
An improved master-apprentice evolutionary algorithm for
minimum independent dominating set problem

Shiwei PAN1,2, Yiming MA1,2, Yiyuan WANG1,2, Zhiguo ZHOU (✉)1,2, Jinchao JI (✉)1,2,
Minghao YIN (✉)1,2, Shuli HU1,2

1 School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China
2 Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130117, China

 Higher Education Press 2023

Abstract The minimum independent dominance set (MIDS)
problem is an important version of the dominating set with
some other applications. In this work, we present an improved
master-apprentice evolutionary algorithm for solving the MIDS
problem based on a path-breaking strategy called MAE-PB.
The proposed MAE-PB algorithm combines a construction
function for the initial solution generation and candidate
solution restarting. It is a multiple neighborhood-based local
search algorithm that improves the quality of the solution using
a path-breaking strategy for solution recombination based on
master and apprentice solutions and a perturbation strategy for
disturbing the solution when the algorithm cannot improve the
solution quality within a certain number of steps. We show the
competitiveness of the MAE-PB algorithm by presenting the
computational results on classical benchmarks from the
literature and a suite of massive graphs from real-world
applications. The results show that the MAE-PB algorithm
achieves high performance. In particular, for the classical
benchmarks, the MAE-PB algorithm obtains the best-known
results for seven instances, whereas for several massive graphs,
it improves the best-known results for 62 instances. We
investigate the proposed key ingredients to determine their
impact on the performance of the proposed algorithm.

Keywords evolutionary algorithm, combinatorial optimi-
zation, minimum independent dominating set, local search,
master apprentice, path breaking

 1 Introduction
G = (V,E)

D V D
D I

V I
V

Given an undirected graph , a dominating set (DS) is
a subset of such that each vertex not in is adjacent to at
least one vertex of and an independent set (IS) is a subset
of , where any two vertices in are not adjacent. An
independent dominating set (IDS) refers to a subset of ,
which is both an IS and a DS. The purpose of the minimum
independent dominating set (MIDS) problem is to find an
independent dominating set with the minimum size in a given

graph.
The models of IDs and DSs have been widely used in many

real-world fields. In the following, we briefly introduce
several applications related to these problems. In terms of DS
problems, they have been applied in various fields, such as
wireless communication [1], metro networks [2], gateway
placement [3], and biological networks [4]. The DS model has
been applied to extract proteins that control protein-protein
interaction networks and to reveal the correlation between
structural analysis and biological functions [5]. The IS
problem has many important applications, including code
theory, economics, and information retrieval [6,7]. Several
methods of graph theory can be used to express the coding
problem, one of which is to find the maximum IS [8].

Combining the respective properties of the independent and
dominating sets, the MIDS problem has been widely used in
different real-world domains. For example, wireless sensor
and actor networks (WSANs) usually need to provide services
in each part of the deployment area especially coverage
services which are important goals in many WSANs
applications. High-quality coverage should minimize the
overlap between the action ranges of actors and include all
sensors deployed in the monitoring area. To achieve good
coverage, researchers usually establish a clustered WSANs
architecture where each cluster head takes certain actions
based on the data received from the sensors in the cluster [9].
To achieve good distribution of actors in WSANs (for full
coverage,) researchers usually model this problem into an
independent dominating set and place the actors next to the
location of the nodes in the network [10]. Because the price of
the actors is often very expensive, our goal is to find the
minimum number of actors in the network to achieve full
coverage, that is, the MIDS problem. In addition to the above
introduction of applications of the MIDS problem, many
studies have been conducted on wireless network clustering
algorithms [11,12], which shows that the MIDS model can be
used for the initial clustering scheme of wireless networks
[13–15].

In the following, we will introduce the related works of
MIDS and propose our main contributions for solving MIDS.

Received January 13, 2022; accepted June 27, 2022

E-mail: zhouzg281@nenu.edu.cn; jijc100@nenu.edu.cn; ymh@nenu.edu.cn

Front. Comput. Sci., 2023, 17(4): 174326
https://doi.org/10.1007/s11704-022-2023-7

RESEARCH ARTICLE

https://doi.org/10.1007/s11704-022-2023-7

 1.1 Related works

ε > 0
|V |1−ε

|V |

O(1.3575|V |)

O(1.3803|V |) O(1.5369|V |)

O(1.3351|V |)

It is well-known that the MIDS problem has been proven to be
an NP-hard problem [16]. This means that there is no constant

, for which the MIDS problem can be approximated
within a factor of polynomial time unless P = NP, where

 is the number of vertices. Owing to the wide applications
of the MIDS problem, many researchers have devoted
themselves to designing MIDS algorithms that can mainly be
divided into two types: exact algorithms and heuristic
algorithms. In the past decades, there have been several exact
algorithms for solving the MIDS problem. Gaspers and
Liedloff designed a branch-and-reduce algorithm to solve the
MIDS problem, which can obtain the result of
running time [17]. To solve the MIDS problem in sparse
graphs, Liu and Song proposed exact algorithms with a time
complexity of and [18]. Bourgeois
et al. introduced a fast exact algorithm for solving the MIDS
problem with a running time of and a polynomial
space [19]. Because of their NP-hard characteristics, although
exact algorithms can guarantee the optimality of their
solutions, they may not be able to solve large-scale instances.

k

k

To handle such large-scale instances, researchers have
considered using heuristic algorithms to solve the MIDS
problem. Although heuristic algorithms are not guaranteed to
obtain the optimal solution, they can obtain a good solution
within an acceptable time [20–25]. Normally, the effectiveness
of heuristic algorithms depends on the properties of algorithms
and the basic structure of problems to adapt to the
corresponding specific implementations, which can search for
promising search spaces and avoid falling into local optima.
Recently, many heuristic algorithms for solving the MIDS
problem have been proposed. For example, a greedy random
adaptive search process based on a new heuristic path cost and
tabu mechanism called GRASP+PC has been proposed to
solve the MIDS problem [26]. The proposed GRASP+PC
algorithm uses a new vertex attribute to define the scoring
function, and during the search process, the algorithm
exchanges a pair of vertices to further improve the solution
quality according to the new scoring function. A tabu search-
based memetic algorithm called MEMETIC was designed for
the MIDS problem based on two ideas: the forgetting-based
vertex weighting strategy and the repairing-based crossover
strategy [27]. Specifically, the former idea exploited the
possible spaces by making use of the current information of
local search, while the latter idea not only inherited the results
of parent solutions but also made up the infeasible solution.
Haraguchi developed a metaheuristic framework that
iteratively repeated the local search and the plateau search,
where the local search used -swap as the neighborhood
operation and the plateau search examined solutions of the
same size as the current solution that were obtainable by
exchanging a solution vertex and a non-solution vertex [28].
Haraguchi proposed two algorithms, ILPS2 and ILPS3,
according to different values. Very recently, for solving the
MIDS problem, Wang et al. used two-phase removal
strategies, including the double-checked removal strategy and
random diversity removing strategy, resulting in a two-phase
removing algorithm called drMIDS [29]. The results show that

drMIDS performs better than other MIDS heuristic algorithms
on most classical benchmarks.

 1.2 Our contributions
In this work, inspired by the idea of the master-apprentice
evolutionary (MAE) algorithm proposed in [30], we design an
improved algorithm for solving the MIDS problem. The
traditional population-based evolutionary algorithm will
always maintain a large number of populations, which leads to
high resource consumption. Therefore, to avoid wasting
computing resources, the MAE algorithm has been proposed.
It utilizes an evolutionary mechanism based on two
individuals, making the exploration space of solutions in this
algorithm more diversified because it updates two individuals
simultaneously.

Combining a master-apprentice evolutionary algorithm with
the path-breaking strategy, a new algorithm called MAE-PB is
proposed for solving the MIDS problem. The main
contributions of this work can be summarized as follows:

● First, the proposed MAE-PB algorithm is the first
adaptation of the general master-apprentice
evolutionary algorithm tailored to the MIDS problem.
The algorithm integrates a set of original features,
including a construction function used to initialize and
restart the master and apprentice solutions, and a
multiple neighborhood-based local search function used
to improve the master and apprentice solutions.

● Second, of particular interest is the ability of the
proposed MAE-PB to explore different search spaces
by using a perturbation method during the local search
process and using path-breaking based on the definition
of solution similarity during the solution recombination
process. By allowing the search to oscillate as many
areas as the algorithm can, the proposed MAE-PB
promotes exploration of large search spaces based on
master and apprentice solutions and helps to identify
high-quality solutions.

● Third, we show the competitiveness of the MAE-PB
algorithm by presenting computational results on
classical benchmarks from the literature and several
massive graphs from real-world applications. The
experimental results demonstrate the high
competitiveness of MAE-PB compared to the five state-
of-the-art algorithms. In particular, MAE-PB updates 69
best-known results.

