.
These researches fall into two aspects: porting the ABFT
scheme from CPU to GPU and increasing the reliability of
ABFT on GPU.

Chen [93] proposes an online enhanced ABFT Cholesky
decomposition scheme specially designed for heterogeneous
system with GPUs. Checksums verification is the key
operation in ABFT, and it is relatively expensive on GPU due
to its low-performance efficiency. Since GPU kernels can run
in parallel, Chen uses multi-concurrent CUDA kernels to
accelerate the checksum verification. For the two one-sided
matrix decomposition algorithms, including LU and QR, Chen
further optimized the kernel of their encoding checksum

Jie JIA et al.

according to the GPU architecture, which provide a better
ABFT solution [94].

GPUs commonly perform lots of floating-point
computations, and their results are inevitably prone to
rounding errors. Therefore, ABFT for GPU-based systems has
to deal with rounding errors in checksums to avoid false
positives. A-ABFT [95] uses a probabilistic model for
rounding errors occurring in floating point operations to
determine error bounds for the comparison of ABFT
checksums for matrix multiplication.

8 Fault detection and prediction
Fault detection aims to find faults and perform fault recovery
in time in order to prevent further propagation of the fault and
reduce the impact on resilience. For example, by using a
combination of fault detection and checkpointing, we can roll
back to the latest checkpoint as soon as an error is detected.
The goal of fault prediction is to predict faults in advance
and make proactive operations (e.g., process migration, save
checkpoints). Even better, fault prediction can be used with
forward recovery resilience techniques (replication, ABFT),
which can counteract the impact of faults by redundant
calculations.

8.1 Heartbeat-based fault detection

The most commonly used node-level fault detection technique
is the Heartbeat. Each computing node sends heartbeat
information to each other or to a controller node periodically
to confirm it is alive. Suppose the heartbeat from a node is not
received for the pre-defined period. In that case, the node will
be regarded as failed, and the controller node may start error
handling, e.g., removing the node from the available
resources, restarting the job in the failed job.

Many fault detectors are working on the heartbeat
mechanism. They usually communicate in an all-to-all way
and use the heartbeat information to broadcast fault
information within the HPC system. Since the all-to-all
communication approach has a scalable problem in large-scale
systems, [96] proposes a scalable heartbeat fault detection
algorithm based on the gossip protocol, which uses random
communication to propagate information instead of all-to-all
communication.

8.2 Statistics-based fault detection and prediction

In HPC systems, different kinds of monitoring & performance
data are used for system monitoring and management, such as
CPU temperature, fan speed, voltage. Deviation of these data
often indicates an abnormal state or oncoming failure. For
instance, if the CPU temperature continues to rise and exceed
a certain threshold, the node is likely to fail in a short time.
Modeling these data according to statistics can help us carry
out fault detection and prediction.

A widely used method is to measure the performance of a
node while executing similar programs and compare them
with other nodes. If its performance deviation exceeds the
threshold, a fault is considered to occur in that node [97]. [98]
models the normal activities of nodes by using the runtime
data and then realizes fault detection by comparing the current
running state of nodes with the normal activity model. [99]

Software approaches for resilience of high performance computing systems: a survey 9

calculates the node system log generation frequency (SG)
within a fixed time interval and compares it with similar
nodes. If the SG parameter deviates from most nodes by more
than a certain threshold, the node is considered to fail. [100]
proposed a rule-based fault prediction method, which uses
daemon process on each node to read sensors and compares it
with the historical value in the system log to predict fault.

8.3 ML-based fault detection and prediction

HPC systems produce various kinds of performance data and
system logs that are suitable for machine learning techniques
to perform fault detection and prediction.

Various supervised machine learning (ML) algorithms, like
neural networks, are trained to detect and recognize system
failures on HPC [101,102]. Supervised machine learning fault
detection is efficient and accurate in detecting known faults,
but it is difficult to find unknown faults due to the fact that the
training data is manually annotated. Dani [103] proposes an
unsupervised anomaly detection approach that utilizes the k-
means clustering algorithm to analyze logs and find active &
failed nodes. [103] relies on the node itself to detect faults and
logs the fault, which also limits the types of faults that can be
detected.

Fault prediction is performed mainly by -classification
techniques, such as support vector machines (SVM), decision
trees, and logistic regression. [104,105] use SVM to analyze
data and predict disk faults. [106] utilizes the decision tree and
logistic regression to predict disk faults, in which the decision
tree is the primary classifier while the logistic regression is
used to avoid overfitting. Desh [13] uses the long short-term
memory (LSTM) neural networks for predicting node-level
failures, in which the LSTM is trained with the log event chain
that caused the failure as well as the time interval between the
log event chain; Experiments show that it can predict the
failure 3 minutes in advance.

