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Abstract    This  paper  aims  to  study  the  deep  clustering
problem  with  heterogeneous  features  and  unknown  cluster
number. To address this issue, a novel deep Bayesian clustering
framework  is  proposed.  In  particular,  a  heterogeneous  feature
metric  is  first  constructed  to  measure  the  similarity  between
different  types  of  features.  Then,  a  feature  metric-restricted
hierarchical sample generation process is established, in which
sample with heterogeneous features is clustered by generating it
from a similarity constraint hidden space. When estimating the
model  parameters  and  posterior  probability,  the  corresponding
variational inference algorithm is derived and implemented. To
verify our model capability,  we demonstrate our model on the
synthetic  dataset  and  show  the  superiority  of  the  proposed
method on some real  datasets.  Our  source  code  is  released on
the website: Github.com/yexlwh/Heterogeneousclustering.

Keywords    dirichlet  process, heterogeneous  clustering,
generative  adversarial  network, laplacian  approximation,
variational inference

 1    Introduction
As  a  classical  and  popular  tool  for  data  analysis,  clustering
methods  are  widely  studied  in  the  computer  vision  and
machine  learning  community  [1−3].  Nowadays,  due  to  the
high efficiency of Deep Neural Network (DNN), many works
try to extend the supervised DNN model to the clustering task
[4,5]. Although these DNN based clustering methods are quite
efficiency  in  different  applications,  there  still  exists  some
limitations  due  to  the  facts  that:  (1)  Existing  deep  learning
methods always assume that dataset contains the same feature
and  data  is  extracted  from  the  same  conditions.  Real
applications are complicated; a sample with different features
may act  like  different  clusters  in  the  feature  space;  (2)  Many
DNN  based  methods  require  a  predefined  cluster  number
which is usually not available in many real applications.

To  address  these  problems,  in  this  paper,  a  novel
heterogeneous  metric  is  first  constructed  to  capture  the
similarity  between  different  features.  Then,  Dirichlet  Process
(DP) is exploited to model the unknown class number. When

clustering the heterogeneous dataset, we assume that the class
from different features is generated from a same hidden space.
Due  to  the  limitation  that  conventional  Bayesian  model  is
unable to characterize the complicated distribution in the real
world,  we treat  variables  generated  from the  hidden space  as
the  pseudo  features,  and  the  real  world  observations  as  the
generating  samples  from  the  pseudo  features  with  a
Generative  Adversarial  Network  (GAN).  Additionally,  we
constrain  the  pseudo  features  generated  from  a  same  hidden
space  with  the  heterogeneous  metric,  which  assures  that
features from a same class are generated from a same hidden
space. We conclude our main contributions as:

1)  A novel  deep  Bayesian  generative  model  is  proposed  to
model  the  unknown  cluster  number  and  cluster  the
heterogeneous feature samples.

2)  A heterogeneous  metric  is  proposed  and  integrated  with
the  generation  process  to  capture  the  similarity  between
different feature spaces.

3) For the non-conjugated property and the use of GAN, we
derive  a  Laplacian  approximation  boosted  mean  field
variational inference for the model inference and optimization.

K

Related  work In  the  field  of  deep  neural  network  based
clustering,  recently,  Jiang  et  al.  [1]  construct  a  clustering
method  by  combining  the  Variational  Auto-Encoders  (VAE)
and  Gaussian  Mixture  Model  (GMM).  Xie  et  al.  [6]  propose
the  Deep  Embedded  Clustering  (DEC)  by  incorporating  the

