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Abstract    The minimum independent  dominance set  (MIDS)
problem  is  an  important  version  of  the  dominating  set  with
some other applications. In this work, we present an improved
master-apprentice evolutionary algorithm for solving the MIDS
problem  based  on  a  path-breaking  strategy  called  MAE-PB.
The  proposed  MAE-PB  algorithm  combines  a  construction
function  for  the  initial  solution  generation  and  candidate
solution  restarting.  It  is  a  multiple  neighborhood-based  local
search algorithm that improves the quality of the solution using
a  path-breaking  strategy  for  solution  recombination  based  on
master and apprentice solutions and a perturbation strategy for
disturbing the solution when the algorithm cannot improve the
solution quality within a certain number of steps. We show the
competitiveness  of  the  MAE-PB  algorithm  by  presenting  the
computational  results  on  classical  benchmarks  from  the
literature  and  a  suite  of  massive  graphs  from  real-world
applications.  The  results  show  that  the  MAE-PB  algorithm
achieves  high  performance.  In  particular,  for  the  classical
benchmarks,  the  MAE-PB  algorithm  obtains  the  best-known
results for seven instances, whereas for several massive graphs,
it  improves  the  best-known  results  for  62  instances.  We
investigate  the  proposed  key  ingredients  to  determine  their
impact on the performance of the proposed algorithm.

Keywords    evolutionary  algorithm, combinatorial  optimi-
zation, minimum  independent  dominating  set, local  search,
master apprentice, path breaking

 1    Introduction
G = (V,E)
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Given an undirected graph , a dominating set (DS) is
a subset  of  such that each vertex not in  is adjacent to at
least one vertex of  and an independent set (IS) is a subset 
of ,  where  any  two  vertices  in  are  not  adjacent.  An
independent  dominating  set  (IDS)  refers  to  a  subset  of ,
which  is  both  an  IS  and  a  DS.  The  purpose  of  the  minimum
independent  dominating  set  (MIDS)  problem  is  to  find  an
independent dominating set with the minimum size in a given

graph.
The models of IDs and DSs have been widely used in many

real-world  fields.  In  the  following,  we  briefly  introduce
several applications related to these problems. In terms of DS
problems,  they  have  been  applied  in  various  fields,  such  as
wireless  communication  [1],  metro  networks  [2],  gateway
placement [3], and biological networks [4]. The DS model has
been  applied  to  extract  proteins  that  control  protein-protein
interaction  networks  and  to  reveal  the  correlation  between
structural  analysis  and  biological  functions  [5].  The  IS
problem  has  many  important  applications,  including  code
theory,  economics,  and  information  retrieval  [6,7].  Several
methods  of  graph  theory  can  be  used  to  express  the  coding
problem, one of which is to find the maximum IS [8].

Combining the respective properties of the independent and
dominating  sets,  the  MIDS problem has  been  widely  used  in
different  real-world  domains.  For  example,  wireless  sensor
and actor networks (WSANs) usually need to provide services
in  each  part  of  the  deployment  area  especially  coverage
services  which  are  important  goals  in  many  WSANs
applications.  High-quality  coverage  should  minimize  the
overlap  between  the  action  ranges  of  actors  and  include  all
sensors  deployed  in  the  monitoring  area.  To  achieve  good
coverage,  researchers  usually  establish  a  clustered  WSANs
architecture  where  each  cluster  head  takes  certain  actions
based on the data received from the sensors in the cluster [9].
To  achieve  good  distribution  of  actors  in  WSANs  (for  full
coverage,)  researchers  usually  model  this  problem  into  an
independent  dominating  set  and  place  the  actors  next  to  the
location of the nodes in the network [10]. Because the price of
the  actors  is  often  very  expensive,  our  goal  is  to  find  the
minimum  number  of  actors  in  the  network  to  achieve  full
coverage, that is, the MIDS problem. In addition to the above
introduction  of  applications  of  the  MIDS  problem,  many
studies  have  been  conducted  on  wireless  network  clustering
algorithms [11,12], which shows that the MIDS model can be
used  for  the  initial  clustering  scheme  of  wireless  networks
[13–15].

In  the  following,  we  will  introduce  the  related  works  of
MIDS and propose our main contributions for solving MIDS.
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 1.1    Related works

ε > 0
|V |1−ε

|V |

O(1.3575|V |)

O(1.3803|V |) O(1.5369|V |)

O(1.3351|V |)

It is well-known that the MIDS problem has been proven to be
an NP-hard problem [16]. This means that there is no constant

,  for  which  the  MIDS  problem  can  be  approximated
within a factor of  polynomial time unless P = NP, where

 is  the number of  vertices.  Owing to the wide applications
of  the  MIDS  problem,  many  researchers  have  devoted
themselves to designing MIDS algorithms that can mainly be
divided  into  two  types:  exact  algorithms  and  heuristic
algorithms. In the past decades, there have been several exact
algorithms  for  solving  the  MIDS  problem.  Gaspers  and
Liedloff  designed a branch-and-reduce algorithm to solve the
MIDS  problem,  which  can  obtain  the  result  of 
running  time  [17].  To  solve  the  MIDS  problem  in  sparse
graphs,  Liu  and  Song  proposed  exact  algorithms  with  a  time
complexity  of  and  [18].  Bourgeois
et  al.  introduced a  fast  exact  algorithm for  solving the MIDS
problem with a running time of  and a polynomial
space [19]. Because of their NP-hard characteristics, although
exact  algorithms  can  guarantee  the  optimality  of  their
solutions, they may not be able to solve large-scale instances.

k

k

To  handle  such  large-scale  instances,  researchers  have
considered  using  heuristic  algorithms  to  solve  the  MIDS
problem. Although heuristic  algorithms are  not  guaranteed to
obtain  the  optimal  solution,  they  can  obtain  a  good  solution
within an acceptable time [20–25]. Normally, the effectiveness
of heuristic algorithms depends on the properties of algorithms
and  the  basic  structure  of  problems  to  adapt  to  the
corresponding specific implementations, which can search for
promising  search  spaces  and  avoid  falling  into  local  optima.
Recently,  many  heuristic  algorithms  for  solving  the  MIDS
problem have  been  proposed.  For  example,  a  greedy  random
adaptive search process based on a new heuristic path cost and
tabu  mechanism  called  GRASP+PC  has  been  proposed  to
solve  the  MIDS  problem  [26].  The  proposed  GRASP+PC
algorithm  uses  a  new  vertex  attribute  to  define  the  scoring
function,  and  during  the  search  process,  the  algorithm
exchanges  a  pair  of  vertices  to  further  improve  the  solution
quality according to the new scoring function. A tabu search-
based memetic algorithm called MEMETIC was designed for
the  MIDS  problem  based  on  two  ideas:  the  forgetting-based
vertex  weighting  strategy  and  the  repairing-based  crossover
strategy  [27].  Specifically,  the  former  idea  exploited  the
possible  spaces  by  making  use  of  the  current  information  of
local search, while the latter idea not only inherited the results
of  parent  solutions  but  also  made  up  the  infeasible  solution.
Haraguchi  developed  a  metaheuristic  framework  that
iteratively  repeated  the  local  search  and  the  plateau  search,
where  the  local  search  used -swap  as  the  neighborhood
operation  and  the  plateau  search  examined  solutions  of  the
same  size  as  the  current  solution  that  were  obtainable  by
exchanging  a  solution  vertex  and  a  non-solution  vertex  [28].
Haraguchi  proposed  two  algorithms,  ILPS2  and  ILPS3,
according to different  values. Very recently, for solving the
MIDS  problem,  Wang  et  al.  used  two-phase  removal
strategies, including the double-checked removal strategy and
random diversity  removing  strategy,  resulting  in  a  two-phase
removing algorithm called drMIDS [29]. The results show that

drMIDS performs better than other MIDS heuristic algorithms
on most classical benchmarks.