AlOps (Attificial intelligence for IT Operations) combines
big data, ML and advanced operation technologies, and has
already started to be used on HPC. During the training phase,
it uses ML to learn the normal working patterns of HPCs from
their massive data. At runtime, AIOps collects real-time data
and analyzes it to detect and predict faults and make automatic
intelligent decisions. As a result, AIOps can detect and avoid
various faults faster than operation teams, reducing the
frequency of failures and shortening HPCs> MTTR (Mean
Time To Repair).

8.4 MPI-based fault detection

Most applications in HPC systems rely on MPI for inter-
process communications, so it is possible to detect faults of
parallel programs in MPI-layer. Marmot [107] and Umpire
[108] utilize the MPI profiling interface to detect program
faults (e.g., deadlocks), but they may have problems in
scalability and performance for large-scale applications. To
improve scalability, SRFD [109] introduces a scalable runtime
fault detection mechanism that uses MPI library functions to
obtain abnormal runtime information and logically constructs
a fault detection tree (FDT) for each process. Depending on
the detection period and data structure, Kharbas [110] uses
random detection and ring-based periodic detection at the MPI

10 Front. Comput. Sci., 2023, 17(4): 174105

communication layer to detect faults in MPI programs. These
fault detection mechanisms can be embedded in the MPI
application without any modification to the MPI application.

8.5 Correlation-based fault prediction

The basic idea of correlation-based fault prediction is to
estimate the probability of the next fault within a short period
by finding the correlation between faults according to the time
and type. The system log is usually the main research direction
of correlation-based fault prediction. [111] analyzes
BlueGene/L’s RAS logs and found the time characteristics
(50% of network failures and 35% of I/O failures occurred
within 30 minutes of the last failure) and spatial characteristics
(6% of nodes suffered 61% of network failures) of failures.
Based on this, they proposed a strategy: when a job submits to
HPC after one fatal event or two non-fatal events, it is highly
likely to fail.

Gainaru [112,113] combine signal processing to analyze the
logs and introduce two fault prediction methods; They extract
three kinds of signal events from the logs and carry out
anomaly detection based on the signals; By mining the
correlation between signals and the spatiotemporal correlation,
more than 50% of faults could be predicted in one minute in
advance.

Pelaez [114] proposes a distributed online node fault
prediction scheme to improve scalability. The idea is to divide
the data into regions and assign each region to a specific work
node. Then the work node conducts cluster analysis to get
clusters and outliers. This method provides good scalability
with high accuracy and ensures low data transmission and
RAM usage.

9 Challenges and conclusion

9.1 Challenges

e Challenges on scalability

The development of HPC systems not only promotes the
performance but also increases the number of processors/
cores/nodes. To make full use of the computing resources of
the HPC system, there will be massive processes/threads in
parallel programs. The increase in the number of nodes and
processes/threads poses challenges to the scalability of current
resilience approaches.

The challenge on scalability of checkpointing mainly lies in
two aspects. Firstly, the globally coordinated checkpointing
requires synchronization among processes to achieve a
globally consistent state before saving the checkpoint. For
large-scale HPC systems, this kind of global communication is
time-consuming and inefficient. Secondly, massive
processes/threads will generate massive checkpoint data that
needs to be saved to the storage-system. When thousands of
nodes save checkpoints to shared storage simultaneously, the
I/O sub-system will experience severer overloading.
Therefore, checkpointing requires further efforts on reducing
data volume, optimal checkpoint intervals, and uncoordinated
checkpoints to improve scalability.

e Challenges of heterogeneous architecture
Heterogeneous architecture has been widely employed by
HPC systems to achieve high-density of performance and to

improve power efficiency, which makes software resilience
approaches more complicated. Taking GPU as an example,
popular GPUs currently have an independent memory space,
which needs extra handling for checkpointing, SDC, and
ABFT. Other challenges include synchronization between
CPU and GPU, coordination of stream processors, saving and
restoring GPU status.

Traditional checkpoint approaches and tools are mainly for
CPU systems and take no account of heterogeneous systems.
Although there are already some checkpointing approaches for
CPU-GPU, they have limitations more or less. For instance,
checkpointing can only be done between kernel-functions of
GPU rather than inside a kernel-function; runtime system of
GPU is not open, which brings challenges and limitations to
saving & restoring the status of GPU. Furthermore, in addition
to GPU, future HPC systems will employ more kinds of
heterogeneous architectures to improve power-efficiency,
which will bring more challenges to checkpointing.

e Challenges of emerged fail-slow fault

Traditionally, the system faults are classified into fail-stop and
fail-continue (i.e. soft error). Current resilience approaches are
designed for either or both of them. However, with the
scaling-up of HPC systems, there are thousands of millions of
processors/components in a system, and researchers have
found a new kind of fault, called fail-slow [115], which
indicates the abnormal state of slow working of processors/
nodes/components. Causes of fail-slow faults may be related
to instable connections between components, aging
components, etc.