-means with a deep neural network based t-SNE. Pan et  al.
[7−10] extend the conventional subspace clustering method to
the  non-linear  manifold  clustering  algorithm  by  learning  a
deep  embedding.  Dizaji  et  al.  [4,11]  extend  the  GAN  to  the
clustering  task  with  a  mixture  model  and  a  learned
discriminative  embedding.  Tian  et  al.  [12,13]  seek  a  deep
spectral clustering method by requiring the consistence of the
DNN  embedding  and  the  given  graph.  Cheng  et  al.  [5,14]
exploit  the  DNN  model  in  the  multi-view  clustering  task.
Menapace et al. extend the DNN model to the clustering task
with  the  domain  shift  [15].  Despite  various  advantages  they
have,  they  need  to  specify  the  cluster  number  in  a  prior.  To
overcome  this  problem,  Tapaswi  et  al.  [16]  and  Yang  et  al.
[17] exploit the supervised clustering method. Although these
methods are effective in many real applications, unfortunately,
they are unable to cluster the heterogeneous data.
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When  handling  the  heterogeneous  clustering  task,
Heterogeneous  Domain  Adaption  (HDA)  is  a  method  which
relates  to  our  approach.  Generally,  HDA  transforms  the
dataset with different features to a same feature space, and can
be  roughly  categorized  into  semi-supervised  method  and
unsupervised  method  [18].  In  the  first  method,  many  works
seek to exploit both the source and target labeled data to adapt
the  heterogeneous  features  [18,19].  Compared  to  the  semi-
supervised method, although label is no more a requirement in
the unsupervised method, labeled source domain is sometimes
still  a  necessary  information  [20−23].  For  a  much  more
detailed summarization, please refer to [18,23,24]. Different to
these  HDA  methods,  our  framework  offers  a  unsupervised
end-to-end  heterogeneous  clustering  method,  and  exhibit
another  superiority  of  real  sample  generation.  In  addition,
multi-view clustering methods [25−29] are also related to our
heterogeneous  clustering,  in  which  the  clustering  methods
assume  that  each  sample  has  multiple  types  of  features,  and
clustering  accuracy  can  be  improved  by  exploiting  the
complementarity  of  different  feature  information.  But,
compared  to  their  assumption  that  samples  share  the  same
feature,  our task assumes that  each sample has only one type
feature  and  features  from  different  samples  have  no
intersection.

Dirichlet  process  is  a  widely  studied  model  in  the  model
selection  tasks.  We  summarize  these  models  in  two  different
fields,  unsupervised  learning  and  supervised  learning.  In  the
unsupervised task, many researches exploit the DP to estimate
the cluster number, such as DP-space [30], temporal subspace
clustering  model  [31],  geodesic  mixture  model  [32],  sphere
mixture  model  [33]  and  our  previously  proposed  manifold
clustering  method  [34,35].  For  the  supervised  task,  DP  is
employed  to  model  the  underlying  data  distribution,  e.g.,
infinite  mixture  of  Gaussian  processes,  DP  mixture  of
generalized  linear  models  (GLMs)  and  Infinite  SVM  use  the
DP  to  split  the  input  space  into  a  number  of  subregions  and
learn  an  conventional  supervised  model  within  each  region
[36,37].  Unlike  the  conventional  DP  based  methods,  those
exploit  the  DP  in  the  homogenous  dataset,  our  application
scenarios are heterogeneous.

 2    Proposed approach
In  this  section,  we  construct  our  Bayesian  Heterogeneous
Adversarial  Clustering  (BHAC)  method,  which  we  divide  it
into  the  heterogeneous  metric  construction  method  and  the
heterogeneous  clustering  method.  Then,  we  derive  the
corresponding optimization algorithm for the model inference.
The main notations are summarized in Table 1.

 2.1    Problem formulation
X

K̂
K̂

Xs,Xt

X = {Xs,Xt} Xs = {xs
n}N

s

n=1 Xt = {xt
n}N

t

n=1
s t N s Nt

s t

Given the dataset ,  the features come from different  feature
spaces,  and  the  samples  belong  to  different  classes.  Note
that  is  unknown.  In  our  paper,  we  consider  a  special  case
which can be easily extended to the general problem. That is,
our  samples  come  from  two  different  feature  space 
( ), where  and  denote the
dataset with the feature  and ,  and  are the number with
feature  and .  For  the  derivation  convenience,  another

X = {xn}Nn=1 N = N s+Nt

Xs∪Xt = {xn}Nn=1
X

K̂

representation  is also used, note that ,
and . Our heterogeneous clustering task aims
to  cluster  heterogeneous  data  and  estimate  the  cluster
number .