 1.2    Our contributions
In  this  work,  inspired  by  the  idea  of  the  master-apprentice
evolutionary (MAE) algorithm proposed in [30], we design an
improved  algorithm  for  solving  the  MIDS  problem.  The
traditional  population-based  evolutionary  algorithm  will
always maintain a large number of populations, which leads to
high  resource  consumption.  Therefore,  to  avoid  wasting
computing resources,  the MAE algorithm has been proposed.
It  utilizes  an  evolutionary  mechanism  based  on  two
individuals,  making the  exploration space of  solutions  in  this
algorithm more diversified because it updates two individuals
simultaneously.

Combining a master-apprentice evolutionary algorithm with
the path-breaking strategy, a new algorithm called MAE-PB is
proposed  for  solving  the  MIDS  problem.  The  main
contributions of this work can be summarized as follows:

●  First,  the  proposed  MAE-PB  algorithm  is  the  first
adaptation  of  the  general  master-apprentice
evolutionary  algorithm  tailored  to  the  MIDS  problem.
The  algorithm  integrates  a  set  of  original  features,
including  a  construction  function  used  to  initialize  and
restart  the  master  and  apprentice  solutions,  and  a
multiple neighborhood-based local search function used
to improve the master and apprentice solutions.

●  Second,  of  particular  interest  is  the  ability  of  the
proposed  MAE-PB  to  explore  different  search  spaces
by using a perturbation method during the local  search
process and using path-breaking based on the definition
of solution similarity during the solution recombination
process.  By  allowing  the  search  to  oscillate  as  many
areas  as  the  algorithm  can,  the  proposed  MAE-PB
promotes  exploration  of  large  search  spaces  based  on
master  and  apprentice  solutions  and  helps  to  identify
high-quality solutions.

●  Third,  we  show  the  competitiveness  of  the  MAE-PB
algorithm  by  presenting  computational  results  on
classical  benchmarks  from  the  literature  and  several
massive  graphs  from  real-world  applications.  The
experimental  results  demonstrate  the  high
competitiveness of MAE-PB compared to the five state-
of-the-art algorithms. In particular, MAE-PB updates 69
best-known results.

The reminder of the paper is organized as follows. Section 2
presents  some  basic  definitions  and  a  review  of  the  master-
apprentice  evolutionary  algorithm.  In  Section  3,  we  describe
the  proposed  algorithm  and  its  ingredients.  In  Section  4,  we
present  computational  studies  and  comparisons  between  the
proposed  algorithm  and  state-of-the-art  algorithms.  Finally,
we  draw  conclusions  and  provide  perspectives  for  future
studies.

 2    Background
 2.1    Basic definitions and notations

G = (V,E)For  an  undirected  graph ,  a  vertex  set  is
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V = {v1,v2, . . . ,vn} E = {e1,e2, . . . ,em}
e = (u,v) u v
e v v

N(v) = {u ∈ V |(v,u) ∈ E}
v N[v] = N(v)∪{v}

dist(u,v) u v
u v

v Ni(v) = {u|dist(u,v) = i} i
Ni[v] = Ni(v)∪{v} Nk(v) =∪k

i=1 Ni(v) Nk[v] = Nk(v)∪{v} N(v) = N1(v)
N[v] = N1[v] S ⊆ V N[S ] =

∪
v∈S N[v]

 and an edge set . For each
edge , the vertices  and  are called the endpoints of
edge .  For  vertex ,  the  neighbors  of  is  denoted  as

.  Further,  we  define  the  close
neighborhood  of  vertex  as .  We  use

 to  denote  the  distance  between  and  that  is  the
number of edges from the shortest path of  to . For a vertex

,  is  defined  as  its th  level
neighborhood,  and .  We  define 

 and .  Obviously, 
and . For a vertex set , .

G = (V,E)
D ⊆ V G D

D
I ⊆ V ∀v,u ∈ I
(v,u) < E

S ⊆ V
S

v ∈ V v
S v ∈ N[S ]

Given a graph , a dominating set (DS) is a subset
of  such  that  each  vertex  in  belongs  to  or  is
adjacent to a vertex in . An independent set (IS) is a subset

 such  that  no  two  vertices  are  adjacent,  i.e., ,
.  The  minimum independent  dominating  set  (MIDS)

problem requires  a  subset  of  the  minimum cardinality
such  that  is  both  a  dominating  set  and  an  independent  set.
For  a  vertex ,  the  vertex  is  dominated  by  a  candidate
solution  if , and otherwise is non-dominated.

 2.2    Review for master-apprentice evolutionary algorithm

k

The  idea  of  the  MAE  algorithm  originated  from  the  social
activities  that  apprentices  learn  skills  from  their  masters.
During one round, two apprentices evolve for a given number
of generations. When the generation cycle ends, they become
masters  and  one  of  them  will  replace  the  apprentice  to
continue  the  evolution,  in  order  to  preserve  the  good
information  from  the  previous  generation.  Ding  et  al.  first
proposed  the  MAE  algorithm  using  only  two  individuals  to
solve  the  flexible  job  shop  scheduling  problem  [30].  The
inspiration  of  the  MAE  algorithm  comes  from  HEAD  [31],
which  is  used  to  solve  the -coloring  problem.  The  MAE
algorithm maintains  diversity  by replacing the  idea  of  one  of
the  two  individuals  with  random  feasible  solutions  when  the
two individuals are close. Recently, many algorithms based on
the MAS framework have been proposed. For example, Peng
et al. designed a path-relinking algorithm framework based on
an  MAE  framework.  In  addition,  the  algorithm  used  a
solution-based  tabu  search  and  distance  control  relinking
operator  to  solve  the  satellite  broadcast  scheduling  problem
[32].  For  the  production  scheduling  problem  of  assembly
manufacturing  systems  with  uncertain  processing  time  and
random  machine  failures,  an  improved  MAE  algorithm  was
proposed  [33].  In  the  proposed  algorithm,  the  extended  sub-
component  adjacency  matrix  was  used  to  deal  with  the
sequence constraints of the operations. Owing to the similarity
between  the  flow  shop  scheduling  problem  and  the  job  shop
scheduling  problem,  Sun  et  al.  used  the  MAE  algorithm  to
deal  with  the  large-scale  flow  shop  scheduling  problem  with
uncertain  time  [34].  To  solve  the  minimum  weight  vertex
cover  problem,  a  mixed  tabu  search  evolutionary  algorithm
MAE-HTS was proposed, where the proposed algorithm based
on  two  individuals  was  proposed  to  enhance  the  diversity  of
solutions [35].

