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Abstract Most of the search-based software remodularization
(SBSR) approaches designed to address the software
remodularization problem (SRP) areutilizing only structural
information-based coupling and cohesion quality criteria.
However, in practice apart from these quality criteria, there
require other aspects of coupling and cohesion quality criteria
such as lexical and changed-history in designing the modules of
the software systems. Therefore, consideration of limited
aspects of software information in the SBSR may generate a
sub-optimal modularization solution. Additionally, such
modularization can be good from the quality metrics
perspective but may not be acceptable to the developers. To
produce a remodularization solution acceptable from both
quality metrics and developers’ perspectives, this paper
exploited more dimensions of software information to define
the quality criteria as modularization objectives. Further, these
objectives are simultaneously optimized using a tailored many-
objective artificial bee colony (MaABC) to produce a
remodularization solution. To assess the effectiveness of the
proposed approach, we applied it over five software projects.
The obtained remodularization solutions are evaluated with the
software  quality metrics and developers view of
remodularization. Results demonstrate that the proposed
software remodularization is an effective approach for
generating good quality modularization solutions.

Keywords software restructuring, remodularization, multi-
objective optimization, software coupling and cohesion

1 Introduction

Frequentchanges made in the source code during maintenance
often degrade the design of the software system [1]. To
improve the design of a degraded software system,
remodularization of source code is generally carried out [2]. In
the previous two decades, many remodularization approaches
based on deterministic automated software clustering and
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search-based automated software clustering have been
proposed (e.g., [2—7]). It has been found that for a large and
complex software system, the search-based automated
software clustering approaches are more effective for
modularizing the source code compared to the deterministic
automated software clustering approaches [1—7].The concept
of transforming the software remodularization problem (SRP)
as a search-based single/multi/many-objective optimization
problem makes it more promising and opens ample
opportunity for the application of metaheuristic optimization
algorithms [1]. Such a technique of addressing the SRPs is
generally regarded as search-based software remodularization
(SBSR). The SBSR performance depends on the suitability of
the metaheuristic optimization algorithm and the effective
design of the objective functions.

Most of the existing metaheuristic optimization algorithms
designed to address the SRP have exploited the existing
framework of the canonical metaheuristic optimization
algorithms (e.g., [7—11]). Overall, many SBSR approaches
have successfully exploited the framework of the existing
canonical metaheuristic optimization algorithm and provided a
customized version of the SBSR algorithm. Similar to the
considerable progress in the development of the customized or
tailored version of the SBSR algorithm, tremendous growth in
designing various objective functions reflecting the different
aspects of software quality has also been observed [2—7]. The
modularization quality (MQ) [2] is a widely used software
quality metric for objective/fitness function in different single-
objective SBSR approaches [5,8]. The other multi-objective
SBSR approaches [6—7] wuse the refined version of
modularization quality (MQ) [6]. The definition of MQ
metrics uses only structural information;therefore, it only
represents the structural aspect of software quality. To
improve the meaningfulness of the generated remodularization
solutions, the approaches [5,9,12—13] use the lexical aspects
of software quality along with the structural aspects of
software quality. Recently, some studies [1,9,14] exploited the
conceptual aspects of software quality along with the
structural and lexical aspects of software quality.
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Even the existing SBSR approaches perform well in
addressing a particular aspect of software remodularization;
still, many challenges remained untouched. For example, most
of the software remodularization approaches either consider
limited dimensions of artefacts or give equal importance to
each dimension of information in defining the objective
functions. However, it is commonly observed that the different
dimensions of structural, lexical, and changed history
information generally contribute differently in the software
remodularization process instead they contribute equally.
Apart from defining the objective functions, some issues
remain untouched in designing the search-based metaheuristic
optimization algorithm. Most of the SBSR approaches use the
traditional multi-objective optimization algorithms in solving
the remodularization problems having a large number (more
than three) of objective functions. The traditional multi-
objective optimization algorithms work well with optimization
problems having a small number (less than three) of objective
functions and do not work well with a large number of
objective functions.

To address the aforementioned issues concerning the
definition of the objective functions and designing the
metaheuristic optimization algorithm for the SRP, we
introduce an improved definition of objective functions and
many-objective metaheuristic optimization algorithm. In
particular, in the existing definition of software package
coupling and cohesion, we incorporate the different
dimensions of structural, lexical, and changed-history
information and introduced different categories of coupling
and cohesion metrics. In each type (i.e., structural, lexical, and
changed-history) of source code information used for defining
the coupling and cohesion metrics, we also consider different
dimensions of structural information, different dimensions of
lexical information, and different dimensions of changed-
history information with their relative importance. Apart from
different types of object functions defined in terms of
structural, lexical, and changed-history information, we also
consider the other supportive objectives, i.e., the number of
clusters, and the difference between the minimum and the
maximum number of modules in a cluster. The major
contributions of this paper are summarized as follows:

e A variety of class coupling methods based on the
different dimensions and combinations of structural,
lexical, and changed-history information is introduced
and further, these class couplings are used to define the
different types of software coupling and cohesion for
the remodularization of software systems.

e In the computation of class coupling, the different
dimensions of structural, lexical, and changed-history
information are given different weightage according to
their importance in the coupling.

e To optimize the different objectives to produce the
software remodularization solutions, an existing many-
objective artificial bee colony (MaABC) has also been
tailored by incorporating various strategies.

e The proposed approach’s supremacy is validated by
applying it over the different instances of

many-objective SRPs. Especially, five object-oriented
software projects having varying chrematistics are
considered as the test problems

The remaining part of the paper is organized as follows.
Section 2 presents related works based on the structural,
lexical, and changed history remodularization. Section 3
provides a detailed description of proposed software
remodularization methodology. Section 4 explains the
experimentation configuration designed for the experimenta-
tion. Section 5 presents a discussion of the results. Section 6
covers the various types of threats that can affect the
validation of the results and their mitigation strategies. Section
7 concludes the work with the suggestion of future directions.

2 Related works

In the literature on search-based software engineering, a
variety of SBSR approaches addressing the different aspects
of software design improvements have been proposed (e.g.,
[1-11]). These SBSR approaches exploit the framework of the
existing metaheuristic optimization algorithms and tailor them
according to the suitability of the SRPs. Based on the number
of objectives involved in the SRP, the SBSR approaches can
be divided into single-objective SBSR approaches, multi-
objective SBSR approaches, or many-objective SBSR
approaches. Further, based on the type of information used in
designing the objective functions these SBSR approaches can
be further divided into 1) structural information-based SBSR
approaches (S-SBSR approaches), 2) structural + lexical
information-based SBSR approaches (SL-SBSR approaches),
3) structural + lexical + changed history information-based
SBSR approaches (SLC-SBSR approaches).

2.1 S-SBSR approaches

The designing of the objective functions in many of the SBSR
approaches is based on the source code’s structural informa-
tion. Over the last two decades, many SBSR approaches based
on structural information have been proposed to address the
different aspects of SRPs. The availability of various tools for
extracting the different dimensions of structural information
from the source code made the structural information based
SBSR approaches more popular in the research community.

In the structural information-based SBSR, the source code
implementation’s structural information is used to define the
different modularization criteria as objective functions. The
different programming paradigms use different construction to
realize the different implementation requirements. Therefore,
the structural information can vary according to the underlying
programming language used for system implementation. For
example, in Java-based object-oriented software, the classes
can be considered as modules and method calls and
inheritance relationships can be used to compute the class
coupling. On the other hand, in a procedural programming
language such as C programming, the source file can be
considered as modules and function calls can be used to
compute the module coupling. The structural information-
based SBSR approaches based on the number of quality
criteria used as the objective function can be divided into
1) single-objective structural information-based SBSR,
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2) multi/many-objective structural information-based SBSR.

In the literature on SBSR, many approaches have used
structural information to define the modularity criteria as
objective/fitness functions for the formulation of SRP as
single or multi-objective SRP. In the context of single-
objective SRP, the structural information is used to define a
single modularization quality criterion as a single objective
function. Mancoridis et al. (1998) [2] in the direction of
single-objective structural information-based SBSR is the first
approach, where the structural source code information is used
to define the single-objective function and optimized using the
genetic-based metaheuristic optimization algorithm. In
particular, the approach uses the structural information and
defined modularization quality (MQ) metrics to assess the
software modularity quality and further it is used as an
objective function in the genetic algorithm-based software
remodularization framework. Moreover, this approach’s input
is in the form of a module dependency graph (MDG) and the
MQ is defined in terms of inter-connectivity and intra-
connectivity of the graph partition. A similar definition of MQ
has also been used in [8,15] to quantify the quality of software
partitioning for software remodularization. Doval et al. (1999)
[15] treated the software partitioning problem as an
optimization problem and used the Genetic Algorithm (GA) to
find a good modularization solution from the search space
based on the MQ as fitness. Mahdavi et al. (2003) [8]
transformed the software system into the weighted and un-
weighted MDG and used the multiple hill-climbing optimizers
to find a good partitioning solution based on the MQ as the
fitness function.