Although the fail-slow faults do not make applications crash
or generate incorrect results, they affect system performance
and often cause some strange phenomena. E.g., an application
runs quickly in most times, but becomes very slow
occasionally, which brings troubles not only to the users but
also to system management and maintenance. At present, there
is not much research on fail-slow, especially on how to detect
and locate it.

9.2 Conclusion

Accompanied with the growth in scale and complexity of HPC
systems, resilience has become one of the key challenges for
large-scale HPC systems. To tackle this problem, various
kinds of methods, systems and tools have been proposed. This
paper gives a comprehensive survey of software resilience
approaches for HPC systems. Firstly, we present a
classification of those methods. Then we summarize the
advantages and disadvantages of each method, and introduce
the most popular resilience approaches as well as their recent
progress and works.

Specifically, as HPC systems become more complex and
heterogeneous, we also track the latest work that meets new
challenges in each section. We believe our work can help
researchers retrieve the main work for the resilience of HPC
systems and quickly catch up with the recent advances in each
classification.

Acknowledgements The research presented in this paper has been
supported by the GHFund A (No. ghfund202107010337).

Jie JIA et al.

References

Dongarra J. Report on the fujitsu fugaku system. University of
Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep.
ICLUT-20-06, 2020

Di Martino C, Kramer W, Kalbarczyk Z, Iyer R. Measuring and
understanding extreme-scale application resilience: a field study of 5,
000, 000 HPC application runs. In: Proceedings of the 45th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks. 2015, 25-36

Hursey J, Squyres J M, Mattox T I, Lumsdaine A. The design and
implementation of checkpoint/restart process fault Tolerance for open
MPIL. In: Proceedings of 2007 IEEE International Parallel and
Distributed Processing Symposium. 2007, 1-8

Cappello F, Geist A, Gropp B, Kale L, Kramer B, Snir M. Toward
exascale resilience. The International Journal of High Performance
Computing Applications, 2009, 23(4): 374-388

Egwutuoha I P, Levy D, Selic B, Chen S. A survey of fault tolerance
high
performance computing systems. The Journal of Supercomputing,
2013, 65(3): 1302-1326

Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M,
Franzon P, Harrod W, Hill K, Hiller J, et al. Exascale computing study:

mechanisms and checkpoint/restart implementations for

Technology challenges in achieving exascale systems. Defense
Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, 2008, 15: 181

Gupta S, Patel T, Engelmann C, Tiwari D. Failures in large scale
systems: Long-term measurement, analysis, and implications. In:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 2017, 44

Radojkovic P, Marazakis M, Carpenter P, Jeyapaul R, Gizopoulos D,
Schulz M, Armejach A, Ayguade E A, Bodin F, Canal R, et al.
Towards resilient EU HPC systems: A blueprint. PhD thesis, European
HPC resilience initiative, 2020

Avizienis A, Laprie J C, Randell B, Landwehr C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 2004, 1(1): 11-33

Mukherjee S. Architecture Design for Soft Errors. San Francisco:
Morgan Kaufmann, 2008

Tan L, DeBardeleben N. Failure analysis and quantification for
contemporary and future supercomputers. 2019, arXiv preprint arXiv:
1911.02118

Shoji F, Matsui S, Okamoto M, Sueyasu F, Tsukamoto T, Uno A,
Yamamoto K. Long term failure analysis of 10 peta-scale
supercomputer. In: Proceedings of HPC in Asia Session at ISC 2015.
2015

Das A, Mueller F, Siegel C, Vishnu A. Desh: deep learning for system
health prediction of lead times to failure in HPC. In: Proceedings of the
27th International Symposium on High-Performance Parallel and
Distributed Computing. 2018, 40-51

Di Martino C, Kalbarczyk Z, Iyer R K, Baccanico F, Fullop J, Kramer
W. Lessons learned from the analysis of system failures at petascale:
the case of blue waters. In: Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 2014,
610-621

El-Sayed N, Schroeder B. Reading between the lines of failure logs:
understanding how HPC systems fail. In: Proceedings of the 43rd
Annual [EEE/IFIP International Conference on Dependable Systems
and Networks. 2013, 1-12

Bode B, Butler M, Dunning T, Hoeer T, Kramer W, Gropp W,
WenMei H. The blue waters super-system for super-science. In:
Contemporary High Performance Computing: From Petascale toward

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Software approaches for resilience of high performance computing systems: a survey 11

Exascale, 339-366. Chapman and Hall/CRC, 2013

Bland B. Titan - Early experience with the titan system at oak ridge
national laboratory. In: Proceedings of 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. 2012,
2189-2211