 2.3    Review for score strategy of MIDS
In  this  section,  we  briefly  introduce  the  scoring  strategy  for

v ∈ V pc[v]

the  MIDS problem.  During  the  search  process,  how to  select
candidate vertices is very important during the search process.
The scoring function is recently proposed by Wang et al. [26].
Each vertex  has a property: path cost, denoted as .
It works as follows:

pc[v] = 1 ∀v ∈ V1) At the beginning,  for ;

pc[v] = pc[v]+1 v
2) At  the  end  of  each  iteration  of  local  search,

 for each non-dominated vertex .

sc

sc

Based on the above property of path cost, we introduce the
path cost based scoring function denoted as  to decide how
to  select  candidate  vertices  for  addition  or  deletion  in  each
step  of  local  search.  The  scoring  function  is  defined  as
follows.
 

sc (vi) =


∑

u∈N[vi]∧inde[u]=0 pc(u), ∀vi < S , inde [vi] = 0,
0, ∀vi < S , inde [vi] , 0,
−∑u∈N[vi]∧inde[u]=1 pc(u), ∀vi ∈ S .

inde[u]
u

S

sc(vi) vi < S sc(vi)
u ∈ N [vi] inde[u] = 0

vi S vi ∈ S sc(vi)
u ∈ N[vi] inde[u] = 1

vi S

In the above formula:  is used to denote the number
of  the  close  neighborhood  of  a  vertex  dominated  by  the
candidate  solution .  We  can  see  the  benefits  of  changing
vertex  state  intuitively  through  the  positive  and  negative
values  of  the  function .  Assuming  that ,  is
non-negative, and we can see that  with  is
a  set  of  non-dominated  vertex  sets  that  can  be  dominated  by
adding  to .  Similarly,  if ,  is  negative  since

 with  is  a  set  of  dominated  vertices  that
can be non-dominated by removing  from .

 3    A novel master-apprentice
evolutionary algorithm for MIDS
In  this  section,  we  present  a  novel  master-apprentice
evolutionary  algorithm  called  MAE-PB  based  on  the  general
master-apprentice  evolutionary  framework  [30].  The  primary
innovative  ingredients  of  the  proposed  MAE-PB  algorithm
include the modified framework to be suitable for solving the
MIDS  problem,  a  path-breaking  strategy  based  on  the
similarity  of  solutions  to  control  the  balance  between  search
intensification  and  diversification,  and  a  fast  local  search  to
further improve the quality of the solution.

 3.1    General scheme
The proposed MAE-PB algorithm (see the flowchart in Fig. 1)
consists  of  five  main  components:  master-apprentice
initialization,  path-breaking distribution,  local  search,  master-
apprentice  updating,  and  apprentice  re-initialization.  The
pseudocode of the MAE-PB is shown in Algorithm 1.

S 1 S 2
Construct

S 1
S 2

|S 2| |S 1|
|S 1| −1

S ∗

S ∗p
S 1 S 2 S 2

S 2 S 1

Initially, the algorithm initials two individuals  and  by
calling  the  function  (line  1),  which  will  be
introduced  in  Section  3.2.  Specifically,  the  algorithm  first
constructs  a  feasible  solution ,  which  is  an  IDS.  Then,  the
algorithm attempts to generate an initial solution  by finding
a feasible solution in which  is smaller than ; otherwise,
an  infeasible  solution  whose  size  is .  Then,  the
algorithm begins  with  the  global  optimal  solution  and  the
optimal  solution  in  the  previous  round  by  using  a  better
feasible solution between  and  (lines 2 and 3). If  is a
feasible  solution,  that  is,  both  and  are  independent
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S 2 S 1 S ∗ S p∗

S 2 S ∗ S p∗

S 1 total_step

dominating  sets  and  is  better  than ,  then  and 
should be updated by .  Otherwise,  and  are updated
by . During the following search process,  is used
to record the number of total steps (line 4).

S ∗

S 1 S 2
S ′1 S ′2

PathBreak
S ′1 S ′2

LocalS earch
S ∗

θ S 1
S ∗p S ∗p

S ∗

similarity
S ∗p S ∗

S 1 S 2 S 2
Construct

total_step

After  initialization,  the  algorithm  executes  a  loop  until  the
time limit  is  reached (lines  5–16),  and then the  best-obtained
solution  is  returned  (line  17).  During  the  loop,  the
algorithm combines the respective properties  of  and  to
produce two offspring solutions  and  by performing the

 function,  which  will  be  introduced  in  Section  3.3
(line  6).  For  the  newly  generated  solutions  and ,  the
algorithm  improves  them  through  the  local  search  process

 (which  will  be  mentioned  in  Section  3.4)  (line
7).  After  each  step  of  the  local  search  process,  we  use  to
save the global optimal solution (lines 8–10). After one round
(i.e.,  every  step),  is  reset  to  the  best  solution  in  the
previous  round  (i.e., )  and  is  updated  by  the  best
solution in the current round (i.e., ) (lines 12 and 13). In the
next step, we define a similarity function  to denote
the  ratio  of  the  same  vertices  in  and .  When  the
similarity  of  and  is  very  high,  the  solution  is
reconstructed  by  calling  the  function  (line  15).  At
the end of each step,  is increased by one (line 16).

 3.2    The construction function for MIDS
Construct

S 1 S 2
S 1

Construct

The proposed MAE-PB algorithm uses the  function
to  complete  two  tasks,  including  initializing  two  individuals

 and  (line  1  in  Algorithm  1)  and  reconstructing  an
individual  when the ratio of similarity is very high (line 15
in Algorithm 1). The pseudocode of the  function is
presented in Algorithm 2.
 

 
 

S
Construct S

sc
Construct S S

S
max_size

First,  candidate  solution  is  set  to  an  empty  set  (line  1).
 tries  to  greedily  construct  a  feasible  solution  by

iteratively  adding  a  vertex  with  the  largest  value.  If
 finds a feasible solution , then  will be returned.

Otherwise,  the  algorithm  returns  an  infeasible  solution 
whose size equals -1.

 3.3    The PathBreak strategy for MIDS

PathBreak
In  this  section,  we  use  a  new  path-breaking  strategy  called

 to generate a new sub-solution by reconnecting the
paths  of  the  two  individuals.  The  original  path-breaking
strategy  was  proposed  by  Xu  et  al.  [36]  was  used  as  an
effective local search algorithm to solve the MaxSAT problem
by  improving  the  idea  of  path  relinking.  The  trajectory
structure between the elite solution and the inverse solution is
broken  by  flipping  the  variable,  and  the  search  allows  only
high-quality  solutions  to  be  focused.  The  path-break  strategy
randomizes the construction of the trajectory sequence.  If  the

 

 
Fig. 1    The flowchart of MAE-PB
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PathBreak

search falls in the local optimal solution, a strong mutation of
the random flip variable is performed. If the search needs to be
further  dispersed,  a  weak  mutation  is  performed.  If  the
mutation does not allow the improvement of the local optimal
solution,  the  search  is  restarted.  The  difference  between  our
path-breaking  strategy  and  the  original  one  is  that  our
algorithm  improves  two  different  candidate  solutions  instead
of the current solution and its inverse solution. Second, we flip
the variable by probability, that is, the set of adding or deleting
vertices is not only determined by the trajectory of a solution
to its inverse solution but also by the number of same vertices
in  both  candidate  solutions.  The  detailed  process  of

 is described in Algorithm 3 1).
 

 
 

PathBreak
S s S e

S s
S e S sr S e

S s S er S same
S s S r S

S cr
S same S s

S S sr S cr
S s S = S same

S cr = S sr S
S same S sr

v S cr v S
β S cr S er

S S ∗

v S er

The  proposed  algorithm  inputs  two  solutions,
including  a  starting  solution  and  an  ending  solution .
First, we use three candidate sets to denote parts of the above
solutions. In particular, the vertices that exist in  but not in

 are regarded as ; the vertices that exist in  but do not
exist  in  are recorded as ,  and  is  the same part  in

 and  (line 1). The candidate solution  and the temporary
set  are initialized as empty sets (line 2).  If  the number of

 is larger than half of the number of vertices in , then
the  candidate  solution  is  set  to  and  is  set  to  the
remaining  part  of  (line  3).  Otherwise,  and

 (line 4). This shows that the strategy uses  to store
a  small  part  between  and .  The  strategy  randomly
pops a vertex  from , and then the vertex  is added to 
with probability  until  is empty (lines 5–8). When  is
not  an  empty  set  and  the  size  of  is  smaller  than ,  the
algorithm  adds  a  random  vertex  from  (lines  9–12).