 2.2    Heterogeneous metric construction
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Motivation  of  the  heterogeneous  metric In  order  to  cluster
the  heterogeneous  dataset,  we  first  construct  a  metric  to
measure the similarity between the features in different spaces.
We  start  this  metric  from  an  observation  that  data  with
different  feature  spaces  shares  a  same  data  relationship
structure.  We  illustrate  this  observation  in Fig. 1.  This
structure may not preserve in the high dimension or other real
datasets. But, it motivates us to exploit a relaxed intuition that,
when we describe a same pattern with different features, their
relationship  within  a  feature  space  is  very  similar.  For
example,  let  us  say  class  A  with  three  samples  which  are
described with two different features, , ,  and , , .
Then,  we  know  that,  if  is  closer  to  than ,  this
relationship  will  pass  to  feature , ,  with  high
probability.

Xs Xt

xs
i xt

i

With  the  above  motivations,  we  derive  our  heterogeneous
metric  by  making  the  following  definition  and  assumption
(For the debate convenience, we first assume  and  are the
same samples with different features. That is,  and  are the
same sample with different features):

Xs = {xs
n}N

s

n=1 xs
i

xs
j ⩾ xs

l xs
i

xs
i xs

j D(xs
i , x

s
j) D(xs

i , x
s
j) ⩾ 0

xs
i xs

l xs
i

S eq(xs
i ) = {xs

δs
i (n)}

N s

n=1 δs
i (n)

∀n > m xδs
i (n) ⪰ xδs

i (m)

Definition Structure  order  and  structure  order  sequence.
Given  observation  samples  and  a  point ,  we
define  structure  order  at  point  as  the  distance
between  and  (denoted as , ) is less
than  and .  Then,  for  every  point ,  we  can  define  a
structure  order  sequence  (  is  the
permutation  function),  in  which, , .  For

   
Table 1    The main notations and descriptions

Notations Descriptions

K̂ Ground truth of the cluster number
Xs sSamples in the  space
Xt tSamples in the  space
X Samples which ignores the feature space
δs

i (), δt
i() xs

i xt
iPermutation function defined at  and 

T st s tMetric measures feature space  and 
T ss,T tt s t s tMetric of feature space  ( ) and  ( )
T Heterogeneous metric
L TGraph Laplacian of 
S eq() Structure order sequence
c0,u0,v0,B0 G0Hyper parameter for 
Ω Hidden variables for the BHAC
α Hyper parameter for DP
Ψ() Digamma function
DP() Dirichlet process (DP)
GN() GAN generative network
DN() GAN discriminative network
K Maximum cluster number
zn Cluster indicator
γk , τk ,ϕn Variational parameters
w̃n Laplacian approximation parameters
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Xt = {xt
i}

Nt
i=1

δt
i()

,  we  have  the  same  definition  for  the  structure
order,  structure  order  sequence  and  the  permutation  function

.
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i )
xs
δs
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i

Lemma  1 Given  the  point  and ,  we  can  conclude
that  is . Same as point .
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Proof We know that any defined distance  is 0. Then,
, . With the definition,

we have . For the point , we have the same proof. □
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Assumption Given the data  sample  in  the  feature  space 
and  the  corresponding  feature  in  feature  space ,  then,  we
assume  that ,  structure  order  sequence 

,  and  have

the  probability  that, , 

, .
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Lemma  2 Given  the  samples ,  and  a  positive  integer
,  if , ,  there  are 

pairs  is  less  than

.  Then,  with  high
probability,  and  are same points with different features.

min(N s,Nt)
Nmin ϵ < M/Nmin CM

N ϵ
M(1− ϵ)Nmin−M

ϵ

ϵ > 1− ϵ CM
Nmin

ϵM(1− ϵ)Nmin−M >CM
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(1− ϵ)MϵNmin−M

xs
i xt

j

Proof We  prove  this  by  calculation  and  exploiting  the
assumption.  For  the  convenience,  we  denote  as

.  That  is,  when ,  is
increasing  when  is  increasing,  then,  since  we  assume

, .  Then,
 and  are  same  point  from  different  feature  spaces  with

high  probability.  　　　　　　　　　　　　　　 □

Metric  construction In  the  above  debates,  we  give  the
motivation  that  why  we  construct  the  metric.  That  is,  the
structure between different features is similar. Then, we derive
a definition for the structure order sequence construction, and
give the Lemma 1 and Lemma 2 to ensure that the constructed