Bautista-Gomez L, Gainaru A, Perarnau S, Tiwari D, Gupta S,
Engelmann C, Cappello F, Snir M. Reducing waste in extreme scale
systems through introspective analysis. In: Proceedings of 2016 IEEE
International Parallel and Distributed Processing Symposium. 2016,
212-221

Tiwari D, Gupta S, Vazhkudai S S. Lazy checkpointing: exploiting
temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems. In: Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 2014,
25-36

Tiwari D, Gupta S, Gallarno G, Rogers J, Maxwell D. Reliability
lessons learned from GPU experience with the Titan supercomputer at
Oak Ridge leadership computing facility. In: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. 2015, 1-12

Hargrove P H, Duell J C. Berkeley lab checkpoint/restart (BLCR) for
Linux clusters. Journal of Physics: Conference Series, 2006, 46:
494-499

Ansel J, Arya K, Cooperman G. DMTCP: Transparent checkpointing
for cluster computations and the desktop. In: Proceedings of 2009
IEEE International Symposium on Parallel & Distributed Processing.
2009, 1-12

Bautista-Gomez L, Tsuboi S, Komatitsch D, Cappello F, Maruyama N,
Matsuoka S. FTI: High performance fault tolerance interface for
hybrid systems. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis.
2011, 1-12

Zhong H, Nieh J. Crak: Linux checkpoint/restart as a kernel module.
Technical Report, Citeseer, 2001

Osman S, Subhraveti D, Su G, Nieh J. The design and implementation
of zap: a system for migrating computing environments. ACM
SIGOPS Operating Systems Review, 2002, 36(S1): 361-376

Sankaran S, Squyres J M, Barrett B, Sahay V, Lumsdaine A, Duell J,
Hargrove P, Roman E. The LAM/MPI checkpoint/restart framework:
system-initiated checkpointing. The International Journal of High
Performance Computing Applications, 2005, 19(4): 479-493

Wang C, Mueller F, Engelmann C, Scott S L. Hybrid checkpointing
for MPI jobs in HPC environments. In: Proceedings of the 16th
International Conference on Parallel and Distributed Systems. 2010,
524-533

Sancho J C, Petrini F, Johnson G, Frachtenberg E. On the feasibility of
incremental checkpointing for scientific computing. In: Proceedings of
the 18th International Parallel and Distributed Processing Symposium.
2004, 58

Agarwal S, Garg R, Gupta M S, Moreira J E. Adaptive incremental
checkpointing for massively parallel systems. In: Proceedings of the
18th Annual International Conference on Supercomputing. 2004,
277-286

Bosilca G, Bouteiller A, Cappello F, Djilali S, Fedak G, Germain C,
Herault T, Lemarinier P, Lodygensky O, Magniette F, Neri V,
Selikhov A. MPICh-V: toward a scalable fault tolerant MPI for volatile
nodes. In: Proceedings of 2002 ACM/IEEE Conference on
Supercomputing. 2002, 29

Bronevetsky G, Marques D, Pingali K, Stodghill P. Automated
application-level checkpointing of MPI programs. In: Proceedings of
the 9th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2003, 84—94

12

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Front. Comput. Sci., 2023, 17(4): 174105

Graham R L, Choi S E, Daniel D J, Desai N N, Minnich R G,
Rasmussen C E, Risinger L D, Sukalski M W. A network-failure-
tolerant message-passing system for terascale clusters. International
Journal of Parallel Programming, 2003, 31(4): 285-303

Woo N, Choi S, Jung h, Moon J, Yeom H Y, Park T, Park H. MPICH-
GF: providing fault tolerance on grid environments. In: Proceedings of
the 3rd IEEE//ACM International Symposium on Cluster Computing
and the Grid (CCGrid2003), the Poster and Research Demo Session.
2003

Zheng G, Shi L, Kale L V. FTC-Charm++: an in-memory checkpoint-
based fault tolerant runtime for Charm++ and MPI. In: Proceedings of
2004 IEEE International Conference on Cluster Computing. 2004,
93-103

Zhang Y, Wong D, Zheng W. User-level checkpoint and recovery for
LAM/MPI. ACM SIGOPS Operating Systems Review, 2005, 39(3):
72-81

Buntinas D, Coti C, Herault T, Lemarinier P, Pilard L, Rezmerita A,
Rodriguez E, Cappello F. Blocking vs. non-blocking coordinated
checkpointing for large-scale fault tolerant MPI Protocols. Future
Generation Computer Systems, 2008, 24(1): 73-84

Ruscio J F, Heffner M A, Varadarajan S. DejaVu: transparent user-
level checkpointing, migration, and recovery for distributed systems.
In: Proceedings of 2007 IEEE International Parallel and Distributed
Processing Symposium. 2007, 1-10