The reminder of the paper is organized as follows. Section 2
presents some basic definitions and a review of the master-
apprentice evolutionary algorithm. In Section 3, we describe
the proposed algorithm and its ingredients. In Section 4, we
present computational studies and comparisons between the
proposed algorithm and state-of-the-art algorithms. Finally,
we draw conclusions and provide perspectives for future
studies.

 2 Background
 2.1 Basic definitions and notations

G = (V,E)For an undirected graph , a vertex set is

2 Front. Comput. Sci., 2023, 17(4): 174326

V = {v1,v2, . . . ,vn} E = {e1,e2, . . . ,em}
e = (u,v) u v
e v v

N(v) = {u ∈ V |(v,u) ∈ E}
v N[v] = N(v)∪{v}

dist(u,v) u v
u v

v Ni(v) = {u|dist(u,v) = i} i
Ni[v] = Ni(v)∪{v} Nk(v) =∪k

i=1 Ni(v) Nk[v] = Nk(v)∪{v} N(v) = N1(v)
N[v] = N1[v] S ⊆ V N[S] =

∪
v∈S N[v]

 and an edge set . For each
edge , the vertices and are called the endpoints of
edge . For vertex , the neighbors of is denoted as

. Further, we define the close
neighborhood of vertex as . We use

 to denote the distance between and that is the
number of edges from the shortest path of to . For a vertex

, is defined as its th level
neighborhood, and . We define

 and . Obviously,
and . For a vertex set , .

G = (V,E)
D ⊆ V G D

D
I ⊆ V ∀v,u ∈ I
(v,u) < E

S ⊆ V
S

v ∈ V v
S v ∈ N[S]

Given a graph , a dominating set (DS) is a subset
of such that each vertex in belongs to or is
adjacent to a vertex in . An independent set (IS) is a subset

 such that no two vertices are adjacent, i.e., ,
. The minimum independent dominating set (MIDS)

problem requires a subset of the minimum cardinality
such that is both a dominating set and an independent set.
For a vertex , the vertex is dominated by a candidate
solution if , and otherwise is non-dominated.

 2.2 Review for master-apprentice evolutionary algorithm

k

The idea of the MAE algorithm originated from the social
activities that apprentices learn skills from their masters.
During one round, two apprentices evolve for a given number
of generations. When the generation cycle ends, they become
masters and one of them will replace the apprentice to
continue the evolution, in order to preserve the good
information from the previous generation. Ding et al. first
proposed the MAE algorithm using only two individuals to
solve the flexible job shop scheduling problem [30]. The
inspiration of the MAE algorithm comes from HEAD [31],
which is used to solve the -coloring problem. The MAE
algorithm maintains diversity by replacing the idea of one of
the two individuals with random feasible solutions when the
two individuals are close. Recently, many algorithms based on
the MAS framework have been proposed. For example, Peng
et al. designed a path-relinking algorithm framework based on
an MAE framework. In addition, the algorithm used a
solution-based tabu search and distance control relinking
operator to solve the satellite broadcast scheduling problem
[32]. For the production scheduling problem of assembly
manufacturing systems with uncertain processing time and
random machine failures, an improved MAE algorithm was
proposed [33]. In the proposed algorithm, the extended sub-
component adjacency matrix was used to deal with the
sequence constraints of the operations. Owing to the similarity
between the flow shop scheduling problem and the job shop
scheduling problem, Sun et al. used the MAE algorithm to
deal with the large-scale flow shop scheduling problem with
uncertain time [34]. To solve the minimum weight vertex
cover problem, a mixed tabu search evolutionary algorithm
MAE-HTS was proposed, where the proposed algorithm based
on two individuals was proposed to enhance the diversity of
solutions [35].

 2.3 Review for score strategy of MIDS
In this section, we briefly introduce the scoring strategy for

v ∈ V pc[v]

the MIDS problem. During the search process, how to select
candidate vertices is very important during the search process.
The scoring function is recently proposed by Wang et al. [26].
Each vertex has a property: path cost, denoted as .
It works as follows:

pc[v] = 1 ∀v ∈ V1) At the beginning, for ;

pc[v] = pc[v]+1 v
2) At the end of each iteration of local search,

 for each non-dominated vertex .

sc

sc

Based on the above property of path cost, we introduce the
path cost based scoring function denoted as to decide how
to select candidate vertices for addition or deletion in each
step of local search. The scoring function is defined as
follows.

sc (vi) =


∑

u∈N[vi]∧inde[u]=0 pc(u), ∀vi < S , inde [vi] = 0,
0, ∀vi < S , inde [vi] , 0,
−∑u∈N[vi]∧inde[u]=1 pc(u), ∀vi ∈ S .

inde[u]
u

S

sc(vi) vi < S sc(vi)
u ∈ N [vi] inde[u] = 0

vi S vi ∈ S sc(vi)
u ∈ N[vi] inde[u] = 1

vi S

In the above formula: is used to denote the number
of the close neighborhood of a vertex dominated by the
candidate solution . We can see the benefits of changing
vertex state intuitively through the positive and negative
values of the function . Assuming that , is
non-negative, and we can see that with is
a set of non-dominated vertex sets that can be dominated by
adding to . Similarly, if , is negative since

 with is a set of dominated vertices that
can be non-dominated by removing from .

 3 A novel master-apprentice
evolutionary algorithm for MIDS
In this section, we present a novel master-apprentice
evolutionary algorithm called MAE-PB based on the general
master-apprentice evolutionary framework [30]. The primary
innovative ingredients of the proposed MAE-PB algorithm
include the modified framework to be suitable for solving the
MIDS problem, a path-breaking strategy based on the
similarity of solutions to control the balance between search
intensification and diversification, and a fast local search to
further improve the quality of the solution.

 3.1 General scheme
The proposed MAE-PB algorithm (see the flowchart in Fig. 1)
consists of five main components: master-apprentice
initialization, path-breaking distribution, local search, master-
apprentice updating, and apprentice re-initialization. The
pseudocode of the MAE-PB is shown in Algorithm 1.

S 1 S 2
Construct

S 1
S 2

|S 2| |S 1|
|S 1| −1

S ∗

S ∗p
S 1 S 2 S 2

S 2 S 1

Initially, the algorithm initials two individuals and by
calling the function (line 1), which will be
introduced in Section 3.2. Specifically, the algorithm first
constructs a feasible solution , which is an IDS. Then, the
algorithm attempts to generate an initial solution by finding
a feasible solution in which is smaller than ; otherwise,
an infeasible solution whose size is . Then, the
algorithm begins with the global optimal solution and the
optimal solution in the previous round by using a better
feasible solution between and (lines 2 and 3). If is a
feasible solution, that is, both and are independent

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 3

S 2 S 1 S ∗ S p∗

S 2 S ∗ S p∗

S 1 total_step

dominating sets and is better than , then and
should be updated by . Otherwise, and are updated
by . During the following search process, is used
to record the number of total steps (line 4).

S ∗

S 1 S 2
S ′1 S ′2

PathBreak
S ′1 S ′2

LocalS earch
S ∗

θ S 1
S ∗p S ∗p

S ∗

similarity
S ∗p S ∗

S 1 S 2 S 2
Construct

total_step

After initialization, the algorithm executes a loop until the
time limit is reached (lines 5–16), and then the best-obtained
solution is returned (line 17). During the loop, the
algorithm combines the respective properties of and to
produce two offspring solutions and by performing the

 function, which will be introduced in Section 3.3
(line 6). For the newly generated solutions and , the
algorithm improves them through the local search process

 (which will be mentioned in Section 3.4) (line
7). After each step of the local search process, we use to
save the global optimal solution (lines 8–10). After one round
(i.e., every step), is reset to the best solution in the
previous round (i.e.,) and is updated by the best
solution in the current round (i.e.,) (lines 12 and 13). In the
next step, we define a similarity function to denote
the ratio of the same vertices in and . When the
similarity of and is very high, the solution is
reconstructed by calling the function (line 15). At
the end of each step, is increased by one (line 16).

 3.2 The construction function for MIDS
Construct

S 1 S 2
S 1

Construct

The proposed MAE-PB algorithm uses the function
to complete two tasks, including initializing two individuals

 and (line 1 in Algorithm 1) and reconstructing an
individual when the ratio of similarity is very high (line 15
in Algorithm 1). The pseudocode of the function is
presented in Algorithm 2.

S
Construct S

sc
Construct S S

S
max_size

First, candidate solution is set to an empty set (line 1).
 tries to greedily construct a feasible solution by

iteratively adding a vertex with the largest value. If
 finds a feasible solution , then will be returned.

Otherwise, the algorithm returns an infeasible solution
whose size equals -1.