∀i
Seq(xs

i ) xt
j Seq(xt

j) M
[D(xs

δs
i (1), x

s
δs

i (m))−D(xt
δt

j(1)
, xt
δt

j(m)
)]2

Seq(xs
i ) Seq(xt

j) xs
i xt

j

xt
j

M N M

structure  order  sequence  could  be  used  to  measure  the
structure  similar  between  different  features.  From  Lemma  2,
we  can  conclude  a  metric: ,  given  the  order  sequence

,  if  there  exists  a  point  with ,  and  pairs
structure  order  distance 

between  and  is the least,  and  is the the
same  sample  point  with  high  probability.  To  find  more
samples  belonged to the same sample with high probability,
we  increase  to ,  and  select  all  samples  that  the
structure order sequence has the least values.

Xs Xt

Xs Xt

xs
i

xt
j

X = {Xs,Xt}

X

In  the  above  debate,  we  assume  that  the  and  are  the
same samples with different features. If  and  are not the
same samples, following the previous debate, we know that 
and  are  with  the  same  class  at  least.  Then,  given  the
observation  samples ,  we  can  achieve  the
following  graph  which  measures  the  similarity  between
samples in .
 

T =
[

T ss T st

T ts T tt

]
, (1)

T ss T tt k

T ts T st

where  and  are  constructed  by  a  standard -nearest
neighbor algorithm to measure the difference between samples
within the same feature.  and  are the similarity metrics
to  measure  the  difference between samples  with  the  different
features.  When  constructing  the  order  sequence,  we  compute
the distance between each point with the shortest path, which
is  used  to  capture  the  data  structure.  We  summarize  our
algorithm in Algorithm 1.

 2.3    Heterogeneous clustering

xn
θn F(x|θn)

Xs Xt

X = {xn}Nn=1 T

After  constructing  the  metric,  we  now  establish  our
heterogeneous  clustering  model,  in  which  we  exploit  the
Dirichlet process [30] to estimate the unknown cluster number
and assume that the heterogeneous data  is generated from a
same  hidden  space  denoted  as  with  probability 
(following,  we  no  more  distinguish  and ,  and  use

 since we have constructed the similarity metric ):
 

G|G0 ∼ DP(G0,α), θn|G ∼G, xn ∼ F(x|θn). (2)

 

 
Fig. 1    Illustration of  data  structure with different  features.  The 1st  row is  the original  images.  The 2nd row shows the images with different
light conditions. The 3rd row demonstrates the images with sift feature. Right figure illustrates the feature distribution in the 3D space. From the
figure, we know that data with different feature share the same data structure
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θn

xN

According  to  the  previous  study  [38],  we  know  that 
demonstrates a clustering effect that a new sample  is either
sampled  from  a  novel  class,  or  extracted  from  the  existing
clusters.
 

p(θN |{θn}N−1
n=1 ) = ANαG0+AN

I∑
i=1

n̂iδ̂(i),

AN = 1/(α+N −1) n̂i θ

{θn}N−1
n=1 δ̂( j) I

{θn}N−1
n=1

F(x|θn)
xn

where ,  denotes  the  frequency  of
occurrence  in ,  represents  the  delta  function. 
denotes  the  number  of  unique  value  in .  By
establishing  the  generating  process  with  the  conventional
Bayesian DP framework, we get two issues: (1) Conventional
distribution  cannot  model  the  complicated  high
dimension  real  dataset.  (2)  Generated  samples  cannot
assure  that  samples  from  the  same  classes  with  different
feature spaces have the similar representation.

To address the first issue, we exploit the GAN to model the
complicated  real  dataset.  For  the  second  issue,  we  constrain
the  generation  process  with  the  proposed  heterogeneous
similarity  metric.  That  is,  when  generating  the  observation
samples,  we  employ  a  pseudo  feature  concept  which  is
generated  from  the  DP  process,  and  is  consistent  with  the
heterogeneous similarity metric. With the previous debate, we
can derive the following generation model:

n ∈ {n}∞1 θn|G ∼G,G|G0 ∼ DP(G0(λ),α)1. For , ,
n ∈ {n}∞1 x̂n ∼ F(x̂|θn)2. For , ,
n, n̂ ∈ {n}N1 hn,n̂ ∼ N(rn,n̂|Tn,n̂(x̂n− x̂n̂)2, δ)3. For , ,
n ∈ {n}N1 xn|x̂n ∼ N(x|GN(x̂n))4. For , ,