Cao J, Arya K, Garg R, Matott S, Panda D K, Subramoni H, Vienne J,
Cooperman G. System-level scalable checkpoint-restart for petascale
computing. In: Proceedings of the 22nd International Conference on
Parallel and Distributed Systems. 2016, 932—941

Garg R, Price G, Cooperman G. MANA for MPI: MPI-agnostic
network-agnostic transparent checkpointing. In: Proceedings of the
28th International Symposium on High-Performance Parallel and
Distributed Computing. 2019, 49-60

Laguna I, Richards D F, Gamblin T, Schulz M, De Supinski B R,
Mohror K, Pritchard H. Evaluating and extending user-level fault
tolerance in MPI applications. The International Journal of High
Performance Computing Applications, 2016, 30(3): 305-319
Chakraborty S, Laguna I, Emani M, Mohror K, Panda D K, Schulz M,
Subramoni H. EREINIT: scalable and efficient fault-tolerance for
bulk-synchronous MPI applications. Concurrency and Computation:
Practice and Experience, 2020, 32(3): e4863
Georgakoudis G, Guo L, Laguna 1. Reinit™":

performance of global-restart recovery methods for MPI fault

evaluating the

tolerance. In: Proceedings of the 35th International Conference on
High Performance Computing. 2020, 536—554

Bronevetsky G, Marques D J, Pingali K K, Rugina R, McKee S A.
Compiler-enhanced incremental — checkpointing for OpenMP
applications. In: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 2008, 275-276
Arora R, Bangalore P, Mernik M. A technique for non-invasive
application-level checkpointing. The Journal of Supercomputing, 2011,
57(3): 227-255

Ba T N, Arora R. A tool for semi-automatic application-level check-
pointing. In: Technical Posters at the International Conference for
High Performance Computing, Networking, Storage and Analysis.
2016, 1620

Quinlan D, Liao C. The ROSE
infrastructure. In: Proceedings of the Cetus Users and Compiler
Infrastructure Workshop. 2011, 1-3

Shahzad F, Thies J, Kreutzer M, Zeiser T, Hager G, Wellein G.
CRAFT: a library for easier application-level checkpoint/restart and
automatic fault tolerance. IEEE Transactions on Parallel and
Distributed Systems, 2019, 30(3): 501-514

source-to-source compiler

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Takizawa H, Sato K, Komatsu K, Kobayashi H. CheCUDA: a
checkpoint/restart tool for CUDA applications. In: Proceedings of
2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies. 2009, 408—413

Garg R. Extending the domain of transparent checkpoint-restart for
large-scale HPC. Northeastern University, Dissertation, 2019

Garg R, Mohan A, Sullivan M, Cooperman G. CRUM: checkpoint-
restart support for CUDA’s unified memory. In: Proceedings of 2018
IEEE International Conference on Cluster Computing. 2018, 302—313
Jain T, Cooperman G. CRAC: Checkpoint-restart architecture for
CUDA with streams and UVM. In: Proceedings of International
Conference for High Performance Computing, Networking, Storage
and Analysis. 2020, 1-15

Lee K, Sullivan M B, Hari S K S, Tsai T, Keckler S W, Erez M. GPU
snapshot: checkpoint offloading for GPU-dense systems. In:
Proceedings of the ACM International Conference on Supercomputing.
2019, 171-183

Kannan S, Farooqui N, Gavrilovska A, Schwan K. HeteroCheckpoint:
efficient checkpointing for accelerator-based systems. In: Proceedings
of the 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 2014, 738—743

Vaidya N H. A case for two-level distributed recovery schemes. In:
Proceedings of the 1995 ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems.
1995, 64-73

Haines J, Lakamraju V, Koren I, Krishna C M. Application-level fault
tolerance as a complement to system-level fault tolerance. The Journal
of Supercomputing, 2000, 16(1-2): 53-68

Di S, Robert Y, Vivien F, Cappello F. Toward an optimal online
checkpoint solution under a two-level HPC checkpoint model. IEEE
Transactions on Parallel and Distributed Systems, 2017, 28(1):
244-259

Benoit A, Cavelan A, Le Févre V, Robert Y, Sun H. Towards optimal
multi-level checkpointing. IEEE Transactions on Computers, 2017,
66(7): 1212-1226

Ferreira K, Stearley J, Laros J H, Oldfield R, Pedretti K, Brightwell R,
Riesen R, Bridges P G, Arnold D. Evaluating the viability of process
replication reliability for exascale systems. In: Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis. 2011, 1-12

Wu P, Ding C, Chen L, Gao F, Davies T, Karlsson C, Chen Z. Fault
tolerant matrix-matrix multiplication: Correcting soft errors on-line. In:
Proceedings of the 2nd Workshop on Scalable Algorithms for Large-
Scale Systems. 2011, 25-28