 3.3 The PathBreak strategy for MIDS

PathBreak
In this section, we use a new path-breaking strategy called

 to generate a new sub-solution by reconnecting the
paths of the two individuals. The original path-breaking
strategy was proposed by Xu et al. [36] was used as an
effective local search algorithm to solve the MaxSAT problem
by improving the idea of path relinking. The trajectory
structure between the elite solution and the inverse solution is
broken by flipping the variable, and the search allows only
high-quality solutions to be focused. The path-break strategy
randomizes the construction of the trajectory sequence. If the

Fig. 1 The flowchart of MAE-PB

4 Front. Comput. Sci., 2023, 17(4): 174326

PathBreak

search falls in the local optimal solution, a strong mutation of
the random flip variable is performed. If the search needs to be
further dispersed, a weak mutation is performed. If the
mutation does not allow the improvement of the local optimal
solution, the search is restarted. The difference between our
path-breaking strategy and the original one is that our
algorithm improves two different candidate solutions instead
of the current solution and its inverse solution. Second, we flip
the variable by probability, that is, the set of adding or deleting
vertices is not only determined by the trajectory of a solution
to its inverse solution but also by the number of same vertices
in both candidate solutions. The detailed process of

 is described in Algorithm 3 1).

PathBreak
S s S e

S s
S e S sr S e

S s S er S same
S s S r S

S cr
S same S s

S S sr S cr
S s S = S same

S cr = S sr S
S same S sr

v S cr v S
β S cr S er

S S ∗

v S er

The proposed algorithm inputs two solutions,
including a starting solution and an ending solution .
First, we use three candidate sets to denote parts of the above
solutions. In particular, the vertices that exist in but not in

 are regarded as ; the vertices that exist in but do not
exist in are recorded as , and is the same part in

 and (line 1). The candidate solution and the temporary
set are initialized as empty sets (line 2). If the number of

 is larger than half of the number of vertices in , then
the candidate solution is set to and is set to the
remaining part of (line 3). Otherwise, and

 (line 4). This shows that the strategy uses to store
a small part between and . The strategy randomly
pops a vertex from , and then the vertex is added to
with probability until is empty (lines 5–8). When is
not an empty set and the size of is smaller than , the
algorithm adds a random vertex from (lines 9–12).

Con f lict
S

Con f lict
e Con f lict

w
Con f lict

w S
S

S ∗

S

Subsequently, the algorithm uses a set to store edges
whose endpoints both belong to (line 13). If there exist some
edges in , the algorithm randomly picks a conflicting
edge from and then among its endpoints it further
selects a random endpoint (lines 15 and 16). The
corresponding conflicting set should be updated (line
17), and vertex is removed from the candidate solution
(line 18). Finally, if is a feasible solution, which means that
the algorithm obtains a better solution, then is updated by

.

 3.4 The local search algorithm for MIDS

Local Search

The purpose of the local search is to move the current
candidate solution to its neighborhood in some corresponding
spaces. The proposed local search algorithm uses a tabu
mechanism to overcome the cycling problem [37]. The
pseudocode of is shown in Algorithm 4.

marker
step tabu_list

marker = 1
S ∗

marker = 0
S step

step ⩾ inner_step inner_step
mark = 1 S ∗

The algorithm first initializes a marker variable , the
number of steps , and a tabu list (line 1). The
equation means that the following local search
procedure finds a better solution, which is better than ;
otherwise, . The algorithm applies the local search
procedure to improve the solution until the limit of is
reached, that is, . In our work, is
set to 10000. Finally, if , then the best solution is

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 5

rand()1) In our algorithm, the range of values of is from 0 to RAND_MAX.

S
returned; otherwise, the algorithm returns the current
candidate solution (lines 20 and 21).

S ∗ S step
marker

u1
N2(u1)∩S

γ
u2 S

S tabu_list

v1 v1 v2 S

tabu_list pc
step

step%s == 0
s

During the local search procedure, if the algorithm obtains a
better solution, is updated by , is set to 1, and the
variable is marked as 1. Otherwise, the algorithm
selects the vertex with the highest score value and inserts it
into the candidate solution (lines 6 and 7). If is not
empty, with probability , the algorithm attempts to greedily
remove a vertex from (lines 9 and 10). After removing
one or two vertices from , should be cleared (lines
10 and 13). In the next step, the algorithm greedily adds one
vertex (i.e.,) or two vertices (i.e., and) into (lines 11,
12, 14, and 15). After the addition operations, these simply
added vertices need to be added to . The values of
the corresponding vertices and should be updated (lines
16 and 17). At the end of each step, if , it means
that no better candidate solution is found after steps. Thus,
the algorithm will use two perturbation methods to modify the
current candidate solution (lines 18 and 19).

 3.5 The perturbation framework for MIDS

Perturb
Perturb

inde

In this section, we propose a perturbation procedure called
 to disturb the current candidate solution. In our work,

for a great candidate solution, the function uses the
same probability to select two different perturbation methods.
Specifically, the first perturbation method aims to greedily
remove some vertices from the candidate solution and then
add back some other vertices by using a random addition
technique based on restricted candidate lists [38]. The second
perturbation method focuses on selecting vertices dominated
by the candidate solution and not the candidate solution. We
relax the limitation condition to add these vertices to the
candidate solution without considering the independent
constraint of the MIDS problem. During the addition process,
we prefer to select one of these vertices that can dominate as
many non-dominated vertices as possible. If there exists more
than one vertex satisfying the above condition, we choose a
vertex with the largest value to modify the candidate
solution to a certain extent. This means that to make the
candidate solution still feasible after adding it to the candidate
solution, we have to remove all of its neighbors from the
candidate solution. The scoring function in the second
perturbation way is defined as below.

sc1(v) =
∑

u∈N[v]∧inde[u]=0

pc(u).

Based on the above scoring function, we propose a
perturbation scoring rule.

v
inde[v] , 0 V \S sc1

inde

Perturbation scoring rule Selecting a vertex with
 from , which has the largest value,

breaking ties by selecting the one with the largest value.
v

inde[v] , 0
v

v

inde[v]
sc1

The selected vertex has already been dominated by other
vertices in the candidate solution, that is, . If the
algorithm adds to the candidate solution, the algorithm has
to remove ’s neighbor from the candidate solution to make
the solution feasible, that is, the number of removed vertices is

 in total. Thus, when meeting that several vertices have
the same best value, for sufficiently disturbing the

inde
candidate solution, the algorithm picks the one among them
with the highest value.

Note that the reason the algorithm uses different
perturbation ways is to explore various parts of the entire
search space as much as possible.

Perturb

Perturb k

k
k

k

V \S
scrcl scmax scmin

v
scrcl v S scmax

scmin scrcl
S ∗ S

The function is displayed in Algorithm 5. The
probability that the algorithm uses the first perturbation
method is 50% (lines 1–11). The other half is called the
second perturbation method (lines 12–22). During the first
perturbation, the algorithm sets the parameter to
half the size of the candidate solution. To deal with massive
graphs, the algorithm limits the value of ; thus, in our work,
the maximum number of is set to 100, which means that the
algorithm removes at most vertices from the candidate
solution (lines 2–5). The algorithm computes the maximum
and minimum score values of vertices from , and then

 is calculated based on and (lines 6 and 7).
During the addition process, the algorithm adds vertices back
into the candidate solution (lines 8–11). In each step, the
algorithm selects a random vertex whose score value is
larger than , and the selected vertex is added to . ,

, and need to be updated accordingly. If the
algorithm finds a better solution, then is updated by , and
the algorithm jumps out of the adding process. During the
second perturbation method, the algorithm tries to select a

6 Front. Comput. Sci., 2023, 17(4): 174326

sc1
S

N(v1)∩S

|S | current_size
S

vertex not in the candidate solution with the largest value
to be added into (lines 14 and 15). To maintain solution
feasibility, the algorithm removes vertices in (lines
16–18). To increase the size of the candidate solution, the
algorithm greedily adds a vertex to the candidate solution until

 is not smaller than (lines 19–22). At last, the
perturbation solution is returned (line 23).

 4 Experiments
In this section, we evaluate the performance of the MAE-PB
algorithm on a large number of benchmark instances
commonly used in the literature and compare it with state-of-
the-art results in the literature. We first introduce these
benchmarks and experimental preliminaries. Then, we will
display our parameter setting as well as the detailed results of
our algorithm and all competitors. Finally, we present
experiments to obtain insights into the influences of the
components of the MAE-PB algorithm: a perturbation method
and path-breaking.

 4.1 The benchmarks
The benchmark instances of the MIDS tested in our
experiments are widely used in the literature, and can be
divided into two parts, including two classical benchmarks
(i.e., DIMACS and BHOSLIB) and a suite of real-world
massive graphs.