Con f lict
S

Con f lict
e Con f lict

w
Con f lict

w S
S

S ∗

S

Subsequently, the algorithm uses a set  to store edges
whose endpoints both belong to  (line 13). If there exist some
edges in , the algorithm randomly picks a conflicting
edge  from  and then among its endpoints it further
selects  a  random  endpoint  (lines  15  and  16).  The
corresponding conflicting set  should be updated (line
17),  and  vertex  is  removed  from  the  candidate  solution 
(line 18). Finally, if  is a feasible solution, which means that
the algorithm obtains a better  solution,  then  is  updated by

.

 3.4    The local search algorithm for MIDS

Local Search

The  purpose  of  the  local  search  is  to  move  the  current
candidate solution to its neighborhood in some corresponding
spaces.  The  proposed  local  search  algorithm  uses  a  tabu
mechanism  to  overcome  the  cycling  problem  [37].  The
pseudocode of  is shown in Algorithm 4.
 

 
 

marker
step tabu_list

marker = 1
S ∗

marker = 0
S step

step ⩾ inner_step inner_step
mark = 1 S ∗

The algorithm first initializes a marker variable , the
number  of  steps ,  and  a  tabu  list  (line  1).  The
equation  means  that  the  following  local  search
procedure  finds  a  better  solution,  which  is  better  than ;
otherwise, . The algorithm applies the local search
procedure to improve the solution  until  the limit  of  is
reached, that is, . In our work,  is
set to 10000. Finally, if , then the best solution  is
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S
returned;  otherwise,  the  algorithm  returns  the  current
candidate solution  (lines 20 and 21).

S ∗ S step
marker

u1
N2(u1)∩S

γ
u2 S

S tabu_list

v1 v1 v2 S

tabu_list pc
step

step%s == 0
s

During the local search procedure, if the algorithm obtains a
better  solution,  is  updated  by ,  is  set  to  1,  and  the
variable  is  marked  as  1.  Otherwise,  the  algorithm
selects the vertex  with the highest score value and inserts it
into the candidate solution (lines 6 and 7). If  is not
empty,  with  probability ,  the  algorithm attempts  to  greedily
remove  a  vertex  from  (lines  9  and  10).  After  removing
one or two vertices from ,  should be cleared (lines
10 and 13).  In  the next  step,  the  algorithm greedily  adds one
vertex (i.e., ) or two vertices (i.e.,  and ) into  (lines 11,
12,  14,  and  15).  After  the  addition  operations,  these  simply
added vertices need to be added to . The  values of
the  corresponding  vertices  and  should  be  updated  (lines
16 and 17). At the end of each step, if , it means
that  no better  candidate  solution is  found after  steps.  Thus,
the algorithm will use two perturbation methods to modify the
current candidate solution (lines 18 and 19).

 3.5    The perturbation framework for MIDS

Perturb
Perturb

inde

In  this  section,  we  propose  a  perturbation  procedure  called
 to disturb the current candidate solution. In our work,

for  a  great  candidate  solution,  the  function  uses  the
same probability to select two different perturbation methods.
Specifically,  the  first  perturbation  method  aims  to  greedily
remove  some  vertices  from  the  candidate  solution  and  then
add  back  some  other  vertices  by  using  a  random  addition
technique based on restricted candidate lists [38]. The second
perturbation  method  focuses  on  selecting  vertices  dominated
by  the  candidate  solution  and  not  the  candidate  solution.  We
relax  the  limitation  condition  to  add  these  vertices  to  the
candidate  solution  without  considering  the  independent
constraint of the MIDS problem. During the addition process,
we prefer to select one of these vertices that can dominate as
many non-dominated vertices as possible. If there exists more
than  one  vertex  satisfying  the  above  condition,  we  choose  a
vertex  with  the  largest  value  to  modify  the  candidate
solution  to  a  certain  extent.  This  means  that  to  make  the
candidate solution still feasible after adding it to the candidate
solution,  we  have  to  remove  all  of  its  neighbors  from  the
candidate  solution.  The  scoring  function  in  the  second
perturbation way is defined as below.
 

sc1(v) =
∑

u∈N[v]∧inde[u]=0

pc(u).

Based  on  the  above  scoring  function,  we  propose  a
perturbation scoring rule.

v
inde[v] , 0 V \S sc1

inde

Perturbation  scoring  rule Selecting  a  vertex  with
 from ,  which  has  the  largest  value,

breaking ties by selecting the one with the largest  value.
v

inde[v] , 0
v

v

inde[v]
sc1

The selected vertex  has already been dominated by other
vertices  in  the  candidate  solution,  that  is, .  If  the
algorithm adds  to  the  candidate  solution,  the  algorithm has
to  remove ’s  neighbor  from  the  candidate  solution  to  make
the solution feasible, that is, the number of removed vertices is

 in total. Thus, when meeting that several vertices have
the  same  best  value,  for  sufficiently  disturbing  the

inde
candidate  solution,  the  algorithm  picks  the  one  among  them
with the highest  value.

Note  that  the  reason  the  algorithm  uses  different
perturbation  ways  is  to  explore  various  parts  of  the  entire
search space as much as possible.

Perturb

Perturb k

k
k

k

V \S
scrcl scmax scmin

v
scrcl v S scmax

scmin scrcl
S ∗ S

The  function  is  displayed  in  Algorithm  5.  The
probability  that  the  algorithm  uses  the  first  perturbation
method  is  50% (lines  1–11).  The  other  half  is  called  the
second  perturbation  method  (lines  12–22).  During  the  first
perturbation,  the  algorithm  sets  the  parameter  to
half  the  size  of  the  candidate  solution.  To  deal  with  massive
graphs, the algorithm limits the value of ; thus, in our work,
the maximum number of  is set to 100, which means that the
algorithm  removes  at  most  vertices  from  the  candidate
solution  (lines  2–5).  The  algorithm  computes  the  maximum
and  minimum  score  values  of  vertices  from ,  and  then

 is  calculated  based  on  and  (lines  6  and  7).
During the addition process, the algorithm adds vertices back
into  the  candidate  solution  (lines  8–11).  In  each  step,  the
algorithm  selects  a  random  vertex  whose  score  value  is
larger than , and the selected vertex  is added to . ,

,  and  need  to  be  updated  accordingly.  If  the
algorithm finds a better solution, then  is updated by , and
the  algorithm  jumps  out  of  the  adding  process.  During  the
second  perturbation  method,  the  algorithm  tries  to  select  a
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sc1
S

N(v1)∩S

|S | current_size
S

vertex not in the candidate solution with the largest  value
to  be  added  into  (lines  14  and  15).  To  maintain  solution
feasibility,  the  algorithm removes  vertices  in  (lines
16–18).  To  increase  the  size  of  the  candidate  solution,  the
algorithm greedily adds a vertex to the candidate solution until

 is not smaller than  (lines 19–22). At last, the
perturbation solution  is returned (line 23).

 4    Experiments
In  this  section,  we evaluate  the  performance  of  the  MAE-PB
algorithm  on  a  large  number  of  benchmark  instances
commonly used in the literature and compare it with state-of-
the-art  results  in  the  literature.  We  first  introduce  these
benchmarks  and  experimental  preliminaries.  Then,  we  will
display our parameter setting as well as the detailed results of
our  algorithm  and  all  competitors.  Finally,  we  present
experiments  to  obtain  insights  into  the  influences  of  the
components of the MAE-PB algorithm: a perturbation method
and path-breaking.