GN(x̂i) G0
(λ) = {c0,u0,v0,B0}

F(x̂|θ) N(hn,n̂|Tn,n̂(x̂n− x̂n̂)2, δ)

D(X)

where  is the GAN generative network.  is the Nor-
mal-Wishart  distribution  with  parameter .

 and  are  Gaussian  distribution.
In  order  to  optimize  the  GAN,  we introduce  a  discriminative
net .  When realizing the DP for the model optimization,
we exploit stick break process.
 

G|G0 ∼ DP(G0,α)⇐⇒


vn|α ∼ Beta(1,α)
θn|G0(λ) ∼G0(λ)

G =
∞∑

n=1

π(vn)δ̂θn (θn)

 ,
Beta(1,α) π(vn)

vn
∏

(1− vn−1) δ̂θn (θn)
where  is  the  Beta  distribution,  is  defined  as

,  is the indicator function.

 2.4    Optimization
In  the  previous  section,  we  have  developed  the  deep
generative  model  for  the  heterogeneous  datasets.  We  now
derive the corresponding optimization algorithm for the model
inference.  Given  the  observation  samples  generation  process,
our  model  can  achieve  the  class  indicator  by  calculating  the
posterior  probability.  In  order  to  calculate  the  posterior
probability  of  the  given  model,  we  exploit  the  variational
inference  framework,  in  which  we  truncate  the  relation  and
approximate  the  posterior  probability  of  the  hidden
parameters:
 

q(V, θ,Z, X̂) =
K−1∏
k=1

qγk (vk)
K∏

k=1

qτk (θk)
N∏

n=1

qϕn (zn)
N∏

n=1

qw̃n (x̂n), (3)

qγk (vk) qτk (θk) qϕn (zn)
γk = {γk,1,γk,2}

τk = {ck,uk,vk,Bk} ϕn = {ϕn,k}Kk=1
x̂n

qw̃n (x̂n)
x̂n qw̃n (x̂n)

w̃n = {ux
n,Σ

x
n}Nn=1

where , ,  are  the  Beta,  Wishart-Normal
and  categorical  distributions  with  parameter ,

 and ,  which  are  the  conjugate
distribution  of  the  given  Bayesian  priors.  For ,  it  is  a  little
different  since the GAN is deep neural  network.  We have no
closed  form  of .  We  thus  use  the  Laplacian
approximation  to  the  and  set  the  distribution  as  a
Gaussian  distribution  with  parameter .  From
the  generation  constructed,  we  can  also  derive  the
corresponding  likelihood  probability  lower  bound  given
observations.
 

log
∏N

n=1
p(xn|α,λ) ⩾

w
q(Ω) log

p(X,Ω,α,λ)
q(Ω)

d(Ω), (4)

Ω = {V, θ,Z, X̂} q(Ω)
p(X,Ω,α,λ)

where ,  is  the  variational  posterior
probability,  is  the  joint  probability  of  the  hidden
variables and observations.

γkUpdate  of  the : Differentiating  the  variational  lower
bound of the likelihood function, we can derive the following
updating rules:
 

γk,1 = 1+
N∑

n=1

ϕn,k,γk,2 = α+

N∑
n=1

∑
j>k

ϕn, j. (5)

τkUpdate  of  the : The  updating  rule  can  be  achieved  by
taking the partial derivative and setting the derivative to zero:
 

ck = c0+

N∑
n=1

ϕn,k, vk = v0+

N∑
n=1

ϕn,k, (6)

 

uk =
1
ck

(
c0u0+

N∑
n=1

ϕn,kux
n

)
, (7)

 

B−1
k =

(
uk −u0)c0(uk −u0

)T
+

N∑
n=1

ϕn,kΣ
x
n+

B−1
0 +

N∑
n=1

ϕn,k
(
ux

n−uk
)(

ux
n−uk

)T
. (8)

ϕn τkUpdate of the : Similar to the , we have:
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logϕn,k ∝ Ψ(γk,1)−Ψ(γk,1+γk,2)+Dc−1
k

+

D∑
i=1

ψ

(
vk +1− i

2

)
+

∑
j<k

{
Ψ(γ j,2)−Ψ(γ j,1+γ j,2)

}
+ϕn,k ×

{
− νkTr(BkΣ

x
n)−νk(ux

n−uk)T Bk(ux
n−uk)

}
, (9)

Ψ() Tr()where  is  a  digamma  function.  stands  for  the  trace
sum of matrix.