● DIMACS benchmark [39]: DIMACS is most commonly
used for the comparison and evaluation of graph
algorithms [40,41]. More specifically, the size of the
DIMACS instances ranges from less than 150 vertices
and 300 edges to more than 4,000 vertices and
7,900,000 edges. To test the effectiveness of the
algorithm, we tested it on the complement graphs of
some instances, including the sets of c-fat and p-hat. In
total, 61 instances were selected.

● BHOSLIB benchmark [42]: The BHOSLIB benchmark
is randomly generated based on the RB model and
contains a total of 41 instances, of which a large
instance named frb100-40 has 4,000 vertices and
572,774 edges. Owing to the hardness of BHOSLIB, it
has been widely used as a reference benchmark for local
search algorithms in recent literature [43,44].

● Real-world massive graphs [45]: In this study, we
consider 187 real-world massive graphs from a network
data repository online. They have recently been used in
the performance of heuristic algorithms for some NP-
hard problems [21,46,47]. All these massive real-world
graphs have a massive number of vertices, but they all

belong to sparse graphs. We ignore some massive
graphs with fewer than 100,000 vertices and fewer than
1,000,000 edges. Thus, in this study, 65 instances are
considered.

 4.2 Experimental preliminaries

k

min

avg

To evaluate the performance of the proposed MAE-PB
algorithm, we compared it with five competitors: GRASP+PC
[26], MEMETIC [27], drMIDS [30], ILPS2 [28], and ILPS3
[28], where ILPS2 and ILPS3 have different values. All the
algorithms are implemented in C++ and compiled with g++ by
the -O3 option. For each instance, all algorithms
independently performed 30 runs with different random seeds
from 1 to 30. The time limit of all algorithms for DIMACS
and BHOSLIB was set to 200 s, while the time limit for
massive graphs was set to 1000 s. For each instance,
denotes the best size found (i.e., the minimal solution value),
and denotes the average size obtained over 30 runs. The
bold values in the table indicate the best solution among all the
algorithms. If an algorithm fails to provide a solution within
the given time limit, it is indicated by “N/A”.

 4.3 Parameter settings of the MAE-PB algorithm
In this section, we present the parameter adjustment
experiment of the MAE-PB algorithm. Because the parameters
in the experiment will affect the efficiency of the local search,
the adjustment of the parameters is an indispensable and
important step.

θ α β γ s π

θ θ
θ

α
α

S 1 S 2
S 2

β
β γ

γ
γ

s
s s

π
π

In this study, we used the automatic configuration tool irace
[48] to obtain well-tuned parameters for the proposed MAE-
PB algorithm, including , , , , , and . The training set
was restricted to include all instances from the three
benchmarks. The tuning process is given a limit of 10,000
runs with a time limit of 1,000 s per run. The results of the
tuning processes are shown in Table 1. In detail, for the
parameter involved in Algorithm 1, we assign parameter to
5. Specifically, after each round (i.e., every step), we make
some adjustments to the solutions. For the parameter
involved in Algorithm 1, we assign parameter to 0.7, which
means that if the similarity of the candidate solution and
is very large, then will be reconstructed. We set parameter

 to 0.5, in Algorithm 3, which means that the algorithm adds
vertices with a probability of . Also, for the parameter
involved in Algorithm 4, we set parameter to 0.4. With the
probability of , the vertices are removed from the candidate
solution. For parameter also involved in Algorithm 4, we set

 to 500. After every step, we make some adjustments to the
solutions. For the parameter involved in Algorithm 5, we set
the parameter to 0.8, which is the range of the restricted

Table 1 Parameter settings of the MAE-PB algorithm

Parameter Ranges Description Final values
θ {2, 5, 8 } The number of each round 5
α {0.4, 0.5, 0.6, 0.7, 0.8} The similarity of candidate solutions 0.7
β {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 50%
γ {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 40%
s {200, 500, 800} The number of each round 500
π {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} The range of restricted candidate list 0.8

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 7

candidate list.
For all competitors, we set the same parameters as those

described in the corresponding literature and optimized these
parameters for the newly added massive graphs using the irace
tool [48].

 4.4 Results on DIMACS benchmark
In comparison, Tables 2 and 3 report that our MAE-PB
algorithm finds better solutions than GRASP+PC, MEMETIC,
drMIDS, ILSP2, and ILSP3 on 11, 6, 1, 7, and 7 instances,
respectively. In the case of finding the same minimum value
between our algorithm and the comparison algorithms, the
MAE-PB algorithm finds smaller average values on 15, 6, 3,
14, and 13 instances than GRASP+PC, MEMETIC, drMIDS,
ILSP2, and ILSP3, respectively. The proposed MAE-PB
algorithm fails to find a better average solution value than the
drMIDS algorithm on only one instance, C1000.9, and the gap
between these two algorithms is small.

 4.5 Results on BHOSLIB benchmark
Table 4 shows the experimental results of our algorithm and
its competitors on the BHOSLIB benchmark. It is obvious
from the results in the table that our algorithm yields better
results than the other algorithms for most instances. In
particular, we firstly compare the MAE-PB algorithm with
GRASP+PC, MEMETIC and drMIDS. The MAE-PB
algorithm finds better solutions than GRASP+PC, MEMETIC,
and drMIDS on 32, 28, and 8 instances, respectively. The
average values obtained by our algorithm are better than those
of GRASP+PC, MEMETIC, and drMIDS for 8, 11, and 20

instances, respectively. In addition, the MAE-PB algorithm
finds better solutions than ILSP2 and ILSP3 on 18 and 22
instances, respectively, while the average values obtained by
our algorithm are better than those of ILSP2 and ILSP3 for 22
and 20 instances, respectively. However, in instance frb59-26-
2, our algorithm fails to obtain the best solution value.

 4.6 Results on massive graph
Comparing the MAE-PB algorithm and the competitor
algorithm on a massive graph, Tables 5 and 6 report the
minimum and average values of the experimental results. The
MAE-PB algorithm finds the best solution for 60 instances
with only three exceptions, which intuitively verifies its
performance.

If we have a tie between the proposed MAE-PB and any of
the other five competitors concerning solution quality, that is,
the same minimal and average solution values, we compare
these algorithms in terms of computation times for all the
benchmarks. As shown in Fig. 2, MAE-PB can obtain the best
solution in less time than the other five algorithms.

 4.7 Critical difference analysis
This section evaluates the statistical difference between the
proposed MAE-PB algorithm and the five competitors on the
selected three benchmarks in the form of a critical difference
graph. First, we use the Friedman test [49] to formulate the
null hypothesis that the proposed MAE-PB algorithm and its
five competitors are equivalent in terms of performance. The
above results are displayed in Fig. 3 using a critical difference
diagram [50]. The top line in each sub-graph is the axis where

Table 2 Experimental Results on the DIMACS benchmark I

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
brock200_2 4 4 4 4 4 4 4 4 4 4 4 4
brock200_4 6 6.3 6 6 6 6 6 6 6 6 6 6
brock400_2 10 10 9 9.3 9 9 10 10 9 10 9 9
brock400_4 9 9.3 9 9 9 9 9 9.9 9 10 9 9
brock800_2 8 8.2 8 8.1 8 8 8 8.7 8 8.9 8 8
brock800_4 8 8.2 8 8 8 8 8 8.5 8 8.8 8 8
C1000.9 26 26.9 26 27.5 25 25.5 27 28 27 27.8 25 26
C125.9 15 15 14 14 14 14 14 14 14 14 14 14
C2000.5 7 7 7 7 7 7 7 7 7 7 7 7
C2000.9 33 33.2 33 33.5 32 32 32 33.8 32 34 31 31.7
C250.9 17 17 17 17 17 17 17 17 17 17 17 17
C4000.5 8 8 8 8 8 8 8 8 8 8 8 8
C500.9 23 23 22 22 21 21 22 22.2 22 22.3 21 21
c-fat200-1.clq 13 13 13 13 13 13 13 13 13 13 13 13
c-fat200-2.clq 6 6 6 6 6 6 6 6 6 6 6 6
c-fat200-5.clq 3 3 3 3 3 3 3 3 3 3 3 3
c-fat500-1.clq 27 27 27 27 27 27 27 27 27 27 27 27
c-fat500-2.clq 14 14 14 14 14 14 14 14 14 14 14 14
c-fat500-5.clq 6 6 6 6 6 6 6 6 6 6 6 6
DSJC1000.5 6 6 6 6 6 6 6 6 6 6 6 6
DSJC500.5 5 5 5 5 5 5 5 5 5 5 5 5
gen200_p0.9_44 16 16.1 16 16 16 16 16 16 16 16 16 16
gen200_p0.9_55 16 16 16 16 16 16 16 16 16 16 16 16
gen400_p0.9_55 21 21.2 20 20 20 20 20 20.1 20 20.3 20 20
gen400_p0.9_65 21 21.1 20 20.1 20 20 20 20.8 20 20.8 20 20
gen400_p0.9_75 20 20.4 20 20.3 20 20 20 20.8 20 20.6 20 20
hamming10-4 12 12.3 12 12 12 12 12 12 12 12 12 12