Fiala D, Mueller F, Engelmann C, Riesen R, Ferreira K, Brightwell R.
Detection and correction of silent data corruption for large-scale high-
performance computing. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis. 2012, 1-12

Wang Z, Yang X, Zhou Y. MMPI: a scalable fault tolerance
mechanism for MPI large scale parallel computing. In: Proceedings of
the 10th IEEE International Conference on Computer and Information
Technology. 2010, 1251-1256

Hussain Z, Znati T, Melhem R. Partial redundancy in HPC systems
with non-uniform node reliabilities. In: Proceedings of International
Conference for High Performance Computing, Networking, Storage
and Analysis. 2018, 566—576

Elliott J, Kharbas K, Fiala D, Mueller F, Ferreira K, Engelmann C.
Combining partial redundancy and checkpointing for HPC. In:
Proceedings of the 32nd International Conference on Distributed
Computing Systems. 2012, 615626

George C, Vadhiyar S. Fault tolerance on large scale systems using

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Jie JIA et al.

adaptive process replication. IEEE Transactions on Computers, 2015,
64(8): 2213-2225

Quinn H, Graham P. Terrestrial-based radiation upsets: a cautionary
tale. In: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines. 2005, 193—202
Schroeder B, Pinheiro E, Weber W D. DRAM errors in the wild: a
large-scale field study. Communications of the ACM, 2011, 54(2):
100-107

Sedaghat Y, Miremadi S G, Fazeli M. A software-based error detection
technique using encoded signatures. In: Proceedings of the 21st IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems. 2006, 389—400

Miremadi G, Harlsson J, Gunneflo U, Torin J. Two software
techniques for on-line error detection. In: Proceedings of the 22nd
International Symposium on Fault-Tolerant Computing. 1992,
328-335

Vemu R, Abraham J. CEDA: control-flow error detection using
assertions. IEEE Transactions on Computers, 2011, 60(9): 1233-1245
Zarandi H R, Maghsoudloo M, Khoshavi N. Two efficient software
techniques to detect and correct control-flow errors. In: Proceedings of
the 16th Pacific Rim International Symposium on Dependable
Computing. 2010, 141-148

Gomez L B, Cappello F. Detecting silent data corruption through data
dynamic monitoring for scientific applications. ACM SIGPLAN
Notices, 2014, 49(8): 381-382

Berrocal E, Bautista-Gomez L, Di S, Lan Z, Cappello F. Lightweight
silent data corruption detection based on runtime data analysis for HPC
applications. In: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing. 2015, 275-278
LeBlanc T, Anand R, Gabriel E, Subhlok J. VolpexMPI: an MPI
library for execution of parallel applications on volatile nodes. In:
Proceedings of the 16th European Parallel Virtual Machine / Message
Passing Interface Users’ Group Meeting. 2009, 124—133

Engelmann C, Boehm S. Redundant execution of HPC applications
with MR-MPI. In: Proceedings of the 10th IASTED International
Conference on Parallel and Distributed Computing and Networks.
2011, 31-38

Berrocal E, Bautista-Gomez L, Di S, Lan Z, Cappello F. Toward
general software level silent data corruption detection for parallel
applications. IEEE Transactions on Parallel and Distributed Systems,
2017, 28(12): 3642-3655

Fiala D, Ferreira K B, Mueller F, Engelmann C. A tunable, software-
based DRAM error detection and correction library for HPC. In:
Proceedings of European Conference on Parallel Processing. 2012,
251-261

Fiala D, Mueller F, Ferreira K B. FlipSphere: a software-based DRAM
error detection and correction library for HPC. In: Proceedings of the
20th International Symposium on Distributed Simulation and Real
Time Applications. 2016, 19-28

Fiala D, Mueller F, Ferreira K, Engelmann C. Mini-Ckpts: surviving
OS failures of 2016
International Conference on Supercomputing. 2016, 7

in persistent memory. In: Proceedings
Huang K H, Abraham J A. Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers, 1984, C-33(6): 518-528
Luk F T, Park H. Fault-tolerant matrix triangularizations on systolic
arrays. IEEE Transactions on Computers, 1988, 37(11): 1434-1438
Luk F T, Park H. An analysis of algorithm-based fault tolerance
techniques. Journal of Parallel and Distributed Computing, 1988, 5(2):
172-184

Bouteiller A, Herault T, Bosilca G, Du P, Dongarra J. Algorithm-based
fault tolerance for dense matrix factorizations, multiple failures and
accuracy. ACM Transactions on Parallel Computing, 2015, 1(2): 10

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Software approaches for resilience of high performance computing systems: a survey 13