 4.1    The benchmarks
The  benchmark  instances  of  the  MIDS  tested  in  our
experiments  are  widely  used  in  the  literature,  and  can  be
divided  into  two  parts,  including  two  classical  benchmarks
(i.e.,  DIMACS  and  BHOSLIB)  and  a  suite  of  real-world
massive graphs.

● DIMACS benchmark [39]: DIMACS is most commonly
used  for  the  comparison  and  evaluation  of  graph
algorithms  [40,41].  More  specifically,  the  size  of  the
DIMACS  instances  ranges  from  less  than  150  vertices
and  300  edges  to  more  than  4,000  vertices  and
7,900,000  edges.  To  test  the  effectiveness  of  the
algorithm,  we  tested  it  on  the  complement  graphs  of
some instances, including the sets of c-fat and p-hat. In
total, 61 instances were selected.

● BHOSLIB benchmark [42]: The BHOSLIB benchmark
is  randomly  generated  based  on  the  RB  model  and
contains  a  total  of  41  instances,  of  which  a  large
instance  named  frb100-40  has  4,000  vertices  and
572,774 edges. Owing to the hardness of BHOSLIB, it
has been widely used as a reference benchmark for local
search algorithms in recent literature [43,44].

●  Real-world  massive  graphs  [45]:  In  this  study,  we
consider 187 real-world massive graphs from a network
data repository online. They have recently been used in
the  performance  of  heuristic  algorithms  for  some  NP-
hard problems [21,46,47]. All these massive real-world
graphs have a massive number of  vertices,  but  they all

belong  to  sparse  graphs.  We  ignore  some  massive
graphs with fewer than 100,000 vertices and fewer than
1,000,000  edges.  Thus,  in  this  study,  65  instances  are
considered.

 4.2    Experimental preliminaries

k

min

avg

To  evaluate  the  performance  of  the  proposed  MAE-PB
algorithm, we compared it with five competitors: GRASP+PC
[26],  MEMETIC  [27],  drMIDS  [30],  ILPS2  [28],  and  ILPS3
[28], where ILPS2 and ILPS3 have different  values. All the
algorithms are implemented in C++ and compiled with g++ by
the  -O3  option.  For  each  instance,  all  algorithms
independently performed 30 runs with different random seeds
from  1  to  30.  The  time  limit  of  all  algorithms  for  DIMACS
and  BHOSLIB  was  set  to  200  s,  while  the  time  limit  for
massive  graphs  was  set  to  1000  s.  For  each  instance, 
denotes the best  size found (i.e.,  the minimal solution value),
and  denotes  the  average size  obtained over  30 runs.  The
bold values in the table indicate the best solution among all the
algorithms.  If  an  algorithm  fails  to  provide  a  solution  within
the given time limit, it is indicated by “N/A”.

 4.3    Parameter settings of the MAE-PB algorithm
In  this  section,  we  present  the  parameter  adjustment
experiment of the MAE-PB algorithm. Because the parameters
in the experiment will affect the efficiency of the local search,
the  adjustment  of  the  parameters  is  an  indispensable  and
important step.

θ α β γ s π

θ θ
θ

α
α

S 1 S 2
S 2

β
β γ

γ
γ

s
s s

π
π

In this study, we used the automatic configuration tool irace
[48]  to  obtain  well-tuned  parameters  for  the  proposed  MAE-
PB algorithm, including , , , , ,  and . The training set
was  restricted  to  include  all  instances  from  the  three
benchmarks.  The  tuning  process  is  given  a  limit  of  10,000
runs  with  a  time  limit  of  1,000  s  per  run.  The  results  of  the
tuning  processes  are  shown  in Table 1.  In  detail,  for  the
parameter  involved in Algorithm 1, we assign parameter  to
5. Specifically, after each round (i.e.,  every  step),  we make
some  adjustments  to  the  solutions.  For  the  parameter 
involved in Algorithm 1, we assign parameter  to 0.7, which
means that if the similarity of the candidate solution  and 
is very large, then  will be reconstructed. We set parameter

 to 0.5, in Algorithm 3, which means that the algorithm adds
vertices  with  a  probability  of .  Also,  for  the  parameter 
involved in Algorithm 4, we set parameter  to 0.4. With the
probability of ,  the vertices are removed from the candidate
solution. For parameter  also involved in Algorithm 4, we set

 to 500. After every  step, we make some adjustments to the
solutions. For the parameter  involved in Algorithm 5, we set
the  parameter  to  0.8,  which  is  the  range  of  the  restricted

   
Table 1    Parameter settings of the MAE-PB algorithm

Parameter Ranges Description Final values
θ {2, 5, 8 } The number of each round 5
α {0.4, 0.5, 0.6, 0.7, 0.8} The similarity of candidate solutions 0.7
β {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 50%
γ {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 40%
s {200, 500, 800} The number of each round 500
π {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} The range of restricted candidate list 0.8
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candidate list.
For  all  competitors,  we  set  the  same  parameters  as  those

described  in  the  corresponding  literature  and  optimized  these
parameters for the newly added massive graphs using the irace
tool [48].

 4.4    Results on DIMACS benchmark
In  comparison, Tables 2 and 3 report  that  our  MAE-PB
algorithm finds better solutions than GRASP+PC, MEMETIC,
drMIDS,  ILSP2,  and  ILSP3  on  11,  6,  1,  7,  and  7  instances,
respectively.  In  the  case  of  finding  the  same minimum value
between  our  algorithm  and  the  comparison  algorithms,  the
MAE-PB algorithm finds  smaller  average values  on 15,  6,  3,
14,  and 13 instances than GRASP+PC, MEMETIC, drMIDS,
ILSP2,  and  ILSP3,  respectively.  The  proposed  MAE-PB
algorithm fails to find a better average solution value than the
drMIDS algorithm on only one instance, C1000.9, and the gap
between these two algorithms is small.

 4.5    Results on BHOSLIB benchmark
Table 4 shows  the  experimental  results  of  our  algorithm  and
its  competitors  on  the  BHOSLIB  benchmark.  It  is  obvious
from  the  results  in  the  table  that  our  algorithm  yields  better
results  than  the  other  algorithms  for  most  instances.  In
particular,  we  firstly  compare  the  MAE-PB  algorithm  with
GRASP+PC,  MEMETIC  and  drMIDS.  The  MAE-PB
algorithm finds better solutions than GRASP+PC, MEMETIC,
and  drMIDS  on  32,  28,  and  8  instances,  respectively.  The
average values obtained by our algorithm are better than those
of  GRASP+PC,  MEMETIC,  and  drMIDS  for  8,  11,  and  20

instances,  respectively.  In  addition,  the  MAE-PB  algorithm
finds  better  solutions  than  ILSP2  and  ILSP3  on  18  and  22
instances,  respectively,  while  the  average  values  obtained  by
our algorithm are better than those of ILSP2 and ILSP3 for 22
and 20 instances, respectively. However, in instance frb59-26-
2, our algorithm fails to obtain the best solution value.

 4.6    Results on massive graph
Comparing  the  MAE-PB  algorithm  and  the  competitor
algorithm  on  a  massive  graph, Tables 5 and 6 report  the
minimum and average values of the experimental results. The
MAE-PB  algorithm  finds  the  best  solution  for  60  instances
with  only  three  exceptions,  which  intuitively  verifies  its
performance.