Abdeen et al. (2011) [7] also treated the SRP as a
restructuring of the existing package structure of an object-
oriented software system. Their approach optimizes software
modularization by minimizing the direct package cyclic
dependencies. For this, a fitness function based on package
coupling and cohesion is used to guide the Simulated
Annealing (SA) driven optimization process of the software
remodularization. To compute the package coupling and
package cyclic dependencies different types of class
relationships such as method calls and class inheritance have
been used. Prajapati and Chhabra (2017) [9] uses the different
dimensions of structural information to quantify the
modularization quality of object-oriented software systems.
Further, they used the modularization quality as a fitness
function to optimize the system’s modular. To explore and
exploit the search space to find a good modularization
solution, their optimization approach uses a Harmony Search
(HS) based metaheuristic optimization algorithm.

Apart from the single-objective structural information-based
SBSR approaches, there also has been tremendous growth in
the direction of multi-objective structural information-based
SBSR approaches In the multi-objective formulation of SRP,
the different types of structural information are used to define
the different aspects of software quality metrics and they are
optimized  simultaneously using the multi-objective
metaheuristic optimization algorithm for the software
remodularization. In the direction of multi-objective structural
information-based SBSR, the approach reported by
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Praditwong et al. (2011) [6] is regarded as the base work. This
work defines two sets of remodularization criteria as objective
functions. It uses the evolutionary-based multi-objective
metaheuristic optimizer to optimize each set of objectives
simultaneously to improve the software modular structure.

To evaluate the effectiveness of composite objectives [6]
with inclusion and exclusion of some supportive objectives in
the multi-objective formulation of software module clustering
problem, Barros (2012) [16] presented an empirical analysis.
Their study concluded that the exclusion of some objective
(i.e., supportive objective) from the composite objective can
also help in generating effective and efficient results. To
improve the metaheuristic optimization algorithm’s
effectiveness and efficiency for the multi-objective software
module clustering problem, Kumari and Srinivas (2016) [17]
presented a hyper-heuristic based evolutionary algorithm. The
approach generated a better module clustering solution
compared to the existing GA-based approaches under the
same set of composite objectives [6]. In the direction of
improving the metaheuristic optimization algorithm for the
multi-objective SRP, Prajapati and Geem (2020) [18]
proposed a Harmony Search (HS) based software remodulari-
zation approach for software architecture reconstruction
activity.

2.2 SL-SBSR approaches

The different dimensions of the structural relationship existing
among the software entities are the most widely used source
code information in software remodularization. Many software
remodularization approaches have used structural relationships
in defining the software modularity criteria as fitness/objective
functions evaluating the modularization solution. However,
other source code information such as linguistic information
embedded in the form of comments and identifiers has not
gained more attention in the search-based software
engineering community. Some researchers have demonstrated
the usefulness of lexical information of the source in
restructuring the software systems for different purposes.

In some work, the researchers have combined the lexical
information with the structural information to guide the
remodularization process. In some work, researchers have
used the lexical information separately. In the combined
structural and lexical information based SBSR approaches, the
single or various dimensions of structural and lexical
information are together used to define the objective functions.
Further, they are optimized using single or multi-objective
metaheuristic optimization algorithms. The structural and
lexical information based SBSR approaches has been found
more effective in generating remodularization solutions as
intended by the software developers compared to the separate
structural information-based SBSR.

To evaluate the effectiveness of combined structural and
lexical similarity in software remodularization, Anquetil and
Lethbridge (1999) [5], uses the various features corresponding
to the different types of structural and lexical information.
Especially, they used the formal and non-formal features of
the source code to quantify the coupling of entities and uses
the Bunch framework to restructure the software systems. To
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generate the meaningful decomposition of the software
packages, the approach presented in [13] uses the semantic
and structural relationships existing between the packages’
classes. They combined the structural coupling measures, i.e.,
information-flow-based coupling (ICP), and semantic
coupling measure, i.e., the conceptual coupling between
classes (CCBC) with their relative weights into a single
coupling measure. Even if the approach does not use the
search-based software engineering concepts, the coupling
measures can be easily used as fitness functions.

To improve the accuracy of meaningfulness of
remodularization solution of the multi-objective software
remodularization approach, Prajapati and Chhabra (2017) [9]
suggested the use of the different aspects of structural and
lexical class dependency information to compute the package
coupling and cohesion for the object-oriented software
systems. They used the NSGA-II based multi-objective
evolutionary algorithm as the optimization technique for
software remodularization. In case of unavailability of tool to
extract the structural information, Kargar et al. (2017) [19]
suggested the use of lexical information embedded in the
source code of the software system. The authors proposed the
semantic dependency graph as an alternative for the call
dependency graph (CDG) based on the lexical information. To
partition the SDG to generate a clustering solution, they used
the hill-climbing algorithm as a search optimizer. Their results
demonstrate that SDG can be a good alternative if the software
systems are developed in different programming languages
and the extraction of CDG is not feasible.

2.3 SLC-SBSR approaches

It is commonly observed that the software developers
generally modularize the different software elements based on
the various types of information not only the single aspects of
design information. Keeping these facts in mind, various
software remodularization approaches have been proposed by
utilizing different types of artefacts. Even the structural and
lexical-based software remodularization approaches perfor-
ming well to produce a good quality software remodulariza-
tion solution, incorporating some other artefacts such as
changed-history, can make the modularization solution more
effective.

In the literature on SBSR, only a few papers have
considered the combined structural, lexical, and changed
historyinformationinthe formulationof SBSR problem. Mkaouer
et al. (2015) [1] presented the first study, where the structural,
lexical, and changed history information is exploited to define
the different types of modularity metrics. They used the
concept of many-objective optimization to optimization all
conflicting modularization quality criteria. Later some other
researchers and academicians have also provided some
contributions in this direction.

Rathee and Chhabra (2018) [20] utilized the structural,
lexical, and changed history information with their relative
importance in defining the modularization criteria. Additio-
nally, they explored the multiple dimensions of structural and
lexical information that can improve modularization criteria’
effectiveness. Recently, Prajapati et al. (2020) [14] also

exploited the structural, lexical, and changed history
information to compute the class coupling strength for the
computation of object-oriented software package coupling and
cohesion.

3 Proposed approach
In the proposed SBSR, the major contributions are divided
into two parts. The first part focuses on designing the
remodularization objective model and the second part
concentrates on the developmentof the customized many-
objective optimization algorithm.

3.1 SRP formulation

Software remodularization is the problem of optimizing the
software entities’ distributions into existing modules to
improve the quality of software systems. The definition of
software entities and modules can vary according to the
programming paradigms used for the implementation and
abstractions. In this work, we are mainly focusing on the
object-oriented software systems where classes are assumed as
software entities and modules as packages. A well-distribution
of source code classes into packages have to satisfy many
quality criteria (often conflicting). The number and definition
of quality criteria used in remodularization process vary
according to the purpose and quality requirements. The quality
requirements for the large and complex systems are getting
very large. Moreover, well-modularized software systems
have to satisfy various dimensions of software quality. To
make the remodularization solution more useful, we consider
the following software quality for the remodularization based
on structural, lexical, and changed history information.

Structural software package coupling and cohesion The
structural package coupling and structural software package
cohesion of an object-oriented software project measure the
degree of inter-relatedness of packages and the degree of intra-
relatedness of packages corresponding to the structural
relationships, respectively. To compute the structural package
coupling and cohesion, using the structural coupling of the
classes is a common and effective approach. To capture the
structural coupling between the classes, many coupling
metrics have been proposed in object-oriented software
engineering literature. In this direction, the study conducted by
Li and Henry [21] has formulated various types of structural
information-based class coupling metrics (e.g., Data
abstraction coupling (DAC) and message passing coupling
(MPC)) to compute the class coupling.

The response for a class (RFC) and coupling between the
object (CBO) introduced by Chidamber and Kemerer [22] are
the other two most widely used class coupling metrics to
compute the structural class coupling. Martin [23] also
introduced Afferent Coupling (Ca) and Efferent Coupling (Ce)
metrics based on the structural class dependency information
to compute the class coupling. Briand et al. [24] designed
several structural information-based coupling metrics to
compute the coupling between the classes. Further, Briand
et al. [25] build a unified framework based on the coupling
metrics developed in the literature [26—27] to computation
class coupling of object-oriented software systems. To exploit
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the importance of polymorphism in coupling computation, Lee
et al. [28] introduced an information flow-based coupling
(ICP) metric.

The aforementioned coupling metrics can be useful to
quantify and evaluate the quality of object-oriented software
systems. But they cannot be effective if used as a fitness/
objective function to guide the remodularization process in
search-based software modularization. This software coupling
metrics uses only limited types of structural class information
to compute the coupling metrics. However, the
remodularization process requires class coupling metrics as
fitness/objective function that consists of various dimensions
of class coupling information. Because the software
developers generally use various dimensions of the class
coupling information according to their relative importance in
modularizing the software modules in the software
components. Therefore, in this study, we also exploit various
structural information dimensions to compute the class
coupling for the use of the software package coupling and
cohesion computation. The definitions of different types of
structural class dependencies are derived from these studies
[9,29]. These are the 1) extends relationship (EX),
2) implementsrelationship (IM), 3) is-of-type relationship (IT),
4) reference (RE), 5) method callsrelationship (CA), 6) has
parameterrelationship (HP), 7) returnsrelationship (RT), and
8) throws relationship (TH).