8 Front. Comput. Sci., 2023, 17(4): 174326

Table 3 Experimental results on the DIMACS benchmark II

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
hamming6-2 12 12.8 12 12 12 12 12 12 12 12 12 12
hamming6-4 2 2 2 2 2 2 2 2 2 2 2 2
hamming8-2 32 40.1 36 43.1 32 32 36 36 36 36 32 32
hamming8-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson16-2-4 8 8 8 8 8 8 8 8 8 8 8 8
johnson32-2-4 16 16 16 16 16 16 16 16 16 16 16 16
johnson8-2-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson8-4-4 7 7 7 7 7 7 7 7 7 7 7 7
keller4 5 5 5 5 5 5 5 5 5 5 5 5
keller5 9 9.4 9 9 9 9 9 9 9 9 9 9
keller6 17 17.6 17 17.9 15 17.2 17 18 18 18.3 15 15.1
MANN_a27 27 27 27 27 27 27 27 27 27 27 27 27
MANN_a45 45 45 45 45 45 45 45 45 45 45 45 45
MANN_a81 81 81 81 81 81 81 81 81 81 81 81 81
MANN_a9 9 9 9 9 9 9 9 9 9 9 9 9
p_hat1500-1.clq 13 13.4 13 13.9 12 12.7 13 14.1 13 14.3 12 12.4
p_hat1500-2.clq 7 8 7 7.9 7 7.7 7 7.7 7 7.8 7 7.2
p_hat1500-3.clq 3 3 3 3 3 3 3 3.1 3 3.3 3 3
p_hat300-1.clq 9 9 9 9 9 9 9 9 9 9 9 9
p_hat300-2.clq 5 5.1 5 5 5 5 5 5 5 5 5 5
p_hat300-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
p_hat700-1.clq 11 11 11 11 11 11 11 11 11 11.2 11 11
p_hat700-2.clq 6 6.5 6 6.3 6 6 6 6.6 6 6.4 6 6
p_hat700-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
san1000 4 4 4 4 4 4 4 4.7 4 4.2 4 4
san200_0.7_1 7 7 6 6 6 6 6 6.1 6 6.8 6 6
san200_0.7_2 6 6 6 6 6 6 6 6 6 6 6 6
san200_0.9_1 16 16 15 15 15 15 15 15 15 15 15 15
san200_0.9_2 16 16.4 16 16 16 16 16 16 16 16 16 16
san200_0.9_3 15 15.1 15 15 15 15 15 15.3 15 15.1 15 15
san400_0.5_1 4 4 4 4 4 4 4 4 4 4 4 4
san400_0.7_1 7 7.1 7 7 7 7 7 7.9 8 8 7 7
san400_0.7_2 7 7 7 7 7 7 7 7.6 7 7.9 7 7
san400_0.7_3 8 8 7 7 7 7 7 7.8 8 8 7 7

Table 4 Experimental results on the BHOSLIB benchmark

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
frb30-15-1 11 11 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-2 11 11.4 11 11.1 11 11 11 11.7 11 11.9 11 11
frb30-15-3 12 12 11 11.2 11 11 11 11.9 11 11.9 11 11
frb30-15-4 12 12 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-5 11 11.2 11 11.3 11 11 11 11.7 11 11.9 11 11
frb35-17-1 14 14 13 13.6 13 13 13 13.9 13 14 13 13
frb35-17-2 13 13.7 13 13.9 13 13 13 13.8 13 14 13 13
frb35-17-3 13 13.3 13 13.6 13 13 13 13.8 13 14 13 13
frb35-17-4 14 14 13 13.9 13 13.3 13 13.8 13 13.9 13 13.3
frb35-17-5 14 14 14 14 13 13.6 14 14 14 14.2 13 13.4
frb40-19-1 16 16 16 16 15 15.4 16 16.1 16 16.6 15 15
frb40-19-2 16 16 15 15.9 15 15 15 15.7 16 16.1 15 15
frb40-19-3 15 15.6 15 15.9 15 15 15 15.8 15 16.1 15 15
frb40-19-4 15 15.4 15 15.9 15 15 15 15.7 15 16 15 15
frb40-19-5 15 15.7 15 15.9 15 15.2 15 15.8 15 16 15 15
frb45-21-1 18 18 18 18.9 17 17.8 18 18.2 18 18.7 17 17.5
frb45-21-2 18 18 18 18.7 17 17.9 17 18 17 18.6 17 17.6
frb45-21-3 18 18.1 18 18.4 17 17.4 17 17.8 17 18.4 17 17
frb45-21-4 18 18 18 18.6 17 17.5 18 18.1 18 18.6 17 17.1
frb45-21-5 17 17.9 18 18.5 17 17.5 17 18 17 18.3 17 17
frb50-23-1 20 20 20 20.9 19 19.9 19 20.2 20 20.8 19 19.5
frb50-23-2 20 20.2 21 21 19 19.9 20 20.5 20 20.8 19 19.8

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 9

Table 4 (Continued)

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
frb50-23-3 20 20.3 20 20.9 19 19.8 20 20.2 20 20.8 19 19.6
frb50-23-4 20 20.5 21 21.4 19 19.9 20 20.8 20 21 19 19.8
frb50-23-5 21 21 21 21.3 20 20 20 20.4 20 20.8 19 19.7
frb53-24-1 22 22.1 22 22.8 21 21.1 20 21.8 21 22.4 20 20.8
frb53-24-2 22 22 22 22.7 21 21.5 21 21.7 21 22.1 20 21
frb53-24-3 21 21.1 21 22.1 20 20.9 21 21.4 21 21.8 20 20.7
frb53-24-4 21 21.2 21 22 20 20.9 21 21.9 21 22.1 20 20.4
frb53-24-5 21 21.6 22 22.5 20 21.1 21 21.7 21 21.9 20 20.9
frb56-25-1 22 22.8 24 24.1 21 22.4 22 23.1 23 23.7 21 22.1
frb56-25-2 23 23.2 24 24.3 22 22.8 22 23.3 23 23.7 22 22.5
frb56-25-3 22 22.9 23 24 22 22.8 22 23.1 22 23.3 22 22
frb56-25-4 23 23.1 24 24.1 22 22.8 22 23.2 23 23.7 21 22.4
frb56-25-5 22 22.4 22 22.8 22 22.3 22 22.8 22 23.3 21 21.9
frb59-26-1 24 24.1 24 25.4 23 23.6 23 24.4 23 24.6 22 23
frb59-26-2 24 24.2 24 25.6 23 23.9 22 24 23 24.6 23 23.2
frb59-26-3 24 24.7 25 25.9 23 23.7 24 24.7 23 25 23 23.8
frb59-26-4 24 24.4 24 25.6 23 23.9 24 24.4 24 24.8 23 23.6
frb59-26-5 25 25.4 25 25.8 24 24.2 23 24.3 24 24.7 23 23.8
frb100-40 44 44.8 48 49.5 43 44.4 43 44.5 43 45.3 42 43.4

Table 5 Experimental results on massive graphs I

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
bn-***0025865
***1-bg 1198908 1199212.7 1205376 1206233.1 1197891 1200437.9 1197011 1197168.4 1197398 1197555.9 1194499 1196200

bn-***0025865
***2-bg 1561094 1561624.3 1575465 1577527.3 1563155 1570989.5 1559833 1559866.6 1559492 1559696.1 1556455 1558023.6