Learning  adversarial  parameters Different  from  the
updating  rules  used  in  the  variational  parameters,  since  we
adopt  the  generative  adversarial  network  to  model  the
complicated  high  dimension  real  dataset,  the  variational
inference can not derive a closed form solution to update some
variational  and  network  parameters.  We  then  exploit  a
sampling based method:
 

argmin
{ux

n,Σ
x
n}

E[log p(xn|x̂n)] = argmin
{ux

n,Σ
x
n}

Eq[log F(x̂n|θn)]

minmax
{uy

n,Σ
y
n}

S∑
s=1

{
E[log DN(xn)]+E[log(1−DN(GN(h(n,s))))]

}
,

h(n,s) qw̃n (x̂n) S
ux

n
ĥn = ux

n

where  is sampled from ,  is the sampling times.
For  the  variational  parameters ,  we  exploit  an  auxiliary
variable  and a constraint.  Then, we expand the above
formulations and alter it into:
 

min1/σ̂H(D̂−T )HT − 1
S

S ,N∑
s,n=1

log N(xn|GN(h(n,s)))

+

N,K∑
n,k=1

{
ϕn,k

(
νk(ĥn−uk)

T
Bk(ĥn−uk)+Tr(BkΣ

x
n)
)

+ log(π)D− log |Bk |+Dc−1
k +

D∑
i=1

ψ

(
vk +1− i

2

) }
s.t. ĤĤT = Diag(1/ϵ1F1, . . . ,1/ϵDFD), ĥn = ux

n, (10)
D̂

T h(n,s) qw̃n (x̂n)
qw̃n (x̂n) ux

n

Ĥ =
{
ĥ1, . . . , ĥN

}
where  is  the  sum  of  diagonal  matrix,  row  or  column
elements  of .  Note  that  is  sampled  from ,

 contains  the  variable  which  should  be  optimized.
We achieve this  in the network optimization process.  For the
derivation convenience, we give a collection .
Also, we set the constraint as: 

D∑
d=1

Fd =

N,D,K∑
n,i,k=1

{
ψ(

vk +1− i
2

)+ϕn,k
(
νk(ĥn−uk)

T
Bk(ĥn−uk)

+Tr(BkΣ
x
n)
)
− log |Bk |+Dc−1

k

}
.

Ĥ L
T

Σx
n

To solve this problem, we utilize the Lagrangian multiplier
method.  We then can achieve the  solution of  via  (graph
Laplacian of ) eigenvalue decomposition. For the parameter

, we optimize it within the network with the following loss
function.
 

argmin
{ux

n,Σ
x
n}

E[log p(xn|x̂n)] =

minmax
{uy

n,Σ
y
n}

S∑
s=1

{
E[log DN(xn)]+E[log(1−DN(GN(h(n,s))))]

}
,

(11)
h(n,s) = ux

n+Σ
x
nϵ̂ ϵ̂ ∼ N(·|0, I)where , .  We  summarize  the  full

algorithm  in  Algorithm  2  and  the  network  architecture  in
Fig. 2.
 

 
 

 2.5    Computational complexity

Ti
Lg

Ug
i Vg

i
Ld Ud

i Vd
i

tg td

Before deriving the computational complexity, we assume that
our  clustering  algorithm  runs  iterations.  For  the  GAN
network, we assume that the generator has  layers, and each
layer  has  input  nodes  with  outputs.  The  discriminator
has  layers,  and  each  layer  has  input  nodes  with 
outputs. Generator and discriminator runs for  and  times.

kFor the metric, we use the -nearest neighbor graph and the
shortest  path  algorithm  for  the  metric  construction.  When
computing the shortest path, we exploit the Floyd's algorithm.