The structural software package coupling and cohesion are
the two most important remodularization quality criteria which
are highly required and widely used in SBSR as objective
functions. The definition of these two quality criteria can vary
according to the considered structural information. The
package coupling and cohesion are defined as follows.

S Pcou(M) = Zn:2®(6i,cj), (D

i=1 jeT;

n
S Pcoh (M) = Z Z o(cic;). ©)
i=1 jeT;
where M is the particular modularization containing » number
of classes. The T; is the set of classes that are in the same
package as of class ¢; . The @(ci,cj) computes the connection

strength between class ¢; and c;. The value of @(ci,cj) is
computed as follows.

@(c,-,cj) = ZrGRwrxnr (ci,cj). 3)

R is the set of different types of structural relationships i.e.,
R={EX, IM, IT, RE, CA, HP, RT, TH}, w, is the relative
weight of a particular relationship re R, and n, is the
frequency of r-type relationship.

To compute the relative weights of the relationships is an
essential and challenging task because it has a significant
impact on class coupling value and quantification of
remodularization quality. In this study, we use the relative
weight computation approach, as presented in [9].

Lexical software package coupling and cohesion Once the
underlying domain vocabulary at package level is identified
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and vector representation is used for efficiently processing
recognized domain vocabulary. The next step is to compute
concept relatedness using vector representation for identified
domain vocabulary. This paper considers determining
relatedness using a freely available software package called
WordNet. WordNet is a widely acknowledged approach to
determining the semantic similarity between two words. It is
an extensive lexical database (containing semantic/ conceptual
relations among different words) of English that organizes
different verbs, adverbs, nouns, and adjectives into different
hierarchical structures called synsets based on underlying
semantic relations such as synonymy, autonomy, and
hyponymy. The degree of semantic/ lexical relatedness among
two words/ concepts says ¢, and c, are measured using the
concept of path length between concepts (synsets) represented
by ¢, and c,, respectively. The path length based lexical
relatedness in this paper is measured using the metric as
proposed by Wu et al. [30]. The following expression gives
the mathematical formulation for measuring this conceptual/
lexical similarity between two concepts ¢, and c,:

2xdep(c)
len(cy,c) +len(ca,c) +2xdep(c)’

4

Here, ¢ in the considered mathematical formulation
represents the lowest common subsumer (LCS) between any
two different considered concepts ¢, and ¢,. LCS is commonly
defined as the most common ancestor/ parent of both ¢, and
¢,. Moreover, len(ci,c) and len(cz,c) represents the total
number of edges that exist in the path described by two nodes.

The source code of a software system is a rich source of
acquiring domain-specific vocabulary [20]. The authors of this
chapter think that this domain-specific vocabulary can be
easily built by tokenizing six main parts of the underlying
source code of a class. These essential parts include comments
sections introduced by developers for -elaborating the
particular section, identifiers used for naming classes, member
variables declaration section, signatures used to describe
different methods, identifiers used as parameter names, and
body section of methods. Further, the authors in this paper
believe that the semantic information represented by these
considered six parts can is of different relevance. Therefore,
tokens extracted from each part are considered different and a
unique weight is assigned to each part while combining
overall lexical strength. The weights assigned to different parts
are estimated by formulating a probabilistic lexical model and
utilizing the Expectation-Maximization (EM) algorithm as
used in [31].

Based on the concept of building an efficient domain
vocabulary model (by extracting tokens from six different
parts and assigning unique weights to them) and determining
lexical similarity between any two concepts using the
proposed Eq. (4). The next step is to measure the overall
values for considered two quality parameters viz cohesion, and
coupling at the package level, say P. The mathematical
formulation used for measuring these parameters is as
following:

Sim(cy,c2) =
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N T
Z Z Sem(ci,c;)
7 T
LexS trength,(N,T) = : iji(tN ) ) (5)

6
S emCoh(P) = Average (Z wi * LexS trength; (N, N )] , (6)
k=1

6
SemCup (P) = Average (Z wi * LexS trengthy, (N, T)]. @)
k=1

Here, N is the total number of lexemes present in the DV of
package P extracted from the kth part and T is the total
number of lexemes present in the DV of the rest of the
subsystem (the obtained modular structure except the package
P being considered) extracted from the same kth part.

Changed-history software package coupling and
cohesion During the life cycle of the software, system changes
are made to the software components. The developer made
changes and record them as change commits in the version
history or repository [3,4]. So, the frequent co-change pattern
among the components like classes can be considered as
change-coupling among them. In literature, most of the
coupling and cohesion measurement is computed statically by
analysing the source code [12,22,32]. The majority of the
source code metrics include LOC, coupling, cohesion,
function points, inheritance [12,32—34]. Static analysis of the
source code sometimes shows stagnation as it does not
entirely reflect software evolution. In the present development
scenario, software evolution is recorded using version or
configuration management systems as software repositories
like Github and Sourceforge [3,4]. Such software repositories
consist of valuable information about the evolution of the
software applications in terms of their change history. Change
history lists the changes that are made in the past and collects
the software changelogs.

Apart from the structural and semantic analysis, change
commits should be analyzed to compute the dependency

metrics that can contribute to the re-modularization,
restructuring, and clustering of the legacy or existing software
system modules. Various studies have investigated

evolutionary data for computing cohesion and coupling
[32—34], co-change pattern [35], change impact analysis etc.
[3,4,36—38] exploited the change history. It computed
different metrics to further restructure the software systems by
applying various classification and clustering techniques.

Additionally, Amarjeet et al. [14] also used structural and
change coupling information to re-modularise the software
system. While traditional dependency measures are widely
utilized to measure the quality of the software system. But in
the present development scenario, it is necessary to analyze
the change repositories to predict the various types of
dependencies to compute coupling and cohesion and structural
and semantic measures. Through this, a developer can have a
view of the historical co-change pattern of software entities.
The literature has observed that none of the studies has fully
utilized the structural, semantic, and change history for
dependency measurements to apply search-based techniques
further. Through this, the maintainer can implement future
changes and also restructure the system effectively.

Considering the importance of past co-change behaviour of
software entities, change-coupling metrics have been
computed based on software change history. We have
explored the classes that are changed together in the past and
may have some proximity. If several change-commits indicate
co-change pattern of a few classes, then such co-change
pattern should be considered as possible change-coupling
among these classes. Here, we intend to measure change-
coupling pattern at attribute, method and class levels. For this
purpose, metrics namely Attribute-level change coupling,
Method-level change coupling, Class-level change coupling
are computed. These coupling measures are further used to
calculate the overall coupling and cohesion among the
packages as mentioned below:

ChC(c;)) = a1 *AChC (¢;)+ap +* MChC (¢;) + a3« CChC (c;),
(3)

ChCoH (¢;) =1 * AChC (¢;) + 2% MChC (¢;) + 3 * CChC (c(i)),

9
where ChC (c;)- Change-coupling of class c¢;, AChC (c;)-
Attribute level change-coupling of ¢;, MChC (c;)- Method
level change coupling of class ¢;, CChC(c;)- Class level
change-coupling of class ¢;, and a1, a», and a3 are the
coupling weights assigned to each type of the coupling. 8, 8,,
and 8, are the cohesion weights assigned respectively. The
demonstration of change coupling is given Fig. 1.

The two classes ¢; and c¢; may have attribute level change-
coupling if some attributes of ¢; and ¢; are frequently changed
together. Such information types need to be extracted from the
changelogs or commits recorded in the version or change
history of the software system. The definition of AChC (¢;) is
mentioned below.
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Fig.1 Demonstration of change coupling



Amarjeet PRAJAPATI et al.

n

AC]’!C(C,’)z Z AChprox(Ci’Cj),
Jj=1,j#i

(10)

where, AChC (c;)- Attribute level change coupling of class ¢;,
AChproxci,cj)- Attribute level change coupling (proximity)
between the classes ¢; and c¢;. And n is the total number of
classes. The metrics to compute the Attribute level change
coupling (proximity) i.e.,AChpoxci,c;) between the class’s ¢;
and c; is described as under:

NAc; NAc;

ZZ

where NAc; and NAc; are the number of attributes of the
class’s ¢; and c;, respectively. c;ay is the list of attributes of
class ¢; (k=1 to NAc;), cja; is the list of attributes of class c;
(/=1 to NAc;). |cjarUcjayl gives the number of changes
commits in which the attributes of classes ¢; and c; that are co-
changed together. |c;a; Ucja| gives the number of changes
commits in which the attributes of classes c; or c¢; or both are
changed.

The two classes ¢; and ¢; may have method level change
coupling is few methods of ¢; and ¢; are frequently changed
together in the past. Such types of information need to be
extracted from the change logs or commits recorded in the
version or change history of the software system. The
definition of MChC (c;) is mentioned below.