Chen Z. Online-ABFT: an online algorithm based fault tolerance
scheme for soft error detection in iterative methods. ACM SIGPLAN
Notices, 2013, 48(8): 167-176

Tao D, Song S L, Krishnamoorthy S, Wu P, Liang X, Zhang E Z,
Kerbyson D, Chen Z. New-sum: a novel online ABFT scheme for
general iterative methods. In: Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and
Distributed Computing. 2016, 43—55

Schéll A, Braun C, Kochte M A, Wunderlich H J. Efficient algorithm-
based fault tolerance for sparse matrix operations. In: Proceedings of
the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 2016, 251-262

Shantharam M, Srinivasmurthy S, Raghavan P. Fault tolerant
preconditioned conjugate gradient for sparse linear system solution. In:
Proceedings of the 26th ACM International
Supercomputing. 2012, 69-78

Zhu Y, Liu Y, Li M, Qian D. Block-checksum-based fault tolerance
for matrix multiplication on large-scale parallel systems. In:

Conference on

Proceedings of the 20th International Conference on High Performance
Computing and Communications; IEEE 16th International Conference
on Smart City; IEEE 4th International Conference on Data Science and
Systems. 2018, 172—179

Zhu Y, Liu Y, Zhang G. FT-PBLAS: PBLAS-based fault-tolerant
linear algebra computation on high-performance computing systems.
IEEE Access, 2020, 8: 42674-42688

Chen Z, Dongarra J. Algorithm-based fault tolerance for fail-stop
failures. IEEE Transactions on Parallel and Distributed Systems, 2008,
19(12): 1628-1641

Roche T, Cunche M, Roch J L. Algorithm-based fault tolerance
applied to P2P computing networks. In: Proceedings of the Ist
International Conference on Advances in P2P Systems. 2009, 144—149
Hakkarinen D, Wu P, Chen Z. Fail-stop failure algorithm-based fault
tolerance for Cholesky decomposition. IEEE Transactions on Parallel
and Distributed Systems, 2015, 26(5): 1323-1335

Davies T, Karlsson C, Liu H, Ding C, Chen Z. High performance
fault
checkpointing. In: Proceedings of the International Conference on
Supercomputing. 2011, 162—-171

Chen J, Li S, Chen Z. GPU-ABFT: optimizing algorithm-based fault
tolerance for heterogeneous systems with GPUs. In: Proceedings of
2016 IEEE International Conference on Networking, Architecture and
Storage. 2016, 1-2

Chen J, Li H, Li S, Liang X, Wu P, Tao D, Ouyang K, Liu Y, Zhao K,
Guan Q, Chen Z. Fault tolerant one-sided matrix decompositions on

linpack benchmark: a tolerant implementation without

heterogeneous systems with GPUs. In: Proceedings of International
Conference for High Performance Computing, Networking, Storage
and Analysis. 2018, 854—865

Braun C, Halder S, Wunderlich H J. A-ABFT: autonomous algorithm-
based fault tolerance for matrix multiplications on graphics processing
units. In: Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 2014, 443—-454
Ranganathan S, George A D, Todd R W, Chidester M C. Gossip-style
failure detection and distributed consensus for scalable heterogeneous
clusters. Cluster Computing, 2001, 4(3): 197-209

Gabel M, Schuster A, Bachrach R G, Bjerner N. Latent fault detection
in large scale services. In: Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks. 2012, 1-12

Wu L, Luo H, Zhan J, Meng D. A runtime fault detection method for
HPC cluster. In: Proceedings of the 12th International Conference on
Parallel and Distributed Computing, Applications and Technologies.
2011, 6872

Ghiasvand S, Ciorba F M. Anomaly detection in high performance

14

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

Front. Comput. Sci., 2023, 17(4): 174105

computers: a vicinity perspective. In: Proceedings of the 18th
International Symposium on Parallel and Distributed Computing.
2019, 112-120

Egwutuoha I P, Chen S, Levy D, Selic B, Calvo R. Cost-oriented
proactive fault tolerance approach to high performance computing
(HPC) in the cloud. International Journal of Parallel, Emergent and
Distributed Systems, 2014, 29(4): 363378

Borghesi A, Libri A, Benini L, Bartolini A. Online anomaly detection
in HPC systems. In: Proceedings of 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems. 2019,
229-233

Borghesi A, Molan M, Milano M, Bartolini A. Anomaly detection and
anticipation in high performance computing systems. IEEE
Transactions on Parallel and Distributed Systems, 2022, 33(4):
739-750

Dani M C, Doreau H, Alt S. K-means application for anomaly
detection and log classification in HPC. In: Proceedings of the 30th
International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems. 2017, 201-210