If we have a tie between the proposed MAE-PB and any of
the other five competitors concerning solution quality, that is,
the  same  minimal  and  average  solution  values,  we  compare
these  algorithms  in  terms  of  computation  times  for  all  the
benchmarks. As shown in Fig. 2, MAE-PB can obtain the best
solution in less time than the other five algorithms.

 4.7    Critical difference analysis
This  section  evaluates  the  statistical  difference  between  the
proposed MAE-PB algorithm and the five competitors on the
selected three benchmarks in the form of a critical  difference
graph.  First,  we  use  the  Friedman  test  [49]  to  formulate  the
null  hypothesis  that  the  proposed  MAE-PB algorithm and  its
five  competitors  are  equivalent  in  terms of  performance.  The
above results are displayed in Fig. 3 using a critical difference
diagram [50]. The top line in each sub-graph is the axis where

   
Table 2    Experimental Results on the DIMACS benchmark I

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
brock200_2 4 4 4 4 4 4 4 4 4 4 4 4
brock200_4 6 6.3 6 6 6 6 6 6 6 6 6 6
brock400_2 10 10 9 9.3 9 9 10 10 9 10 9 9
brock400_4 9 9.3 9 9 9 9 9 9.9 9 10 9 9
brock800_2 8 8.2 8 8.1 8 8 8 8.7 8 8.9 8 8
brock800_4 8 8.2 8 8 8 8 8 8.5 8 8.8 8 8
C1000.9 26 26.9 26 27.5 25 25.5 27 28 27 27.8 25 26
C125.9 15 15 14 14 14 14 14 14 14 14 14 14
C2000.5 7 7 7 7 7 7 7 7 7 7 7 7
C2000.9 33 33.2 33 33.5 32 32 32 33.8 32 34 31 31.7
C250.9 17 17 17 17 17 17 17 17 17 17 17 17
C4000.5 8 8 8 8 8 8 8 8 8 8 8 8
C500.9 23 23 22 22 21 21 22 22.2 22 22.3 21 21
c-fat200-1.clq 13 13 13 13 13 13 13 13 13 13 13 13
c-fat200-2.clq 6 6 6 6 6 6 6 6 6 6 6 6
c-fat200-5.clq 3 3 3 3 3 3 3 3 3 3 3 3
c-fat500-1.clq 27 27 27 27 27 27 27 27 27 27 27 27
c-fat500-2.clq 14 14 14 14 14 14 14 14 14 14 14 14
c-fat500-5.clq 6 6 6 6 6 6 6 6 6 6 6 6
DSJC1000.5 6 6 6 6 6 6 6 6 6 6 6 6
DSJC500.5 5 5 5 5 5 5 5 5 5 5 5 5
gen200_p0.9_44 16 16.1 16 16 16 16 16 16 16 16 16 16
gen200_p0.9_55 16 16 16 16 16 16 16 16 16 16 16 16
gen400_p0.9_55 21 21.2 20 20 20 20 20 20.1 20 20.3 20 20
gen400_p0.9_65 21 21.1 20 20.1 20 20 20 20.8 20 20.8 20 20
gen400_p0.9_75 20 20.4 20 20.3 20 20 20 20.8 20 20.6 20 20
hamming10-4 12 12.3 12 12 12 12 12 12 12 12 12 12
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Table 3    Experimental results on the DIMACS benchmark II

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
hamming6-2 12 12.8 12 12 12 12 12 12 12 12 12 12
hamming6-4 2 2 2 2 2 2 2 2 2 2 2 2
hamming8-2 32 40.1 36 43.1 32 32 36 36 36 36 32 32
hamming8-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson16-2-4 8 8 8 8 8 8 8 8 8 8 8 8
johnson32-2-4 16 16 16 16 16 16 16 16 16 16 16 16
johnson8-2-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson8-4-4 7 7 7 7 7 7 7 7 7 7 7 7
keller4 5 5 5 5 5 5 5 5 5 5 5 5
keller5 9 9.4 9 9 9 9 9 9 9 9 9 9
keller6 17 17.6 17 17.9 15 17.2 17 18 18 18.3 15 15.1
MANN_a27 27 27 27 27 27 27 27 27 27 27 27 27
MANN_a45 45 45 45 45 45 45 45 45 45 45 45 45
MANN_a81 81 81 81 81 81 81 81 81 81 81 81 81
MANN_a9 9 9 9 9 9 9 9 9 9 9 9 9
p_hat1500-1.clq 13 13.4 13 13.9 12 12.7 13 14.1 13 14.3 12 12.4
p_hat1500-2.clq 7 8 7 7.9 7 7.7 7 7.7 7 7.8 7 7.2
p_hat1500-3.clq 3 3 3 3 3 3 3 3.1 3 3.3 3 3
p_hat300-1.clq 9 9 9 9 9 9 9 9 9 9 9 9
p_hat300-2.clq 5 5.1 5 5 5 5 5 5 5 5 5 5
p_hat300-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
p_hat700-1.clq 11 11 11 11 11 11 11 11 11 11.2 11 11
p_hat700-2.clq 6 6.5 6 6.3 6 6 6 6.6 6 6.4 6 6
p_hat700-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
san1000 4 4 4 4 4 4 4 4.7 4 4.2 4 4
san200_0.7_1 7 7 6 6 6 6 6 6.1 6 6.8 6 6
san200_0.7_2 6 6 6 6 6 6 6 6 6 6 6 6
san200_0.9_1 16 16 15 15 15 15 15 15 15 15 15 15
san200_0.9_2 16 16.4 16 16 16 16 16 16 16 16 16 16
san200_0.9_3 15 15.1 15 15 15 15 15 15.3 15 15.1 15 15
san400_0.5_1 4 4 4 4 4 4 4 4 4 4 4 4
san400_0.7_1 7 7.1 7 7 7 7 7 7.9 8 8 7 7
san400_0.7_2 7 7 7 7 7 7 7 7.6 7 7.9 7 7
san400_0.7_3 8 8 7 7 7 7 7 7.8 8 8 7 7
 

   
Table 4    Experimental results on the BHOSLIB benchmark

Instance    
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
frb30-15-1 11 11 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-2 11 11.4 11 11.1 11 11 11 11.7 11 11.9 11 11
frb30-15-3 12 12 11 11.2 11 11 11 11.9 11 11.9 11 11
frb30-15-4 12 12 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-5 11 11.2 11 11.3 11 11 11 11.7 11 11.9 11 11
frb35-17-1 14 14 13 13.6 13 13 13 13.9 13 14 13 13
frb35-17-2 13 13.7 13 13.9 13 13 13 13.8 13 14 13 13
frb35-17-3 13 13.3 13 13.6 13 13 13 13.8 13 14 13 13
frb35-17-4 14 14 13 13.9 13 13.3 13 13.8 13 13.9 13 13.3
frb35-17-5 14 14 14 14 13 13.6 14 14 14 14.2 13 13.4
frb40-19-1 16 16 16 16 15 15.4 16 16.1 16 16.6 15 15
frb40-19-2 16 16 15 15.9 15 15 15 15.7 16 16.1 15 15
frb40-19-3 15 15.6 15 15.9 15 15 15 15.8 15 16.1 15 15
frb40-19-4 15 15.4 15 15.9 15 15 15 15.7 15 16 15 15
frb40-19-5 15 15.7 15 15.9 15 15.2 15 15.8 15 16 15 15
frb45-21-1 18 18 18 18.9 17 17.8 18 18.2 18 18.7 17 17.5
frb45-21-2 18 18 18 18.7 17 17.9 17 18 17 18.6 17 17.6
frb45-21-3 18 18.1 18 18.4 17 17.4 17 17.8 17 18.4 17 17
frb45-21-4 18 18 18 18.6 17 17.5 18 18.1 18 18.6 17 17.1
frb45-21-5 17 17.9 18 18.5 17 17.5 17 18 17 18.3 17 17
frb50-23-1 20 20 20 20.9 19 19.9 19 20.2 20 20.8 19 19.5
frb50-23-2 20 20.2 21 21 19 19.9 20 20.5 20 20.8 19 19.8
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Table 4 (Continued)