Ic,ckncjcll
ACh prox Cla C/

(11)

lc;ar U cja1|

n
MChC(c)= ) MChyrox(cisc)).
j=1,j#i

(12)

Here, MChC (c;)- Method level change coupling of class c;,
MChproxci,cj)- Method level change coupling (proximity)
between the classes ¢; and c;. n-Total number of classes. The
metrics to compute the method level change coupling
(proximity) i.e.,MChpoxci,c;) between the class’s ¢; and c; is
described as under:

NMC,NMC]

2 2 e eral

where NMc; and NMc; are the number of methods of the
classs’sc; and c;, respectively. ¢;my is the list of methods of
class ¢; (k=1 to NMc;), cja; is the list of methods of class c;
(k=1 to NMc;). |c;mxNcjmy| gives the number of changes
commits in which the methods of classes ¢; and c; that are co-
changed together. |c;ax Ucja| gives the number of changes
commits in which the methods of classes c; or c¢; or both are
changed.

The two classes ¢; and c; may have class level change
coupling, a) if class ¢; inherits from another class c;, b) if class

leimy N cjmy|
MChprox cl’c_] 13)

lcjarUc; all’
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c; realizes interface of class c¢;. Such classes may frequently
co-change together in the past, and this type of coupling
information could be extracted from the change logs or
commits recorded in the version or change history of the
software system. The definition of CChC (c;) is mentioned
below.

n
CChC(c)) = Z CChprox(Cist)a
jeL i

(14)

where CChC (c;)- Class level change coupling of class ¢,
CChprgx(ci,cj)— Class level change coupling (proximity)

between the classes ¢; and c;, n-total number of classes. The
metrics to compute the class level change coupling

(proximity) i.e.,CChprox (c,, ) between the class’s ¢; and c; is
described as under:

Zn: cinej

Jj=1,j#i

CChprox(cicj) = (15)

ciUcj )

Here, c; N c; gives the number of changes commits in which
the classes ¢; and c; that are co-changed together. ¢; N c; gives
the number of changes commits in which the classes ¢; or c; or
both are changed.

The overall process of computing the different levels of
change-coupling involvethe following three significant steps:
Step-1: Mining software repository to extract all the
changelogs/commits of the subjected software application.
Step-2: Filtration and pre-processing of the available change-
commits. Step-3: The relevant change-commits are explored
to extract the co-change pattern to compute ACKC (c;),
MChC (¢j), CChC(c;) and ChC (c;) change coupling metrics
as described above. It is demonstrated in Fig. 2.

Software remodularization as many-objective
optimization problem Inmany-objective optimization model
of any problem, a large number (i.e., more than three) of
objective functions (often conflicting) along withsome
equality and inequality constraints has to be optimized to
generate the solutions.The many-objective optimization
definition of the software remodularization problem can be
given as follows:

minF (d) = [fi @), L(d),.... fu (D], M >3,
dhover <d; <d"PP, i=1,..n
i i ’ ERERT]

In the context of software remodularization problem,
f@d),f(d),..., fu(d) are the quality criteria defined in terms
of decision variable d. The d-*"* and dl.Up P are the ith
decision variable’s lower and upper bound and » is the number
of decision variables.In software remodularization, we have
defined the different set of objective functions based on the

(16)

Extract all the
change-commits

Software
Repository

Computation of change

Filtration and pre- couplings
processing of change- AM(("{]h((‘g(q))
E hC(e,
commits CChC(e)
ChC(c))

Fig.2 Methodology for computing different level of change coupling
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structural, lexical, and changed-history dependency
information. The definition of each group of many-objective
SRP (i.e., variants of the many-objective optimization
problems) is given as follows:

e MaSRV-1: In this variant the objective functions are:
changed-history coupling (to maximize), changed-
history cohesion (to maximize), changed-history MQ
(to maximize), number of clusters (to maximize), and
the difference between minimum and maximum number
of modules in a cluster (to minimize).

e MaSRV-2: In this variant the objective functions are:
lexical coupling (to maximize), lexical cohesion (to
maximize), lexical MQ (to maximize), number of
clusters (to maximize), and difference between
minimum and maximum number of modules in a cluster
(to minimize).

e MaSRV-3: In this variant the objective functions are:
structural coupling (to maximize), structural cohesion
(to maximize), structural MQ (to maximize), number of
clusters (to maximize), and difference between the
minimum and maximum number of modules in a cluster
(to minimize).

e MaSRV-4: In this variant, the objective functions are:
changed-history coupling + structural coupling (to
maximize), changed-history coupling + structural
cohesion (to maximize), changed-history coupling +
structural MQ (to maximize), number of clusters (to
maximize), and difference between minimum and
maximum number of modules in a cluster (to
minimize).

e MaSRV-5: In this variant, the objective functions are:
lexical + structural coupling (to maximize), lexical +
structural cohesion (to maximize), lexical + structural
MQ (to maximize), number of clusters (to maximize),
and difference between minimum and maximum
number of modules in a cluster (to minimize).

e MaSRV-6: In this variant, the objective functions are:
changed-history + lexical + structural coupling (to
maximize), changed-history + lexical + structural
cohesion (to maximize), changed-history + lexical +
structural MQ (to maximize), number of clusters (to
maximize), and difference between minimum and
maximum number of modules in a cluster (to
minimize).

The different set of many-objective software remodulari-
zation formulations (i.e., MaSRV-1, MaSRV-2, MaSRV-3,
MaSRV-4, MaSRV-5, and MaSRV-6) represents the various
aspects of SRPs. Therefore, the optimization of each aspect of
SRP can produce different remodularization solutions.

Software remodularization solution encoding In the
reformulation of any problem as a search-based optimization
problem, the designing of objective functions and encoding of
the candidate solution plays an important role. The generation
of all possible solutions for the optimization problem is a
challenging task, and for a real-world optimization problem, it
becomes more difficult. In an optimization problem, the
candidate solution is commonly defined in terms of the

decision variable’s set. The particular instance of each
decision variable represents a specific solution of candidate.
To generate all possible candidate solutions for a specific
problem of optimisation, an effective encoding mechanism for
the representation of candidate solution is required. For the
software remodularization optimization problems, the integer
vector-based encoding mechanism (Bavota et al. 2010,
Praditwong et al. 2011; Prajapati and Chhabra 2017) is a
widely accepted representation technique. Therefore, we have
also used this encoding mechanism in this work.

3.2 MaABC

A variety of metaheuristic optimization approaches have been
proposed to generate a set of a good representative sample of
approximation of Pareto optimal solutions for many-objective
optimization problems. These approaches are widely
categorized as 1) Dimensionality reduction approach [39],
2) Relaxed dominance approach [40], 3) Diversity injection-
based approach [41], 4) Aggregation-based approach [42],
5) Indicator-based approach [43], 6) Reference set-based
approach [44], 7) Preference-based approach [45,46],
8) Decomposition based approach [47].

Even after huge development in designing various
categories of many-objective algorithms, their applications to
real-world optimization problems gained little attention. The
divergent characteristics of real-world optimization problems
make the application of many objective algorithms difficult
and challenging. In the past few years, some researchers have
tried to tailor the metaheuristic algorithms for the different
real-world problems such as scheduling of various industrial
tasks [48], calibration optimization of the automotive [49],
optimization of hybrid car controllers [50]. The flexibility in
the transformation of various software engineering tasks as a
search-based optimization problem creates a huge opportunity
for metaheuristic optimization algorithms. In the past two
decades, under the umbrella of search-based software
engineering (SBSE) [51], a large number of metaheuristic
optimization algorithms have been developed to address
various software engineering problems.

Most of the software engineering problems have been
addressed  using the conventional = multi-objective
metaheuristic optimization algorithms. However, an increase
in the number of objective functions in many software
engineering problems demanding more advanced multi-
objective metaheuristic optimization algorithms, i.e., many-
objective metaheuristic optimization algorithms. To address
the many-objective software remodularization, the studies
[10,11] proposed many-objective optimization algorithm by
incorporating the various strategies in the artificial bee colony
(ABC) algorithm [52]. Even though these approaches perform
effectively, there are still various improvements corresponding
to the generation of more effective remodularization solutions.
In this work, we exploit the basic framework of MaABC
[10,11] to optimize the software quality. The basic framework
of MaABC remains similar to the original MaABC algorithm
with some minor changes in the selection techniques.

The MaABC framework consists of four major components,
and each component are responsible for performing
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specialized activities. The components are: 1) initialization
phase, 2) send employed bees, 3) send onlooker bees, and 4)
send scout bees. The flowchart of the MaABC is presented in
Fig. 3. The detailed operations involved in each of these
phases are given in the following paragraphs.

Initialization phase The initialization phase of the MaABC
performs many activities that set up a strong basis for the
smooth working of the next phases. The first activity of this
phase is the initialization of candidate solutions for the first
generation’s population. To perform this, we generate a set of
candidate solutions of population size belonging to the search
space of the remodularization problem. At the beginning of
the algorithm, there requires a set of initial candidate
solutions, i.e., a population that can proceed with the
optimization process. To generate the initial candidate solution
for the population, we use the random initialization approach,
where the decision variables value for each of the candidate
solutions is selected randomly. Apart from the population
initialization, the various parameters of the algorithm also
need to be initialized. Therefore, in this phase, the appropriate
values for each of the parameters are assigned so that the
optimization process can proceed toward the intended optimal
direction.