ca-coauthors-dblp 49186 49250.3 52386 52494.1 44363 44989.5 44253 44288.9 44750 44772.2 43035 44088.8
ca-dblp-2012 94758 94938.6 110109 110325.1 87656 87812.8 87598 87689.9 110057 110196.5 87508 87698.1
ca-hollywood-2009 140801 141065.7 155263 155549.6 143519 146696.6 152861 153152.9 178556 178981.5 128137 128290.1
channel***-b050 486263 486449.8 491998 492225.5 489722 490215.8 420666 420853.7 566799 567380.7 409978 410258.8
dbpedia-link N/A N/A 8612327 8629696.2 8627747 8637426.5 8908597 8911196.6 N/A N/A 7533823 7535700.8
delaunay_n22 864130 864485.6 868437 868881.7 865422 865856.5 806316 806730.5 1030255 1030610.1 744805 745267.7
delaunay_n23 1728925 1729304.8 1737228 1737950.7 1736327 1737009.7 1613584 1613809.2 2060811 2061390.1 1489753 1490376.1
delaunay_n24 3458413 3459279.8 3475398 3476268 3475650 3476635.9 N/A N/A N/A N/A 2979750 2980281.9
friendster 4473674 4493361.4 6848800 6863274.8 6601967 6846328.6 7183568 7191256.2 7243029 7247583 3547353 3548971.8
hugebubbles-00020 7800496 7801942.6 7522388 7523370.2 7523382 7524471.3 6952078 6952078 N/A N/A 6800602 6801761.9
hugetrace-00010 4446308 4447087.9 4285018 4285538.9 4284436 4285910.7 3962433 3963354.7 4687640 4688997.3 3875488 3876764.2
hugetrace-00020 5899134 5900269.8 5686663 5687271.6 5686893 5687917.5 5256729 5257882.7 6218412 6219513.8 5142114 5143085.2
inf-europe_osm 20767515 20768636.8 N/A N/A 20052008 20053573.3 N/A N/A N/A N/A 18314284 18315597.7
inf-germany_osm 4669787 4670887.1 4524573 4525242 4523638 4525116.1 4310573 4311235.7 5053976 5054966.2 4134178 4134983.6
inf-roadNet-CA 740604 740878.9 732830 733158.5 728927 729330.5 695837 696003.7 822287 822601.4 662664 662926.6
inf-roadNet-PA 412501 412731.3 408678 409058.2 401804 402169.8 386994 387294.5 458039 458370.8 369370 369601.5
inf-road-usa 9547166 9548928.8 9449606 9450335.3 9449603 9451604.6 9125541 9126508.7 10765734 10766635.9 8610251 8611245.9
rec-dating 40149 41157.5 51462 52377.3 48632 51806.4 36744 36767 36769 36790.8 32671 33502.1
rec-epinions 320240 368998.1 5663900 564657.2 N/A N/A 595675 612617.7 602861 620295.4 134669 134715.3
rec-libimseti-dir 62046 66435.6 82520 85169.9 79938 85061.2 63429 63495.9 63483 63483 50070 53154.7
rgg_n_2_23_s0 858105 858435.1 867425 867715.9 865936 866444.8 736027 736356.3 954528 954785.4 704494 704696.2
rgg_n_2_24_s0 1656337 1656833.6 1674237 1674731.7 1673505 1674445.7 N/A N/A 1839520 1839520 1357335 1357670
rt-retweet-crawl 470537 475864.1 890477 893937.5 531197 695539.5 971833 972959.2 965905 966947.8 469708 485375.2
sc-ldoor 68659 68718.7 70073 70123.5 67557 68547.1 68862 68962 79892 80020.7 66770 66846
sc-msdoor 22163 22192.2 22801 22840.9 21169 21542.3 21437 21484.2 20912 20939.4 21481 21517.8
sc-pwtk 6030 6046.4 6360 6389.7 4959 5065.2 5099 5126.8 5133 5164.1 4475 4528
sc-rel9 259632 260231.6 4237296 4262802 2110005 4090520.2 5379337 5388189.8 5382628 5392480.1 241046 241947
sc-shipsec1 12563 12594.7 13580 13659.1 10834 11022.9 10083 10120.5 9696 9743.6 10392 10443.8
sc-shipsec5 16791 16816.3 17606 17695.6 14918 15161.4 14178 14297.3 13733 13796.5 14533 14586.8
socfb-A-anon 1669228 1674202.7 2319836 2323819.5 2141665 2278578.5 2483752 2486549.9 2497057 2499903 1337702 1338843.8
socfb-B-anon 1606632 1613011.3 2271052 2276031.7 2056992 2225046.4 2428580 2431129.6 2438709 2441440.2 1248897 1249610.4
socfb-uci-uni N/A N/A N/A N/A 55837483 55860922 57147925 57154643.7 57162057 57167604.5 8879317 8879940.5

10 Front. Comput. Sci., 2023, 17(4): 174326

the average ranks of the algorithms are plotted. The lower the
ranks, the better the algorithm. If there is no significant
difference between the MAE-PB algorithm and any of the five

competitors, and the significance level is 0.05, then a link is
established between them. It can be observed from the figure
that almost all algorithms perform well on the DIMACS
benchmark, and the results are relatively close. The quality of
the solutions obtained by the MAE-PB algorithm under the
other benchmarks was better than that of the competitors.

 4.8 The effectiveness of the proposed components
In this subsection, to reflect the effectiveness of the proposed
perturbation and path-breaking methods, we compare the
results of the MAE-PB algorithm and the other five algorithms
in the following five cases : (1) MAE-PB1 does not use any
perturbation strategy; (2) MAE-PB2 only uses the first
perturbation method in our algorithm; (3) MAE-PB3 only
applies the second perturbation method in our algorithm; (4)
MAE-PB4 only uses the original path-breaking strategy [36];
and (5) MAE-PB5 does not employ a path-breaking strategy.
The comparison results of these algorithms are shown in
Table 7 where #inst denotes the number of instances in each
benchmark, while #better and #worse denote the number of
instance families or instances where MAE-PB finds better and
worse results, respectively.

Table 6 Experimental results on massive graphs II

Instance
GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB

min avg min avg min avg min avg min avg min avg
soc-buzznet 16427 41491.8 48972 60200.2 56933 60608.9 2571 2571.7 2573 2575.9 1078 2463.8
soc-delicious 257047 260709.1 375432 377337.6 229828 244509.8 410459 411412.9 400696 401662.7 213040 213148.9
soc-digg 464502 469247.5 592137 595356.4 541850 575911.8 620232 622005.9 628060 629787.3 360827 361056.8
soc-dogster 178127 187041.5 218847 222195.1 212787 220116.4 236456 236952.1 246708 247404.2 147137 147220.1
soc-flickr 238561 239177.3 285952 286537.5 228393 231800.9 315535 316061.4 329196 329659.9 225706 225986.8
soc-flickr-und 757567 759852.7 962166 963430.1 793220 847844.7 1094213 1094930.9 1133992 1134654 712106 712459.5
soc-flixster 1797967 1804468.4 2283393 2289703.9 2112006 2242842.7 2349351 2355308.1 2351118 2357745.3 1446495 1447358.9
soc-FourSquare 261585 263522.1 421911 423272.6 309284 343367.9 497910 499487.8 492209 493759.3 254246 263147
soc-lastfm 711394 715802.3 991546 994550.3 808133 919647.7 1049636 1055349.3 1045676 1051463 606769 623970.3
soc-livejournal 1556556 1557169.2 1701200 1702474.8 1569372 1610680.8 1763810 1764824.7 1888537 1889859.7 1457679 1458202
soc-livejournal-
user-groups N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3935557 3963727.7

soc-LiveMocha 27818 29799.8 46246 47163.3 25173 27104.9 19308 19326.2 19286 19312.7 19164 19393.4
soc-ljournal-
2008 2178908 2180256.8 2392237 2393624.1 2245160 2304426.9 2471838 2472824.1 2625367 2627141.1 2017074 2017617.9

soc-orkut 487314 490131.8 547962 548734.1 511063 523932 571977 571977 N/A N/A 420253 420702.4
soc-orkut-dir 496889 498147.2 558154 559021.8 528996 537980.2 N/A N/A N/A N/A 422147 422761
soc-pokec 479023 479918.3 541129 541790.1 460459 473097.7 579862 580476.3 624805 625335.8 444054 444497.7
soc-sinaweibo N/A N/A N/A N/A N/A N/A 58189158 58189158 N/A N/A 41348112 41348903.3
soc-twitter-higgs 136308 148028.7 187727 197706.7 194853 199584.3 64645 64781.9 64783 64838.1 64637 64689.4
soc-youtube 249474 252195.9 291048 294687.6 249714 263709.5 305632 306098.5 321759 322149.3 210109 210181.5
soc-youtube-
snap 621236 628307.3 734256 736466.4 668462 696936.7 771399 772205.9 801033 801966.7 516764 516956.6

tech-as-skitter 504141 507896.5 807360 813966.7 700698 790524.5 999796 1001816.8 1044493 1046569 425378 425765.9
tech-ip N/A N/A N/A N/A N/A N/A 34033 34164.6 34033 34164.6 33944 34067
twitter_mpi N/A N/A N/A N/A N/A N/A 8636449 8647646.9 8674533 8687284.6 5517459 5518646.9
web-arabic-2005 29252 29478.1 35100 35346.4 25884 26176.7 26039 26233.0 25745 25951.4 24497 25286.2
web-baidu-baike 1041922 1097314.7 1281323 1281990.2 1279905 1285277.7 1339271 1340662.7 1388596 1389907.3 892104 892318.7
web-it-2004 67874 68537.2 80077 80201.2 62662 64220.9 82375 83130.1 67453 67454.5 57896 60208.1
web-uk-2005 1723 1726 1728 1729.6 1429 1432.5 1452 1530.4 1452 1528 1427 1427
web-wikipedia_
link N/A N/A N/A N/A N/A N/A 1795791 1797987.3 1843338 1845944.2 620531 620718

web-wikipedia
2009 735795 737294.9 916510 918149.8 707187 761818.2 1032499 1033213 1097804 1098647.3 682229 682709.1

web-wikipedia-
growth 558570 563152.9 690694 696448.4 700384 703726.3 773754 774938.2 833111 834491.2 446746 446931

wikipedia_
link_en 24832213 24891236.9 29251560 26489886.4 26441864 26526564.8 26674651 26679001.5 26682855 26687149.9 24841764 24901940.4

Fig. 2 Average run time of MAE-PB and competitors

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 11

From the results, it is obvious that if the algorithm does not
use any perturbation or uses only one perturbation strategy,
the results are not particularly good. In addition, the results
demonstrate that our novel path-breaking strategy plays an
important role in the performance of MAE-PB.