 

 
Fig. 2    Overview of the optimization process of the proposed deep Bayesian generative network
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O(N3)
k

k

k
O(N2log2N)

O(N3+N2log2N)

Thus,  the  computational  complexity  is .  After
computing the shortest path, we exploit the -nearest neighbor
graph  algorithm.  In  the -nearest  neighbor  graph  algorithm,
we use the quick sort  algorithm for  each sample point.  Thus,
the computational complexity for the -nearest neighbor graph
is . We then deduce the computational complexity
for the whole metric algorithm which is 

O(D3)

O(ND2) O(N3)

O(tg×
∑Lg

i=1 Ug
i ×Vg

i + td ×
∑Ld

i=1 Ud
i ×Vd

i )
O(Ti× (KD3+KND2)+

(N3+N2log2N)+ tg×
∑Lg

i=1 Ug
i Vg

i + td ×
∑Ld

i=1 Ud
i Vd

i )

For the clustering model, the major computation complexity
lies  on  the  inverse  and  determinant  of  the  covariance  matrix
those  need .  Another  major  computation  complexity  is
Eq. (8),  Eq.  (9) and eigenvalue decomposition Eq. (10) those
cost  and .  In  addition  to  these  computation
costs,  the  GAN  optimization  also  leads  to  a  computation
complexity  which  should  also  be  considered.  That  is

.  Then,  the  whole
computation  complexity  will  be 

  

 3    Experiments
In this section, we show the experimental results on synthetic
dataset firstly. Then, we validate our model on the real-world
dataset,  and  compare  it  with  some  other  related  clustering
methods.  The  effect  of  the  model  parameters  is  also
demonstrated in this section.

Synthetic  dataset We  first  validate  our  theory  on  the
synthetic  dataset  (Fig. 3).  Heterogeneous  data  samples  are
generated from the same dataset with translation transform. In
the dataset,  we define that the cluster with the same structure
as  the  same  class.  From  the  results,  we  can  validate  our
theoretic analysis,  and observe that our model can cluster the
heterogeneous dataset, where our method can cluster the class
with  same  structure  as  the  same  class.  In  the  following,  we
validate our method on the real dataset.

Benchmark datasets We use the following datasets for the
model theory and performance validation.

COIL20 dataset: COIL20 dataset contains the objects which
are  rotating  on  a  table.  It  has  20  objects  and  each  object  in
each class contains 72 images.

COIL100  dataset:  COIL100  is  an  extended  version  of
COIL20 dataset, which extends the 20 objects to 100 objects,
and each object contains 72 images same as COIL20 dataset.

MNIST  dataset:  MNIST  is  a  well-known  dataset  of
handwritten  digits  which  contains  10  objects  and  70000
images.

USPS  dataset:  USPS  dataset  is  a  widely  used  handwritten
dataset which contains 10 classes and 20000 samples. We use
a popular subset which contains 9298 images.

BALLET  dataset:  The  BALLET  data  set  contains  44  real
video sequences of eight actions collected from a ballet DVD.
There are 9594 images in the BALLET image dataset.

Baseline To  demonstrate  the  usefulness  of  the  proposed
clustering model, we compare our method with the following
two  different  algorithms.  Algorithms  those  do  not  need  to
specify  the  cluster  number:  Geodesic  Finite  Mixture  Model
(GFMM)  [32].  Dirichlet  Process  Mixture(DPM)  model  [38].
SCAMS  [39].  autoSc-N  [40].  Density  based  Clustering
algorithm  by  Fast  Search  and  Find  of  Density  Peaks
(CFSFDP)  [41].  In  this  algorithm,  clustering  result  can  be
determined  by  human  interaction  with  the  decision  graph.  A
Dirichlet  process  based  linear  manifold  clustering  method,
DP-space  [30].  Our  previously  proposed  low-rank  based
clustering  method,  BLRASC  [42].  Three  deep  learning
(ACIDS,  ClusterGAN  and  Spectral-Net)  based  clustering
methods  are  also  considered  as  the  baseline,  although  they
require the cluster number in advance [13,15,43].