To demonstrate the population initialization, let’s consider

.
Initialize the parameters: population size,
archives size. trial. limit

h 4

.. . . i B
Initialize population using random process and|
compute the objective function values of each
clustering solution

7

Step-1
v

[ Collect the set of non-dominated solutions
from current population

[ Update the current population ]
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the set of all possible remodularizationsolutions in the search
space are t, i.e.,s={sq,s2,....,5;}. The particular software
remodularization solutions; can be represented as a set of n
decision variable, i.e., s;={s/,s?,...s"}. The range of a
particular decision variable, i.e.,s{ € [UB/ - LB/], where UB’
and LB/ are the upper and lower bound of the jth decision
variable of s; candidate solution. For example, the
remodularization solution demonstrated in Fig. 1 can be
represented as s ={1, 2, 2, 1, 3, 1, 3, 3} where the range of
each decision variable is between 1 to 8. In this example, the
classes {s,, s,, ¢} belong to package {m,}, the classes {s,, 55}
belongs to package {m,}, and classes {ss, s;, 53} belong to
package {m,}. In the context of the ABC algorithm, the
candidate solution is viewed as food source, and the candidate
solution’s fitness is considered quality of the food source.
After initialization of the population, the objectives functions
and fitness function corresponding to each candidate solutions
are computed. Based on the non-domination relations, the
external archives CA and DA are updated according to their
updation rules. The details of the updation rules for the CA
and DA archives are given in the further paragraphs. The trial
value, i.e., TR associated with each candidate solutions of the
population is set to zero (i.e., TRy = TRy =---=TRy =0).

|

|

|

|

|

1 |
= Software remodularization solution 1
I l (food source) encoding ] I
I 1
I I
I 1
I |

I Send employed bees to search new food

| source around the current food source and

1 calculate the objective functions value of new
| food sources

I

I

[ Update the current population ]

Send onlooker bees to search new food source
around the current food source and calculate
the objective functions value of new food

I
I
I
1 sources
I
I
I

Step-3 K
[ Update the current population ]
___________________ 1
) ) ) ) | R — |
- |
Step-4 Send scout bees to search new food source

Is maximum
number of
FEs reached?

randomly in the search space and calculate the
objective functions value of new food sourceJ

[ Update the cur;ent population ]

={ Update the CA and DA ]

[72]
& =
=]
l
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Fig.3 Framework of the optimization process of the MaABC
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Send employed bees After the initialization of the food
sources/candidate solutions in the population, the employed
bees staying in the hive fly towards the food sources. For each
food source an individual employed bee is assigned. Each
individual employed bee starts searching the new food sources
based on the information about the food sources they have in
the memory with the hope to find a better food source. In this
study, to create the new solutions for the employed bees, we
use the information of the candidate solutions of the current
population and the candidate solutions of the CA and DA
archives. The reason of considering the candidate solutions of
CA and DA is that these solutions help in guiding the
employed bees towards more promising candidate solutions.

To balance convergence and diversity in the resultant
population, we fixed the consideration probability of the
current population and the CA+DA candidate solutions 0.4
and 0.6, respectively. The objective functions and fitness of
the newly generated candidate solution is computed. If the
newly generated candidate solution’s fitness is found better to
the current solution, then the current solution of the population
is replaced with the newly generated candidate solution;
otherwise, the newly generated candidate solution is discarded
and preserved the current solution for the next generation. The
trial value of the unimproved candidate solutions of the
population is incremented by 1. The detailed description of the
procedure is given in Algorithm 1.

Algorithm 1 Send employed bees

Input: current population P, the candidate solutions of CA
and DA,

Output: new population after employed bees

fori=1to N

forj=1ton

if r <=0.4 then

) ow = Randint(s],s],...,s})

else

Snew = RandInt(s],s3,..., Sicaspap)
end if

end For

Compute the objective vectors and fitness
if the fitness (Sye,,)>fitness (s;) then

Si =Snew

else

TRl' = TRL + 1

end if

end for

Send onlooker bees After exploiting the search space
around the current food source, each employed bee returns
back to the hive and share the information of the food
source/candidate solution to the onlooker bees waiting in the
hive. These onlooker beesmake a further search around the
food sources/candidate solutions shared by the employed bees.
The employed bees share the food source information to the
onlooker bees by performing the dance in the hive’s dance
area. The duration of the dance of each employed bee is the
proportion to the quality of the food source they have
exploited.

The number of onlooker bees flying towards the food
sources having better quality is more. In another word, the

food source having the better food source quality, will attract a
more significant number of onlooker bees and food source
having the poor food source quality may have a smaller
number of onlooker bees. The movement probability of
onlooker bee towards a particular food source is computed in
terms of the candidate solutions’ fitness values. The searching
nature of the onlooker bees around the food source is the same
as the employed bees’ searching behaviour. The only
difference between the employed bees and onlooker bees is
the number of bees deploying on a particular food source. The
pseudocode of the onlooker bees is given in Algorithm 2.

Algorithm 2 Send onlooker bees
Input: current population P, CA and DA, probability p;

of each solution, TR;
Output: new population after onlooker bees

Seti =1,t=1
while i <P do

if p;>rand () then
Generate the value each s,
end if
Compute the objective vectors and fitness
if fitness (Spew )>fitness (s;) then

as generated in employed bees

Si =Snew

else

TRl' = TRL + 1

end if

i=i+1,t=t+1

if 1 > N then
Seti=1

end if

end while

Send scout bees Thesignificant contribution of the
employed bees and the onlooker bees is the searching a better
food source around a known food source. It means that the
employed bees and the onlooker bees search a particular
search space region based on their current and previous
experiences. To explore a food source in the search space, the
concept of scout bee is used. During the process of send
employed bees and send onlooker bees, if the quality of any
food does not improve after a certain attempt, then a scout bee
corresponding to this food source and the scout bee searches a
random food source in the search space. The random creation
of the food source is the same as the random initialization of
the candidate solutions in the population. The pseudocode of
the scout beeis given in Algorithm 3.

Update the CA and DA The concept of applying two
archives in balancing the diversity and convergence in the
approximation of Pareto front is an effective method. The idea
of two archives has been used in various metaheuristic search
approaches to address the many-objective optimization
problems [44,53,54]. The common purpose of the application
of two external archives is to guide the optimization process as
well as to store the approximation of the Pareto front. In the
two archive-concept, the two different archives namely
convergence-based archive (CA) and diversity-based archive
(DA) are maintained to store the non-dominated collected
during the optimization process. The size of CA and DA
archives can be either fixed or variable. In this work, we keep
the fixed and equal size of CA and DA archives. The major
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Algorithm 3 Send scout bees

Input: size of the population P, number of decision variable n, TR;
, Limit.

Output: new population

fori=1 to P

if max (TR;) > Limit do

forj=1to n

S} ew = Randint(UB/ — LB})

end for

Compute the objective vectors and fitness of newly
generated solution

if fitness (Syeyw )>fitness (s;) then

S; =Spew and  SetTR; = 0

else

Si =S;

end if

end if

end for

idea for the updation of the CA and DA archives used in this
work is borrowed from the literature [44,54].

The detailed description of the pseudocode used for
implementing CA and DA wupdation rule is given in
Algorithm 4. In this process, first of all, the non-dominated
solutions from the population, after completion of each
iteration, i.e.,send employed bees, send onlooker bees, and
send scout bees, are collected. Next, the collected non-
dominated solutions are compared with the candidate solutions
stored in the CA and DA archives. Suppose the collected non-
dominated solution dominates one or more candidate solutions
of CA and DA archive. In that case, the dominated solutions
from both CA and DA archives are deleted, and the collected
non-dominated solution is placed in the CA archive. Suppose
the collected non-dominated solution has the non-domination
relation to all the CA and DA candidate solution. In that case,
the collected non-dominated solution is placed in the DA
archive. If the collected non-dominated solution is dominated
solution the it is simply discarded.

Algorithm 4 Update CA and DA

Input: set of non-dominated solutions @ = {qy,q5,...,qx}
CA and DA archives.

Output: updated CA and DA

for i=1 to k do

if g; can not be dominated by solutions of CA and DA

if g; dominates any solution of CA and DA

Remove dominated solutions form CA and DA

Setq;.flag =1 /I q; with domination
else

Set q;. flag = 0 // q; without domination
end if
end if
end for

Add the solutions with flag = 1 to CA and solutions with

flag = 0 to DA

if |CA[>maxSize of CA and [DA[>maxSize of DA then remove
the solution based on deletion rules

Since the CA and DA archives’ size is fixed, they can
accommodate only a limited number of candidate solutions. If
the number of candidate solutions increases to CA’s size, then
the extra candidate solutions from the CA are deleted based on
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their fitness (computed using Eq. (15)). In particular, the
candidate solutions in CA have the smallest I, lost is deleted
in every generation of ABC algorithm. Further, the fitness of
the remaining candidate solutions of the CA are updated
accordingly. For the case of DA archive, if the number of
candidate solutions increases to the size archive, the candidate
solutions located in the highly dense region are removed.
Conversely, the candidate solutions located on the boundary
or far distance are selected and kept in the DA. To compute
the distance between the candidate solutions a suitable
distance metric (Lp-norm-based distances) should be used. In
this work, we use the L,-norm-based distances (i.e., Euclidean
distance) to compute the candidate solutions’ similarity. The
reason for selecting the L,-norm-based distances to compute
the similarity is that it works effectively for the vector having
lengths2 to 7 as in our case.