 5 Conclusion
In this work, we introduced an improved MAE algorithm
dedicated to solving the MIDS problem. First, to deeply
explore the search space, the MAE-PB algorithm uses a
multiple neighborhood-based local search function. Second, to
enlarge the search space, the MAE-PB algorithm applies two
novel perturbation methods to disturb the current candidate
solution during the search process. Third, we propose a novel
path-breaking strategy for solution recombination to deal with
the problem of the high similarity between two candidate
solutions. The experimental results show that the proposed
MAE-PB performs better than the state-of-the-art MIDS
heuristic algorithms in most instances.

k

For future work, given the success of MAE-PB in this work,
we will consider if it may further improve the current
algorithm for solving the MIDS problem if we combine other
ideas [51–54]. Envisioned research directions regarding the
proposed strategies include applying the new perturbation
method to other NP-hard problems, such as -submodular
function optimization [55], the minimum vertex cover
problem [56] and pseudo boolean optimization [57].

Acknowledgements This work was supported by the National Natural
Science Foundation of China (Grant Nos. 61806050, 61972063, 61976050),

the Fundamental Research Funds for the Central Universities (2412020FZ030,
2412019ZD013, 2412019FZ051), and Jilin Science and Technology
Association (QT202005). Thanks Dr. Jianan Wang for offering the technical
support of the computing server.

References
 Samuel H, Zhuang W, Preiss B. DTN based dominating set routing for
MANET in heterogeneous wireless networking. Mobile Networks and
Applications, 2009, 14(2): 154–164

1.

 Abseher M, Musliu N, Woltran S. Improving the efficiency of dynamic
programming on tree decompositions via machine learning. Journal of
Artificial Intelligence Research, 2017, 58: 829–858

2.

 Aoun B, Boutaba R, Iraqi Y, Kenward G. Gateway placement
optimization in wireless mesh networks with QoS constraints. IEEE
Journal on Selected Areas in Communications, 2006, 24(11):
2127–2136

3.

 Potluri A, Bhagvati C. Novel morphological algorithms for dominating
sets on graphs with applications to image analysis. In: Proceedings of
the 15th International Workshop on Combinatorial Image Analysis.
2012, 249–262

4.

 Alofairi A A, Mabrouk E, Elsemman I E. Constraint-based models for
dominating protein interaction networks. IET Systems Biology, 2021,
15(5): 148–162

5.

 Jin Y, Hao J K. General swap-based multiple neighborhood tabu search
for the maximum independent set problem. Engineering Applications of
Artificial Intelligence, 2015, 37: 20–33

6.

 Boginski V, Butenko S, Pardalos P M. Statistical analysis of financial
networks. Computational Statistics & Data Analysis, 2005, 48(2):
431–443

7.

 Etzion T, Ostergard P R J. Greedy and heuristic algorithms for codes
and colorings. IEEE Transactions on Information Theory, 1998, 44(1):
382–388

8.

Fig. 3 Critical difference plots about MAE-PB, GRASP+PC, MEMETIC, drMIDS, ILPS2 and ILPS3 on each benchmark. (a) DIMACS;
(b) BHOSLIB; (c) massive graph

Table 7 Summary results of comparing MAE-PB with its competitors on all benchmarks

Benchmark #instance
vs. MAE-PB1 vs. MAE-PB2 vs. MAE-PB3 vs. MAE-PB4 vs. MAE-PB5

#better #worse #better #worse #better #worse #better #worse #better #worse
DIMACS 61 3 0 2 0 2 0 2 0 1 0
BHOSLIB 41 3 1 17 0 10 0 9 0 4 1
massive graph 65 45 20 36 19 35 19 43 22 40 25
Total 167 51 21 55 19 47 19 54 22 45 26

12 Front. Comput. Sci., 2023, 17(4): 174326

 Akyildiz I F, Kasimoglu I H. Wireless sensor and actor networks:
research challenges. Ad Hoc Networks, 2004, 2(4): 351–367

9.

 McLaughlan B, Akkaya K. Coverage-based clustering of wireless
sensor and actor networks. In: Proceedings of IEEE International
Conference on Pervasive Services. 2007, 45–54

10.

 Erciyes K, Dagdeviren O, Cokuslu D, Ozsoyeller D. Graph theoretic
clustering algorithms in mobile ad hoc networks and wireless sensor
networks. Applied and Computational Mathematics, 2007, 6(2):
162–180

11.

 Chen Y, Liestman A, Liu J. Clustering algorithms for ad hoc wireless
networks. Ad Hoc and Sensor Networks, 2004, 28: 76−90

12.

 Lin C R, Gerla M. Adaptive clustering for mobile wireless networks.
IEEE Journal on Selected areas in Communications, 1997, 15(7):
1265–1275

13.

 Basagni S. Distributed clustering for ad hoc networks. In: Proceedings
of the 4th International Symposium on Parallel Architectures,
Algorithms, and Networks. 1999, 310–315

14.

 Chen G, Nocetti F G, Gonzalez J S, Stojmenovic I. Connectivity based
k-hop clustering in wireless networks. In: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences. 2002,
2450–2459

15.

 Garey M R, Johnson D S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman, 1979

16.

 Gaspers S, Liedloff M. A branch-and-reduce algorithm for finding a
minimum independent dominating set in graphs. In: Proceedings of the
32nd International Workshop on Graph-Theoretic Concepts in
Computer Science. 2006, 78–89

17.

 Liu C, Song Y. Exact algorithms for finding the minimum independent
dominating set in graphs. In: Proceedings of the 17th International
Symposium on Algorithms and Computation. 2006, 439–448

18.

 Bourgeois N, Croce F D, Escoffier B, Paschos V T. Fast algorithms for
min independent dominating set. Discrete Applied Mathematics, 2013,
161(4–5): 558–572

19.

 Liang Y, Huang H, Cai Z. PSO-ACSC: a large-scale evolutionary
algorithm for image matting. Frontiers of Computer Science, 2020,
14(6): 146321

20.

 Wang Y, Cai S, Chen J, Yin M. SCCWalk: an efficient local search
algorithm and its improvements for maximum weight clique problem.
Artificial Intelligence, 2020, 280: 103230

21.

 Chen C, Gao L, Xie X, Wang Z. Enjoy the most beautiful scene now: a
memetic algorithm to solve two-fold time-dependent arc orienteering
problem. Frontiers of Computer Science, 2020, 14(2): 364–377

22.

 He P, Hao J K, Wu Q. Grouping memetic search for the colored
traveling salesmen problem. Information Sciences, 2021, 570: 689–707

23.

 Wang Y, Li X, Wong K C, Chang Y, Yang S. Evolutionary
multiobjective clustering algorithms with ensemble for patient
stratification. IEEE Transactions on Cybernetics, 2021, doi:
10.1109/TCYB.2021.3069434

24.

 Liu L, Du Y. An improved multi-objective evolutionary algorithm for
computation offloading in the multi-cloudlet environment. Frontiers of
Computer Science, 2021, 15(5): 155503

25.

 Wang Y, Li R, Zhou Y, Yin M. A path cost-based grasp for minimum
independent dominating set problem. Neural Computing and
Applications, 2017, 28(S1): 143–151

26.

 Wang Y, Chen J, Sun H, Yin M. A memetic algorithm for minimum
independent dominating set problem. Neural Computing and
Applications, 2018, 30(8): 2519–2529

27.

 Haraguchi K. An efficient local search for the minimum independent
dominating set problem. In: Proceedings of the 17th International
Symposium on Experimental Algorithms. 2018, 13

28.