Zhu B, Wang G, Liu X, Hu D, Lin S, Ma J. Proactive drive failure
prediction for large scale storage systems. In: Proceedings of the 29th
Symposium on Mass Storage Systems and Technologies. 2013, 1-5
Fulp E W, Fink G A, Haack J N. Predicting computer system failures
using support vector machines. In: Proceedings of the 1st USENIX
Conference on Analysis of System Logs. 2008, 5

Ganguly S, Consul A, Khan A, Bussone B, Richards J, Miguel A. A
practical approach to hard disk failure prediction in cloud platforms:
big data model for failure management in datacenters. In: Proceedings
of the 2nd International Conference on Big Data Computing Service
and Applications. 2016, 105-116

Krammer B, Bidmon K, Miiller M S, Resch M M. MARMOT: an MPI
analysis and checking tool. Advances in Parallel Computing, 2004, 13:
493-500

Vetter J S, De Supinski B R. Dynamic software testing of MPI
applications with Umpire. In: Proceedings of 2000 ACM/IEEE
Conference on Supercomputing. 2000, 51

Gao J, Yu K, Qing P. A scalable runtime fault detection mechanism for
high performance computing. In: Proceedings of the 2nd Information
Technology, Networking, Electronic and Automation Control
Conference. 2017, 490—495

Kharbas K, Kim D, Hoefler T, Mueller F. Assessing HPC failure
detectors for MPI jobs. In: Proceedings of the 20th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing. 2012, 81—88

Liang Y, Zhang Y, Sivasubramaniam A, Jette M, Sahoo R.
BlueGene/L failure analysis and prediction models. In: Proceedings of
the International Conference on Dependable Systems and Networks.
2006, 425-434

Gainaru A, Cappello F, Snir M, Kramer W. Fault prediction under the
microscope: a closer look into HPC systems. In: Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis. 2012, 1-11

Gainaru A, Cappello F, Kramer W. Taming of the shrew: modeling the
normal and faulty behaviour of large-scale HPC systems. In:
Proceedings of the 26th International Parallel and Distributed
Processing Symposium. 2012, 1168—1179

114.

115.

\

Pelaez A, Quiroz A, Browne J C, Chuah E, Parashar M. Online failure
prediction for HPC resources using decentralized clustering. In:
Proceedings of the 21st International Conference on High Performance
Computing. 2014, 1-9

Gunawi H S, Suminto R O, Sears R, Golliher C, Sundararaman S, et
al. Fail-slow at scale: evidence of hardware performance faults in large
production systems. In: Proceedings of the 16th USENIX Conference
on File and Storage Technologies. 2018, 1-14

Jie Jia is a PhD candidate in School of Computer
Science and Engineering, Beihang University,
China. She is currently working on the fault
tolerance of large-scale parallel applications. Her
research interests include high performance
computing, checkpointing, distributed and parallel

computing.

Yi Liu is a professor in School of Computer
Science and Engineering, and Director of the
Sino-German Joint Software Institute (JSI) at
Beihang University, China. In 2000, he completed
PhD in Department of Computer Science of Xi’an
Jiaotong University, China. His research interests

i

include computer architecture, HPC and new

generation of network technology.

Guozhen Zhang received his PhD from the School
of Computer Science and Engineering, Beihang
University, China. He is currently working on
program debugging and fault tolerance of large-
scale parallel applications. His research interests
include HPC, computer architecture, distributed
and parallel computing.

Yulin Gao received his master degree from the
School of Computer Science and Engineering,
Beihang University, China. His research interests
include HPC, fault tolerance.

Depei Qian is a professor at the School of
Computer Science and Engineering, Beihang
University, China. He received his master degree
from University of North Texas, USA in 1984. He
is an academician of Chinese Academy of
Sciences and a fellow of China Computer
His interests include

Federation. research

innovative technologies in distributed computing, high performance

computing, and computer architecture.

	1 Introduction
	2 Background
	2.1 Resilience problem of HPC systems
	2.2 Malfunctions of HPC systems

	3 Classification of resilience approaches
	4 Checkpointing
	4.1 System-level checkpointing
	4.2 User-level checkpointing
	4.3 Application-level checkpointing
	4.4 Heterogeneous checkpointing
	4.5 Multi-level checkpointing

	5 Replication
	6 Soft error resilience
	6.1 Control flow error
	6.2 Silent data corruption

	7 Algorithm-based fault tolerance
	7.1 ABFT for linear algebra
	7.2 ABFT for fail-stop errors
	7.3 ABFT on heterogeneous architecture

	8 Fault detection and prediction
	8.1 Heartbeat-based fault detection
	8.2 Statistics-based fault detection and prediction
	8.3 ML-based fault detection and prediction
	8.4 MPI-based fault detection
	8.5 Correlation-based fault prediction

	9 Challenges and conclusion
	9.1 Challenges
	9.2 Conclusion

	References