Instance    
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
frb50-23-3 20 20.3 20 20.9 19 19.8 20 20.2 20 20.8 19 19.6
frb50-23-4 20 20.5 21 21.4 19 19.9 20 20.8 20 21 19 19.8
frb50-23-5 21 21 21 21.3 20 20 20 20.4 20 20.8 19 19.7
frb53-24-1 22 22.1 22 22.8 21 21.1 20 21.8 21 22.4 20 20.8
frb53-24-2 22 22 22 22.7 21 21.5 21 21.7 21 22.1 20 21
frb53-24-3 21 21.1 21 22.1 20 20.9 21 21.4 21 21.8 20 20.7
frb53-24-4 21 21.2 21 22 20 20.9 21 21.9 21 22.1 20 20.4
frb53-24-5 21 21.6 22 22.5 20 21.1 21 21.7 21 21.9 20 20.9
frb56-25-1 22 22.8 24 24.1 21 22.4 22 23.1 23 23.7 21 22.1
frb56-25-2 23 23.2 24 24.3 22 22.8 22 23.3 23 23.7 22 22.5
frb56-25-3 22 22.9 23 24 22 22.8 22 23.1 22 23.3 22 22
frb56-25-4 23 23.1 24 24.1 22 22.8 22 23.2 23 23.7 21 22.4
frb56-25-5 22 22.4 22 22.8 22 22.3 22 22.8 22 23.3 21 21.9
frb59-26-1 24 24.1 24 25.4 23 23.6 23 24.4 23 24.6 22 23
frb59-26-2 24 24.2 24 25.6 23 23.9 22 24 23 24.6 23 23.2
frb59-26-3 24 24.7 25 25.9 23 23.7 24 24.7 23 25 23 23.8
frb59-26-4 24 24.4 24 25.6 23 23.9 24 24.4 24 24.8 23 23.6
frb59-26-5 25 25.4 25 25.8 24 24.2 23 24.3 24 24.7 23 23.8
frb100-40 44 44.8 48 49.5 43 44.4 43 44.5 43 45.3 42 43.4

 

   
Table 5    Experimental results on massive graphs I

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
bn-***0025865
***1-bg 1198908 1199212.7 1205376 1206233.1 1197891 1200437.9 1197011 1197168.4 1197398 1197555.9 1194499 1196200

bn-***0025865
***2-bg 1561094 1561624.3 1575465 1577527.3 1563155 1570989.5 1559833 1559866.6 1559492 1559696.1 1556455 1558023.6

ca-coauthors-dblp 49186 49250.3 52386 52494.1 44363 44989.5 44253 44288.9 44750 44772.2 43035 44088.8
ca-dblp-2012 94758 94938.6 110109 110325.1 87656 87812.8 87598 87689.9 110057 110196.5 87508 87698.1
ca-hollywood-2009 140801 141065.7 155263 155549.6 143519 146696.6 152861 153152.9 178556 178981.5 128137 128290.1
channel***-b050 486263 486449.8 491998 492225.5 489722 490215.8 420666 420853.7 566799 567380.7 409978 410258.8
dbpedia-link N/A N/A 8612327 8629696.2 8627747 8637426.5 8908597 8911196.6 N/A N/A 7533823 7535700.8
delaunay_n22 864130 864485.6 868437 868881.7 865422 865856.5 806316 806730.5 1030255 1030610.1 744805 745267.7
delaunay_n23 1728925 1729304.8 1737228 1737950.7 1736327 1737009.7 1613584 1613809.2 2060811 2061390.1 1489753 1490376.1
delaunay_n24 3458413 3459279.8 3475398 3476268 3475650 3476635.9 N/A N/A N/A N/A 2979750 2980281.9
friendster 4473674 4493361.4 6848800 6863274.8 6601967 6846328.6 7183568 7191256.2 7243029 7247583 3547353 3548971.8
hugebubbles-00020 7800496 7801942.6 7522388 7523370.2 7523382 7524471.3 6952078 6952078 N/A N/A 6800602 6801761.9
hugetrace-00010 4446308 4447087.9 4285018 4285538.9 4284436 4285910.7 3962433 3963354.7 4687640 4688997.3 3875488 3876764.2
hugetrace-00020 5899134 5900269.8 5686663 5687271.6 5686893 5687917.5 5256729 5257882.7 6218412 6219513.8 5142114 5143085.2
inf-europe_osm 20767515 20768636.8 N/A N/A 20052008 20053573.3 N/A N/A N/A N/A 18314284 18315597.7
inf-germany_osm 4669787 4670887.1 4524573 4525242 4523638 4525116.1 4310573 4311235.7 5053976 5054966.2 4134178 4134983.6
inf-roadNet-CA 740604 740878.9 732830 733158.5 728927 729330.5 695837 696003.7 822287 822601.4 662664 662926.6
inf-roadNet-PA 412501 412731.3 408678 409058.2 401804 402169.8 386994 387294.5 458039 458370.8 369370 369601.5
inf-road-usa 9547166 9548928.8 9449606 9450335.3 9449603 9451604.6 9125541 9126508.7 10765734 10766635.9 8610251 8611245.9
rec-dating 40149 41157.5 51462 52377.3 48632 51806.4 36744 36767 36769 36790.8 32671 33502.1
rec-epinions 320240 368998.1 5663900 564657.2 N/A N/A 595675 612617.7 602861 620295.4 134669 134715.3
rec-libimseti-dir 62046 66435.6 82520 85169.9 79938 85061.2 63429 63495.9 63483 63483 50070 53154.7
rgg_n_2_23_s0 858105 858435.1 867425 867715.9 865936 866444.8 736027 736356.3 954528 954785.4 704494 704696.2
rgg_n_2_24_s0 1656337 1656833.6 1674237 1674731.7 1673505 1674445.7 N/A N/A 1839520 1839520 1357335 1357670
rt-retweet-crawl 470537 475864.1 890477 893937.5 531197 695539.5 971833 972959.2 965905 966947.8 469708 485375.2
sc-ldoor 68659 68718.7 70073 70123.5 67557 68547.1 68862 68962 79892 80020.7 66770 66846
sc-msdoor 22163 22192.2 22801 22840.9 21169 21542.3 21437 21484.2 20912 20939.4 21481 21517.8
sc-pwtk 6030 6046.4 6360 6389.7 4959 5065.2 5099 5126.8 5133 5164.1 4475 4528
sc-rel9 259632 260231.6 4237296 4262802 2110005 4090520.2 5379337 5388189.8 5382628 5392480.1 241046 241947
sc-shipsec1 12563 12594.7 13580 13659.1 10834 11022.9 10083 10120.5 9696 9743.6 10392 10443.8
sc-shipsec5 16791 16816.3 17606 17695.6 14918 15161.4 14178 14297.3 13733 13796.5 14533 14586.8
socfb-A-anon 1669228 1674202.7 2319836 2323819.5 2141665 2278578.5 2483752 2486549.9 2497057 2499903 1337702 1338843.8
socfb-B-anon 1606632 1613011.3 2271052 2276031.7 2056992 2225046.4 2428580 2431129.6 2438709 2441440.2 1248897 1249610.4
socfb-uci-uni N/A N/A N/A N/A 55837483 55860922 57147925 57154643.7 57162057 57167604.5 8879317 8879940.5
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the average ranks of the algorithms are plotted. The lower the
ranks,  the  better  the  algorithm.  If  there  is  no  significant
difference between the MAE-PB algorithm and any of the five

competitors,  and  the  significance  level  is  0.05,  then  a  link  is
established between them. It  can be observed from the figure
that  almost  all  algorithms  perform  well  on  the  DIMACS
benchmark, and the results are relatively close. The quality of
the  solutions  obtained  by  the  MAE-PB  algorithm  under  the
other benchmarks was better than that of the competitors.