Fitness computation The fitness computation of the
candidate solutions to rank them for their selection is an
important task in many-objective optimization. In this study,
we use the fitness evaluation method as suggested in the
Two_Arch2 [44]. In case of CA’s overflows, the extra
candidate solutions are removed. The CA’s goal is to maintain
the candidate solutions that have the high tendency of
convergence. Therefore, we have to select a fitness evaluation
method that can preserve this property of the CA. In this
paper, we choose the I, quality indicator discussed in IBEA
[43] as the fitness evaluation for the CA’s candidate solutions.
The I+ is a quality indicator that compute the minimum
distance that one candidate solution requires in order to
dominate another candidate solution in the objective space.
The fitness F (s1) of a particular candidate solution’s;’ in term
of I, corresponding to population /P’ can be computed as
follows:

Iy (s1,82) =ming(f; (s1) —e < fi(s2), 1 <i<m,

F(s)) = —e T+ (52:51/0.05
SQEPZ\{SI}

where m is the number of objectives considered in the many-
objective optimization problem. The quality indicator
I (s1,52) is used to compute the individual fitness F (sy) in
the population or set of candidate solutions “pP”. To remove
the extra candidate solutions from the DA archive, we use
selection approach govern by the Euclidean distance. In this
approach, the boundary candidate solutions (solutions with
minimal or maximal objective values) ofDA are firstly
selected. Then, the candidate solutions with largest Euclidean
distance are selected and placed in the DA.This is a repetitive
process, and it is carried out until the DA is completely filled.

(17)
(18)

4 Experimentation setup
To evaluate the effectiveness of the proposed approach, we
conducted an empirical analysis. To perform this, an
experimentation setup is designed. The details of the
experimental setup are given as follows.

System configuration-To implement the proposed approach;
we use the Java programming language. The implemented
proposed approach is executed on the personal computer
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having Intel Core i7-1160G7 4.4 GHz CPU hardware
configuration and Microsoft Windows 10 Home operating
system.

Problem instances The selection of problem instances to
evaluate the prosed approach is an important task as it helps to
generalize the results. We select the sample of those problem
instances that can represent of whole problem instances of the
population. The major characteristics of the chosen problem
sets are given in Table 1.

Table 1 Description of the selected problem instances

Software systems Version  #Classes  #Relationships ~ #Modules
JFreeChart 0.9.21 401 1420 50
JHotDraw 6.0bl 398 2125 17
JavaCC 1.5 154 722 6
JUnit 3.81 100 276 6
DOM 4J 1.52 195 930 16

The selected problem instances are open-source software
systems developed in Java programming language and easily
available on the web. These software projects have also been
by different researchers and academicians to validate similar
approaches.

Results collection The proposed approach works in the
randomization environment (i.e., metaheuristic optimization
algorithm). Therefore, it is not guaranteed that the proposed
work will produce the same results on different execution over
the same problem instance. To validate the stochastic results,
we collect the sample results of 31 run for each problem
instance. The other challenge is that each of the sample results
is a set of trade-off solutions (i.e., Pareto front) not a single
solution due to the multi-objective nature of the problem. To
select a single best solution from the Pareto front, we use the
trade-off worthiness metric [45] approach.

Evaluation criteria To evaluates the performance of the
proposed approach, we use the internal quality metrics and
external quality metrics. The internal quality metric is used to
evaluate the software remodularization solution from the
design of the software structure perspective while the external
quality metric is used to compare the software
remodularization solution from the authoritative and
developer’s perspective. For the internal quality metrics, we
use the modularization quality (MQ) [6] a highly used
software quality metrics to evaluate the modularization
quality. On the other hand, we use the MoJoFM [55] metric to
compare the software remodularization solution with the
authoritative and developer’s perspective of software
remodularization.

Competitive approaches To justify the proposed approach’s
supremacy, we compare the results with the existing

Table 2 Description of the existing software remodularization approach

remodularization approaches. The significant difference
between our approach and the existing approaches
[1,6,9,14,56] are related to the information used to define the
objective functions and the customized metaheuristic
optimization algorithm. The brief description of the existing
software remodularization approaches is given in Table 2.

Authoritative modularization In the past three decades,
many software remodularization approaches have been
proposed. The different software remodularization approaches
generally suggest different remodularization solution. The
unavailability of benchmark or ground truth software
modularization evaluates these remodularization approaches a
challenging task. The limited availability of software
engineers for the verification of remodularization solution
makes it more challenging. All these things can lead
1) difficulty in assessing the modularization techniques,
2) trusting on a particular modularization technique can be a
risk, 3) researchers may follow flawed strategies in improving
the accuracy of the methods.

To evaluate the proposed approach, we create a ground truth
software modularization of the selected software projects. In
this study, the ground truth software modularization is the
modularization solution verified by the software developers
and system designers who have a good understanding of the
project and problem domain. The creation of ground truth
software modularization where the applications or software
projects own developers not involved is known as
authoritative modularization. It is easy for an academician and
researchers to create authoritative modularization instead of
ground truth software modularization. Even it is very
challenging to create the authoritative modularization without
the involvement of applications own developers, because there
can be chance of omitting original design decision and
inclusion of spurious one. But in this study, we try to
overcome these challenges.

Creating an authoritative modularization with the help of
software developers who are not a part of system development
team is a time-consuming task. On the other hand, software
engineers do not show interest in the system in which they
have not worked. Moreover, such outsider software
developers do not have the correct, complete, and idealized
picture of the system’s modular structure. To reduce the
software developers’ effort while ensuring the generation of
accurate, authoritative modularization, we first extract the
original modularization of the software system. Then we
involve the software developers in completing the process.
From the software systems we extract the bundle definition
files for the original modularization. If the bundle definition
files are not available, we extract the existing package
organization as the original modularization.

Information Optimization approach

Approaches Abbreviation Metaheuristic
Praditwonget al. 2011 [6] PRAD-2011 Two-Archive GA
Mkaouer et al. 2015 [1] MKAO-2015 NSGA-III
Prajapati and Chhabra 2017 [9] PRAIJ-2017 NSGA-II

Jalali et al. 2019 [56] JALA-2018 Global and local search
Prajapati et al. 2020 [14] PRAJ-2020 NSGA-II

Structural
Structural + lexical + changed-history
Structural + lexical
Structural + lexical
Structural + lexical + changed-history

Multi-objective
Many-objective
Multi-objective
Multi-objective
Multi-objective
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Developer’s view for software remodularization Apart
from the authoritative software remodularization, we also
evaluated the proposed approach with the modularization
solution suggested by the developers. In this case, we only
select the 20 modules of each software project and show the
developers and collect their suggestions. To conduct this task,
we involve 21 software developers who are not the part of the
system development. Because finding the original application’s
developers is not feasible for the academicians. The selected
developers are four PhD students, five M.Tech students, and
six B.Tech final year students, and six software developers
working on similar projects. These students and software
developers are selected based on their knowledge and
understanding of the selected software projects.

5 Experimental results and discussion

To make the results more comprehensive, we broadly divided
the experimentation results into two parts: 1) the results
related to the internal quality metric (i.e., MQ results) and 2)
the results related to the external quality metric (i.e., MoJoFM
results). The details of the results and the discussion is
provided in the following subsections.

5.1 MQ results

The mean MQ values of the remodularization solutions
obtained through the different variants of the remodularization
approaches are presented in Table 3. As the variant MaSRV-6
represents our proposed approach, we compared the our
proposed MaSRV-6 with the other variants, i.e., MaSRV-1,
MaSRV-2, MaSRV-3, MaSRV-4, and MaSRV-5. To this

Table 3 Mean MQ values of the different software remodularization variants
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comparison, the Wilcoxon rank sum test (0.05 significance
level)statistical test is applied. The symbols “—”, “+”, and “=”
are used to represent whether the MQ value of different
variants is significantly worse than, better than, and not
significant different than the proposed approach, i.e., MaSRV-6.