 Wang Y, Li C, Yin M. A two phase removing algorithm for minimum
independent dominating set problem. Applied Soft Computing, 2020,
88: 105949

29.

 Ding J, Lü Z, Li C M, Shen L, Xu L, Glover F. A two-individual based
evolutionary algorithm for the flexible job shop scheduling problem. In:
Proceedings of the AAAI Conference on Artificial Intelligence. 2019,
280

30.

 Moalic L, Gondran A. Variations on memetic algorithms for graph
coloring problems. Journal of Heuristics, 2018, 24(1): 1–24

31.

 Peng B, Zhang Y, Cheng T C E, Lü Z, Punnen A P. A two-individual
based path-relinking algorithm for the satellite broadcast scheduling
problem. Knowledge-Based Systems, 2020, 196: 105774

32.

 Zheng P, Zhang P, Wang J, Zhang J, Yang C, Jin Y. A data-driven
robust optimization method for the assembly job-shop scheduling
problem under uncertainty. International Journal of Computer Integrated
Manufacturing, 2020, doi: 10.1080/0951192X.2020.1803506

33.

 Sun Q, Dou J, Zhang C. Robust optimization of flow shop scheduling
with uncertain processing time. In: Proceedings of 2020 IEEE
International Conference on Mechatronics and Automation. 2020,
512–517

34.

 Wang Y, Lü Z, Punnen A P. A fast and robust heuristic algorithm for
the minimum weight vertex cover problem. IEEE Access, 2021, 9:
31932–31945

35.

 Xu Z, He K, Li C M. An iterative path-breaking approach with mutation
and restart strategies for the max-sat problem. Computers & Operations
Research, 2019, 104: 49–58

36.

 Glover F. Tabu search—part I. ORSA Journal on Computing, 1989,
1(3): 190–206

37.

 Feo T A, Resende M G C. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 1995, 6(2): 109–133

38.

 Trick M A, Johnson D S. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, October 11-13, 1993. Boston:
American Mathematical Society, 1996

39.

 Zhou Y, Hao J K, Duval B. Reinforcement learning based local search
for grouping problems: A case study on graph coloring. Expert Systems
with Applications, 2016, 64: 412–422

40.

 Wang Y, Hao J K, Glover F, Lü Z, Wu Q. Solving the maximum vertex
weight clique problem via binary quadratic programming. Journal of
Combinatorial Optimization, 2016, 32(2): 531–549

41.

 Xu K, Boussemart F, Hemery F, Lecoutre C. Random constraint
satisfaction: easy generation of hard (satisfiable) instances. Artificial
Intelligence, 2007, 171(8–9): 514–534

42.

 Cai S, Su K, Luo C, Sattar A. NuMVC: an efficient local search
algorithm for minimum vertex cover. Journal of Artificial Intelligence
Research, 2013, 46: 687–716

43.

 Wu Q, Hao J K. A review on algorithms for maximum clique problems.
European Journal of Operational Research, 2015, 242(3): 693–709

44.

 Rossi R A, Ahmed N K. The network data repository with interactive
graph analytics and visualization. In: Proceedings of the 49th AAAI
Conference on Artificial Intelligence. 2015, 4292–4293

45.

 Cai S. Balance between complexity and quality: local search for
minimum vertex cover in massive graphs. In: Proceedings of the 24th
International Conference on Artificial Intelligence. 2015, 747–753

46.

 Wang Y, Cai S, Yin M. Two efficient local search algorithms for
maximum weight clique problem. In: Proceedings of the 30th AAAI
Conference on Artificial Intelligence. 2016, 805–811

47.

 López-Ibáñez M, Dubois-Lacoste J, Cáceres L P, Birattari M, Stützle T.
The irace package: iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 2016, 3: 43–58

48.

 Friedman M. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 1937, 32(200): 675–701

49.

 Garcia S, Herrera F. An extension on "statistical comparisons of
classifiers over multiple data sets" for all pairwise comparisons. Journal
of Machine Learning Research, 2008, 9(12): 2677–2694

50.

Shiwei PAN et al. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem 13

http://dx.doi.org/10.1109/TCYB.2021.3069434
http://dx.doi.org/10.1080/0951192X.2020.1803506
http://dx.doi.org/10.1109/TCYB.2021.3069434
http://dx.doi.org/10.1080/0951192X.2020.1803506
http://dx.doi.org/10.1109/TCYB.2021.3069434
http://dx.doi.org/10.1080/0951192X.2020.1803506
http://dx.doi.org/10.1109/TCYB.2021.3069434
http://dx.doi.org/10.1080/0951192X.2020.1803506

 Luo C, Cai S, Wu W, Su K. Double configuration checking in stochastic
local search for satisfiability. In: Proceedings of the 28th AAAI
Conference on Artificial Intelligence. 2014, 2703–2709

51.

 Luo C, Cai S, Wu W, Jie Z, Su K. CCLS: an efficient local search
algorithm for weighted maximum satisfiability. IEEE Transactions on
Computers, 2015, 64(7): 1830–1843

52.

 Luo C, Cai S, Su K, Huang W. CCEHC: an efficient local search
algorithm for weighted partial maximum satisfiability. Artificial
Intelligence, 2017, 243: 26–44

53.

 Liu X, Liang J, Liu D Y, Chen R, Yuan S M. Weapon-target assignment
in unreliable peer-to-peer architecture based on adapted artificial bee
colony algorithm. Frontiers of Computer Science, 2022, 16(1): 161103

54.

 Qian C, Shi J C, Tang K, Zhou Z H. Constrained monotone k-
submodular function maximization using multiobjective evolutionary
algorithms with theoretical guarantee. IEEE Transactions on
Evolutionary Computation, 2018, 22(4): 595–608

55.

 Luo C, Hoos H H, Cai S, Lin Q, Zhang H, Zhang D. Local search with
efficient automatic configuration for minimum vertex cover. In:
Proceedings of the 28th International Joint Conference on Artificial
Intelligence. 2019, 1297–1304

56.

 Lei Z, Cai S, Luo C, Hoos H. Efficient local search for pseudo Boolean
optimization. In: Proceedings of the 24th International Conference on
Theory and Applications of Satisfiability Testing. 2021, 332–348

57.

Shiwei Pan received the BS and MS degrees from
the Department of Computer Science and
Technology, Northeast Normal University, China
in 2018 and 2021. His current research interests
include heuristic search and combinatorial
optimization.

Yiming Ma studied at the School of Computer
Science and Information Technology, Northeast
Normal University, China, with a master’s degree
in Computer Science, and the research direction is
heuristic search, local search, algorithmic design,
and combinatorial optimization.

Yiyuan Wang is Associate Professor at School of
Computer Science and Information Technology,
Northeast Normal University, China. He received
his PhD degree from Jilin University, China. His
research interests include heuristic search, local
search, algorithmic design, and combinatorial
optimization.

Zhiguo Zhou is Associate Professor of Northeast
Normal University and received the PhD degree
from the College of Computer Science and
Technology, Jilin University, China in 2008. His
current research interests include algorithm design
and analysis.

Jinchao Ji is a Lecturer at School of Information
Science and Technology, Northeast Normal Univer-
sity, China. He received his MS and PhD degrees
in Computer Application Technology from Jilin
University, China in 2010 and 2013, respectively.
His research interests include machine learning,
data mining, and artificial intelligence.

Minghao Yin is Professor at School of Computer
Science and Information Technology, Northeast
Normal University, China. He received his PhD
degree in Computer Software and Theory from
Jilin University, China. His research interests
include heuristic search, data mining, and
combinatorial optimization.

Shuli Hu is a Lecturer at Northeast Normal
University, China. She received the PhD degree
from the Department of Computer Science and
Technology, Northeast Normal University, China
in 2019. Her current research interests include
heuristic search and combinatorial optimization.

14 Front. Comput. Sci., 2023, 17(4): 174326

	1 Introduction
	1.1 Related works
	1.2 Our contributions

	2 Background
	2.1 Basic definitions and notations
	2.2 Review for master-apprentice evolutionary algorithm
	2.3 Review for score strategy of MIDS

	3 A novel master-apprentice evolutionary algorithm for MIDS
	3.1 General scheme
	3.2 The construction function for MIDS
	3.3 The PathBreak strategy for MIDS
	3.4 The local search algorithm for MIDS
	3.5 The perturbation framework for MIDS

	4 Experiments
	4.1 The benchmarks
	4.2 Experimental preliminaries
	4.3 Parameter settings of the MAE-PB algorithm
	4.4 Results on DIMACS benchmark
	4.5 Results on BHOSLIB benchmark
	4.6 Results on massive graph
	4.7 Critical difference analysis
	4.8 The effectiveness of the proposed components

	5 Conclusion
	References