 4.8    The effectiveness of the proposed components
In this subsection, to reflect the effectiveness of the proposed
perturbation  and  path-breaking  methods,  we  compare  the
results of the MAE-PB algorithm and the other five algorithms
in  the  following  five  cases  :  (1)  MAE-PB1 does  not  use  any
perturbation  strategy;  (2)  MAE-PB2  only  uses  the  first
perturbation  method  in  our  algorithm;  (3)  MAE-PB3  only
applies  the  second  perturbation  method  in  our  algorithm;  (4)
MAE-PB4 only uses the original  path-breaking strategy [36];
and (5)  MAE-PB5 does not  employ a path-breaking strategy.
The  comparison  results  of  these  algorithms  are  shown  in
Table 7 where  #inst  denotes  the  number  of  instances  in  each
benchmark,  while  #better  and  #worse  denote  the  number  of
instance families or instances where MAE-PB finds better and
worse results, respectively.

   
Table 6    Experimental results on massive graphs II

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
soc-buzznet 16427 41491.8 48972 60200.2 56933 60608.9 2571 2571.7 2573 2575.9 1078 2463.8
soc-delicious 257047 260709.1 375432 377337.6 229828 244509.8 410459 411412.9 400696 401662.7 213040 213148.9
soc-digg 464502 469247.5 592137 595356.4 541850 575911.8 620232 622005.9 628060 629787.3 360827 361056.8
soc-dogster 178127 187041.5 218847 222195.1 212787 220116.4 236456 236952.1 246708 247404.2 147137 147220.1
soc-flickr 238561 239177.3 285952 286537.5 228393 231800.9 315535 316061.4 329196 329659.9 225706 225986.8
soc-flickr-und 757567 759852.7 962166 963430.1 793220 847844.7 1094213 1094930.9 1133992 1134654 712106 712459.5
soc-flixster 1797967 1804468.4 2283393 2289703.9 2112006 2242842.7 2349351 2355308.1 2351118 2357745.3 1446495 1447358.9
soc-FourSquare 261585 263522.1 421911 423272.6 309284 343367.9 497910 499487.8 492209 493759.3 254246 263147
soc-lastfm 711394 715802.3 991546 994550.3 808133 919647.7 1049636 1055349.3 1045676 1051463 606769 623970.3
soc-livejournal 1556556 1557169.2 1701200 1702474.8 1569372 1610680.8 1763810 1764824.7 1888537 1889859.7 1457679 1458202
soc-livejournal-
user-groups N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3935557 3963727.7

soc-LiveMocha 27818 29799.8 46246 47163.3 25173 27104.9 19308 19326.2 19286 19312.7 19164 19393.4
soc-ljournal-
2008 2178908 2180256.8 2392237 2393624.1 2245160 2304426.9 2471838 2472824.1 2625367 2627141.1 2017074 2017617.9

soc-orkut 487314 490131.8 547962 548734.1 511063 523932 571977 571977 N/A N/A 420253 420702.4
soc-orkut-dir 496889 498147.2 558154 559021.8 528996 537980.2 N/A N/A N/A N/A 422147 422761
soc-pokec 479023 479918.3 541129 541790.1 460459 473097.7 579862 580476.3 624805 625335.8 444054 444497.7
soc-sinaweibo N/A N/A N/A N/A N/A N/A 58189158 58189158 N/A N/A 41348112 41348903.3
soc-twitter-higgs 136308 148028.7 187727 197706.7 194853 199584.3 64645 64781.9 64783 64838.1 64637 64689.4
soc-youtube 249474 252195.9 291048 294687.6 249714 263709.5 305632 306098.5 321759 322149.3 210109 210181.5
soc-youtube-
snap 621236 628307.3 734256 736466.4 668462 696936.7 771399 772205.9 801033 801966.7 516764 516956.6

tech-as-skitter 504141 507896.5 807360 813966.7 700698 790524.5 999796 1001816.8 1044493 1046569 425378 425765.9
tech-ip N/A N/A N/A N/A N/A N/A 34033 34164.6 34033 34164.6 33944 34067
twitter_mpi N/A N/A N/A N/A N/A N/A 8636449 8647646.9 8674533 8687284.6 5517459 5518646.9
web-arabic-2005 29252 29478.1 35100 35346.4 25884 26176.7 26039 26233.0 25745 25951.4 24497 25286.2
web-baidu-baike 1041922 1097314.7 1281323 1281990.2 1279905 1285277.7 1339271 1340662.7 1388596 1389907.3 892104 892318.7
web-it-2004 67874 68537.2 80077 80201.2 62662 64220.9 82375 83130.1 67453 67454.5 57896 60208.1
web-uk-2005 1723 1726 1728 1729.6 1429 1432.5 1452 1530.4 1452 1528 1427 1427
web-wikipedia_
link N/A N/A N/A N/A N/A N/A 1795791 1797987.3 1843338 1845944.2 620531 620718

web-wikipedia
2009 735795 737294.9 916510 918149.8 707187 761818.2 1032499 1033213 1097804 1098647.3 682229 682709.1

web-wikipedia-
growth 558570 563152.9 690694 696448.4 700384 703726.3 773754 774938.2 833111 834491.2 446746 446931

wikipedia_
link_en 24832213 24891236.9 29251560 26489886.4 26441864 26526564.8 26674651 26679001.5 26682855 26687149.9 24841764 24901940.4
 

 

 
Fig. 2    Average run time of MAE-PB and competitors
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From the results, it is obvious that if the algorithm does not
use  any  perturbation  or  uses  only  one  perturbation  strategy,
the  results  are  not  particularly  good.  In  addition,  the  results
demonstrate  that  our  novel  path-breaking  strategy  plays  an
important role in the performance of MAE-PB.

 5    Conclusion
In  this  work,  we  introduced  an  improved  MAE  algorithm
dedicated  to  solving  the  MIDS  problem.  First,  to  deeply
explore  the  search  space,  the  MAE-PB  algorithm  uses  a
multiple neighborhood-based local search function. Second, to
enlarge the search space,  the MAE-PB algorithm applies  two
novel  perturbation  methods  to  disturb  the  current  candidate
solution during the search process. Third, we propose a novel
path-breaking strategy for solution recombination to deal with
the  problem  of  the  high  similarity  between  two  candidate
solutions.  The  experimental  results  show  that  the  proposed
MAE-PB  performs  better  than  the  state-of-the-art  MIDS
heuristic algorithms in most instances.

k

For future work, given the success of MAE-PB in this work,
we  will  consider  if  it  may  further  improve  the  current
algorithm for solving the MIDS problem if we combine other
ideas  [51–54].  Envisioned  research  directions  regarding  the
proposed  strategies  include  applying  the  new  perturbation
method  to  other  NP-hard  problems,  such  as -submodular
function  optimization  [55],  the  minimum  vertex  cover
problem [56] and pseudo boolean optimization [57].
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