If we see the mean MQ values of each variant of the
software remodularization, the mean MQ values of the variant
MaSRV-6 is greater than the rest of the variants, MaSRV-1,
MaSRV-2, MaSRV-3, MaSRV-4, and MaSRV-5 in all cases.
If we rank the performance of each variant in terms of MQ
values, the variant MaSRV-6 will get rank 1, and the variants
MaSRV-1, MaSRV-2, MaSRV-3, MaSRV-4, and MaSRV-5
will get the rank 4, 6, 5, 3, and 2, respectively corresponding
to the all cases. These results indicate that the proposed
approach MaSRV-6 is the best performer, and the MaSRV-2
is the worst performer in generating the remodularization
solution in terms of MQ values. If we see the Wilcoxon rank
sum test results, the proposed MaSRV-6 variant performs
significantly better to the MaSRV-1, MaSRV-2, and MaSRV-
3 in all cases. There is only one case (i.e., JavaCC) where the
MaSRV-6 is not significantly better to the MaSEV-4, and
there are only two cases (i.e., JHotDraw and DOM4J) where
the MaSRV-6 is not significantly better to the MaSEV-5.

The Wilcoxon rank-sum test results obtained by comparing
the proposed approach and the existing approaches with
respect to the MQ values are provided in the Table 4. The
description of the statistical test results presented in Table 5 is
as follows: The entries of first row and first column are the
name of existing and proposed approach (i.e., MaSRV-6) and
the rest of rows and columns are the comparison results in

Software systems MaSRV-1 MaSRV-2 MaSRV-3 MaSRV-4 MaSRV-5 MaSRV-6
JFreeChart 26.87 [-] 24.45 [] 25.38 [] 33.59 [] 32.65[-] 37.94
JHotDraw 14.39 [-] 13.53 [-] 12.48 [] 19.43 [-] 20.43 [~] 22.52
JavaCC 4.24 -] 2.89 [-] 2.38[-] 6.12 [=] 5.52[-] 6.48
JUnit 4.46 [-] 3.78 [] 3.18[] 4.68 [-] 5.37[-] 6.89
DOM 4] 8.29 [-] 6.48 [-] 5.34 [-] 11.30 [-] 12.48 [~] 13.17
Table 4 Comparison of proposed approach to the existing approaches in terms of MQ values
PRAJ-2020 PRAD-2011 JALA-2019 PRAJ-2017 MKAO-2015 Proposed
PRAJ-2020 NA [-———-— ] [-——=-] [-=——-] [-——=-] [F++=+]
PRAD-2011 [+++++] NA [F=+=-] [++=++] [+++++] [+++++]
JALA-2019 [+++=+] [+=—=+] NA [+++++] [+++=+] [++=++]
PRAJ-2017 [+=+++] [-—=--] [F———-— ] NA [-———— ] [+++++]
MKAO-2015 [+++~+] [———- ] [---=-] [+++++] NA [+=++7]
Proposed [£-—=-] —— ] =] —— ] [=——=] NA
Table 5 Mean and Std of MoJoFM obtained through comparison of variants andauthoritative modularization
Software systems MaSRV-1 MaSRV-2 MaSRV-3 MaSRV-4 MaSRV-5 MaSRV-6
JFreeChart 35.213 57.487 65.341 85.384 91.742 95.459
[2.426] [5.353] [6.732] [6.845] [8.328] [7.462]
JHotDraw 27.348 52.485] 67.395 82.394 90.304 93.754
[2.173] [5.374] [6.395] [6.784] [8.374] [7.971]
JavaCC 38.384 49.948 61.485 80.406 89.418 96.803
[2.943] [4.394] [5.309] [6.471] [8.485] [9.312]
JUnit 35.942 53.492 63.485 8.404 89.578 93.456
[3.294] [4.582] [5.394] [6.482] [7.405] [8.348]
DOM 4J 29.994 51.394 66.320 82.482 90.493 92.403
[2.384] [4.394] [5.942] [6.042] [8.483] [8.193]
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terms of significance difference corresponding to all five
problem instances. There are five symbols in each table entry,
and each symbol is corresponding to each of the problem
instances (i.e., JFreeChart, JHotDraw, JavaCC, Junit, and
DOMA4J). The “+” and “—” symbols are used to show the
“significant” differences between the approaches and the “~”
symbol used to denote the “no significant” difference between
the approaches. Specially, the “+” denotes that the approach
depicted in row performs significantly better compared to the
approach depicted in column over corresponding problem
instance. Similarly, the “—” denotes that the approach depicted
in column performs significantly better compared to the
approach depicted in row corresponding to that position
problem instance. The “~” symbol indicates no significant
difference between the row’s approach and the column’s
approach corresponding to that position problem instance. For
example, consider the symbols [~ + + = +] placed in second
row and seventh column of Table 4. The first symbol, i.e., “=”
denotes no significant difference between the proposed
approach and the PRAJ-2020corresponding to the JFreeChart
problem instance. The second symbol i.e., “+” denotes that the
proposed approach is performing significantly better to the
PRAIJ-2020 corresponding to the JHotDraw problem instance.
Even though the Table 4 presents the comparison results of
each approach with other approaches, but here we are only
focusing the results of the proposed approach and the other
existing approaches. If we see the results of the proposed
approach, it demonstrates that the proposed approach performs
significantly better in most cases than the existing approaches.
The proposed approach performs significantly better to the
PRAD-2011 and PRAJ-2017 in all problem instances, while
the proposed approach has few cases where it is not
performing significantly better than the MKAO-2015 and
PRAJ-2020. Overall, these results validate that the proposed
approach has the good capability of generating the
remodularization having the better MQ values.

5.2 MoJoFM results

The MoJoFM external quality metrics computes the similarity
between the remodularization obtained through the proposed
approach and the authoritative remodularization or
developers’ view of remodularization. First, we present the
MoJoFM results of proposed and authoritative remodulari-
zation, then we present MoJoFM results of proposed and
developers view of remodularization. Table 5 presentsthe
mean and standard deviation of the MoJoFM after applying
over the different variants of remodularization and the
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authoritative modularization. Here, the larger MoJoFM value
indicates that the remodularization obtained through the
different approaches is more similar or closer to each other. In
comparison, the smaller MoJoFM value indicates that the
remodularization obtained through the different approaches is
more dissimilar to each other.If we see the MoJoFM results of
each software remodularization variants, the variant MaSRV-6
(i.e., proposed approach) has achieved the better values than
the rest of the software remodularization variants, i.e.,
MaSRV-1, MaSRV-2, MaSRV-3, MaSRV-4, and MaSRV-5
in most of the cases. On the other hand, the variant MaSRV-1
has the worst MoJoFM values than the rest of the variants in
most cases.The such good value of the variant MaSRV-6
indicate that the proposed approach can generate more similar
modularization  corresponding to  the  authoritative
modularization. Overall pattern of the MoJoFM values of each
software remodularization variant is MaSRV-1<MaSRV-2<
MaSRV-3< MaSRV-4< MaSRV-5< MaSRV-6 in all problem
instances.

To test the similarity of the remodularization solution
produced through the different variants of the
remodularization approaches with the remodularization
solution suggested by the developers, we also computed the
MoJoFM values by applying over these two modularizations.
Table 6 presents results of MoJoFM obtained through
comparison of different software remodularization variants of
the proposed approach and the modularization suggested by
the developers. Similar to the case of authoritative
modularization, the variant MaSEV-6 can achieve the better
MoJoFM values than the rest of the variants, i.e., MaSRV-1,
MaSRV-2, MaSRV-3, MaSRV-4, and MaSRV-5 in most of
the cases. The variant MaSRV-1 has shown the lowest
MoJoFM values in almost all cases and regarded as worst
performer among all variants. The MoJoFM values of the
MaSRV-5 are closer to the MoJoFM values of MaSRV-6 in
most cases compared to the rest of the variants. Hence, the
MaSRV-5 is the second-best performer in terms of similarity
with the developers view of modularization. Overall, the order
of the variants with respect to the MoJoFM values
corresponding to all problem instances is MaSRV-1<
MaSRV-2< MaSRV-3< MaSRV-4< MaSRV-5< MaSRV-6.
These observations validate that the proposed MaSRV-6 has a
strong capability to generate the remodularization solution that
can be easily acceptable to the software developers.

Apart from comparing the remodularization results of the
different software remodularization variants in terms of
MoJoFM values with respect to the authoritative and

Table 6 Mean and Std of MoJoFM obtained through comparison of variants and developers’ modularization

Software systems MaSRV-1 MaSRV-2 MaSRV-3 MaSRV-4 MaSRV-5 MaSRV-6
JFreeChart 26.846 48.384 65.058 85.405 92.048 94.954
[2.394] [4.294] [5.395] [6.495] [6.495] [7.584]
JHotDraw 35.485 53.223 67.645 83.565 90.475 93.475
[3.472] [4.385] [5.762] [6.351] [8.576] [8.221]
JavaCC 38.875 47.575 64.567 81.332 89.412 94.392
[2.485] [3.472] [4.998] [6.305] [7.337] [7.894]
JUnit 32.574 45.566 68.058 81.048 91.494 93.204
[2.495] [4.001] [5.485] [7.049] [7.595] [7.434]
DOM 4J 36.048 46.954 66.495 83.204 89.496 95.312
[2.495] [3.595] [6.503] [7.596] [7.123] [8.563]
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developers view of software remodularization, we have also
compared the best performing variants, i.e., MaSRV-6 (i.e.,
proposed approach) with the existing software remodulari-
zation approaches. Tables 7 and 8 present the Wilcoxon test
results obtained by comparing the proposed and existing
remodularization approaches. The meaning and description of
the symbols used in Table 7 are the same as provided in the
Table 4. Table 7 presents the Wilcoxon results obtained by
comparing the all considered approaches in terms of the
authoritative modularization. The results presented in Table 7
show that the proposed approach performs significantly better
than existing approaches in most cases. The second-best
performer among all approaches is the PRAJ-2020, and the
third best performer is the MKAO-2015. The approach
PRAD-2011 is the worst performer, and JALA-2019 and
PRAJ-2017 are the average performer.

To validate the supremacy of the proposed approach (i.e.,
MaSRV-6) with respect to the existing approaches of software
remodularization from the developers view, we compared the
obtained remodularization results of the proposed with the
remodularization of the existing approaches. Table 8 presents
the MoJoFM results after applying it between the
remodularization of the proposed approach and the existing
approaches. These results are shown in terms of the Wilcoxon
rank sum test (i.e., whether the proposed approach perform
significantly better, worst, or no significant difference).
Wilcoxon results obtained through the comparison of the all
considered approaches in terms of the developers suggested
modularization. The results show that the proposed approach
performs significantly better than the existing approaches in
most cases. If we see the rest of the approaches’ results, we
can find that the Amarjeet et al. [14] approach is second and
MKAQO-2015 is the third outperforming approach among all
approaches. The results of the PRAD-2011 is worst in most
cases, and the results of JALA-2019 and PRAJ- 2017 are the
average.

5.3 Discussion
In the formulation of SRP as a many-objective optimization
problem, the definitions of the objective functions and the

Multi-dimensional information-driven many-objective software remodularization approach 15

designing of the metaheuristic optimization algorithm
significantly contribute to finding the good remodularization
solutions. Apart from the evaluation of the software
remodularization solution quality, the objective functions help
in guiding the remodularization process towards the expected
solution. For the object-oriented software system, software
package coupling and cohesion are the two main objective
functions that are often used as objective functions and some
other supportive objective functions in SBSR. The software
package coupling and cohesion are generally defined in terms
of class coupling of the software system. Therefore, the
definition of class coupling has a major importance in SBSR.

To compute the coupling between the source code classes,
various types of source code information such as structural,
lexical, and changed-history information are used. The
different types of information used in computing the class
coupling for software package coupling and cohesion
computation have different importance in generating the
remodularization solution in the SBSR. For example,
structural information help in guiding the remodularization
process towards the remodularization solution which is better
from the structural quality point of view. The use of lexical or
textual information can lead the remodularization process
towards the remodularization solution which is more
semantically coherent with the developers perspective of
software remodularization. Similarly, the changed-history
information-based class coupling can lead remodularization
process towards the remodularization solution, which is
logically coherent from the developers perspective.

To generate the sophisticated software remodularization
solution that can be more effective from the structural quality
point of view and the developer’s perspective of software
remodularization, the use of different types of structural,
lexical, and changed history information in computation of
class coupling is highly suggested. Many previous researchers
have used the various dimensions of structural, lexical, and
changed history information to compute the class coupling for
software remodularization. The common issue in all the
approaches is that they give equal importance to the different
dimensions of the structural, lexical, and changed history

Table 7 Comparison of the proposed approach and the existing approaches in termsMoJoFM with respect to the authoritativeness

PRAJ-2020 PRAD-2011 JALA-2019 PRAJ-2017 MKAO-2015 Proposed
PRAJ-2020 NA [F———-— ] [-———-— 1 [———-— ] [F———— ] [F++++]
PRAD-2011 [+++++] NA [-=+=- [+++++] [+++++] [+++++]
JALA-2019 [+++++] [+=—-=+] NA [+++++] [+++=+] [+++++]
PRAJ-2017 [+++++] [———-— ] [F———-— ] NA [F———— ] [+++++]
MKAO-2015 [+++++] [-———-— ] [--=-] [+++++] NA [+ ++++]
Proposed [x———-] [--—--- ] | ] | ] E—— ] NA
Table 8 Comparison of the proposed approach and the existing approaches in terms MoJoFM with respect to the developer’s view

PRAJ-2020 PRAD-2011 JALA-2019 PRAJ-2017 MKAO-2015 Proposed
PRAJ-2020 NA [F———— ] [———— ] [———— ] [———— ] [+=+++]
PRAD-2011 [+++++] NA [F—=-+4] [+++=+] [—+=+] [+++++]
JALA-2019 [+++++] [++=+-] NA [+++++] [+—+++] [+++++]
PRAJ-2017 [+++++] [F——=-] [-———— ] NA [-—==+] [+++++]
MKAO-2015 [+++++] [+-=-] [+—-—-] [++==-] NA [+++++]
Proposed =] - ] - ] - ] - ] NA
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information in class coupling computation. However, it well
known fact that the different dimensions of the structural,
lexical, and changed history information would not contribute
equally in computing the class coupling, i.e., each dimension
of structural, lexical, and changed history information have
their own importance in the contribution of class coupling
computation.

To reveal the importance of different types of source code
information such as structural, lexical, and changed history
information as well as their different dimensions in
computation of class coupling for the purpose of software
remodularization, an empirical study with various variants of
set of objective functions have been conducted.Each variant of
the many-objective software remodularization exploited the
different types and combinations of source code information
for the computation of class coupling. The results presented in
Sections 5.1 and 5.2 demonstrate that the use of different
structural, lexical, and changed history information with their
relative importance helps produce remodularization solutions
that are highly acceptable to the software developers. On the
other hand, the individual information (i.e., either structural,
lexical, or changed-history) used to compute the class
coupling cannot generate the remodularization solution that
can be acceptable to the software developers. So, the results
presented in this study support the assumption that the use of
different dimensions of structural, lexical, and changed history
information with their relative importance will help produce
remodularization solutions that will be highly acceptable to
the software developers. The comparative results can also
validate this assumption. Different existing approaches use
different types and dimensions of structural, lexical, and
changed-history information with their equal importance in the
computation of class coupling for software remodularization.

6 Threats to validity

The designed experimental setup used to evaluate the
proposed approach is producing good results. However, there
are many factors associated with the experimentation that can
affect the proposed approach’s outcome. Therefore, it
becomes necessary for the empirical study to identify the
possible threats that can affect the validity of the results and
the actions required to mitigate their impact. In this study, we
have identified the following four categories of threats and
applied a suitable action to mitigate those types of threats.

Conclusion validity In conclusion validity, there must exist
a causal relationship between the experimentation and
treatment outcome. Our study’s major threats that can affect
the conclusion validity are: 1) initialization of population-the
random initialization of the population may bias the results if
it is favourable initialization. To mitigate this threat, we
executed the algorithm many times with different random
initialization. 2) use of a statistical approach to evaluate and
compare the results obtained through much execution the
inappropriate use of the statistical method can mislead the
conclusion. To mitigate this threat, we used the non-
parametric statistical test, i.e., Wilcoxon rank-sum test. The
Wilcoxon rank-sum test produces a good result with data of
non-normal distribution.

Internal validity The internal validity is concerned with the
validity of the results corresponding to the various treatment
factors. In our approach, the different parameter settings of the
algorithm can affect the results. To mitigate this threat, we use
the trial-and-error method to determine the values of the
parameters of the algorithms.

Construct validity Construct validity is concerned with the
relationship between theory and outcome. The output of the
approach must be synchronized with the theory. The major
threat to this validity is the cost of the evaluation. The
different metaheuristic approaches may require a different cost
to a particular iteration. To provide the equal cost of the
assessment to each algorithm, we assigned the equal number
of fitness evaluations to each algorithm instead of an equal
number of iterations. The other threat can be the
appropriateness of quality measures. In this approach, we use
the well-accepted quality measure to evaluate the quality of
the solutions.

External quality This validity is concerned with the
generalization of the approach’s outcome in the broader
perspective of the problem instances. In this approach, we
have considered the problem instances having different
characteristics ranging from small to large. These set of
problem instances have already been used by different
researchers in the area of software remodularization.

7 Conclusion and future works

In this paper, we introduced a multi-dimensional information-
driven many-objective search-based software engineering
approach for modularizing the software system. The approach
aims at generating the remodularization solution that improves
the software quality by optimizing the different version of
coupling and cohesion measures such as structural-based
coupling and cohesion, lexical-based coupling and cohesion,
and changed-history-based coupling and cohesion. To
optimize the different quality metrics to produce the
remodularization solution, we used the MaABC algorithm, a
many-objective search-based software engineering approach
with some effective changes in selection strategies.
Specifically, in this study, we addressed several issues of
existing software remodularization approaches that are
restricted to the use of particular types of structural or lexical
information-based cohesion and coupling. We created multiple
variants of many-objective SRPs using the different sets of
objective functions in this continuation. An extensive
experiment for remodularization of five object-oriented
systems is performed to validate the supremacy of the
proposed contributions. The obtained results show that the
proposed contributions can generate a more effective
remodularization solution than traditional SBSR approaches.
In future work, the proposed work can be integrated with the
IDEs and configuration management system to automate
remodularization recommendation system.
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