For  the  comparison,  three  heterogeneous  domain  adaption
methods  are  also  exploited  to  show  the  effective  of  our
proposed method. An unsupervised method, DAMA [20], two
semi-supervised  methods,  TNT  [44]  and  CDLS  [21].  When
exploiting  the  semi-supervised  method,  few  labeled  samples
for  each class  are  given,  which are  used to  make the  method
work.

Experimental  setup We  evaluate  our  method  on  three
different  data  representations:  Original  images,  the  noise  and
rotated  images  (noise  the  image  with  Gaussian  distribution
and rotate the image 90 degrees), and the SIFT features from
the original dataset. To make the baseline algorithms work on
images and SIFT feature space, we exploit PCA to project the
SIFT and image into 128 dimensions.

α = 1 u0 = 0 B0 = I I

M

Hyper parameters for Bayesian model are set to tiny values
to make them affect as little as possible to the model inference
and are set as follows: ,  and , where  is an
identity  matrix.  To  initialize  the  value  of  the  variational
parameters,  we  set  them  randomly.  We  use  the  NMI  to
measure the clustering accuracy. The hidden dimension of the
pseudo features and the maximum cluster number we used in
the experiments are summarized in Table 2.  is set at 5. We
select  the  parameters  by  using  some  ground-truth  labels

 

 
Fig. 3    Illustration of BHAC clustering result on the synthetic dataset. (a) and (b) demonstrate the original dataset without class labels; (c) and
(d) are the BHAC results
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according  to  NMI.  The  labelled  data  is  less  than  60% and  is
selected  randomly.  The  maximum  cluster  number  is  selected
from the range 30 to 140. The hidden dimension of the pseudo
feature is 10 to 140.

GAN  model  has  a  backbone  architecture.  The  others  are
largely altered from this backbone by adding or cutting down
some  layers.  Generator  with  four  layers,  each  layer  has  the
following  kernel  number,  size  and  activation  function.  Layer
1: 128, 3×3, ReLU. Layer 2: 64, 5×5, ReLU. Layer 3: 32, 5×5,
ReLU. Layer 4: 1, 5×5, Sigmoid. Discriminator is its inverse.
When  fitting  the  SIFT  features,  we  exploit  a  fully  connected
network with four layers.

Experimental result We show our experimental  results  on
the real  dataset  in Table 3.  From the table,  we know that  our
method  achieves  the  best  on  most  datasets.  We  can  also
observe that our model can not only cluster the heterogeneous
data  samples,  but  also  can  be  applied  to  estimate  the  cluster
number.

From  the  experiments  on  MNIST  and  BALLET  dataset
(original  image+noise  rotated  images  and  original
image+SIFT  features),  we  know  that  the  deep  clustering
methods  perform better  than  BHAC,  the  main  reason  is  that:
(1)  ACIDS,  ClusterGAN  and  Spectral-Net  have  the  cluster

number  a  priori,  which  makes  them  perform  better  than  the
BHAC method. Our model has the flexible model size, which
means  that  the  model  should  take  the  clustering  task  and  the
cluster  number  estimation  task  as  a  unified  framework.  This
will  make the  model  optimization much harder,  and drop the
clustering accuracy. (2) Our model relies on the heterogeneous
metric,  which  is  constructed  via  the  data  structure
assumptions.  But  real  dataset  may  not  always  follow  the
assumptions, this happens especially in the large-scale dataset
(MNIST and BALLET has much more samples  and clusters)
where  much  more  samples  will  not  follow  the  metric
assumptions.  Another  observation  is  that,  the  clustering
accuracy drops in the SIFT and original  image feature space.
The  reason  may  be  that  SIFT  and  image  are  much  more
complicated  heterogeneous  clustering  task,  which  makes  the
GAN model hard to be optimized and some samples may not
be consistent with the heterogeneous metric assumption.

In  addition  to  the  clustering  task,  we  show  another
advantage of BHAC over the other clustering models. That is,
BHAC  is  a  nature  generative  clustering  model  and  can
generate  highly  realistic  samples.  In  our  experiment,  we
conduct a series of experiments on the COIL20 and BALLET
dataset. Figure 4 illustrates  the  generated  samples.  From  the
figure,  we  know  that  our  model  can  fit  the  complicated  real
image  distribution,  which  is  hard  to  be  tackled  by  the
conventional shallow clustering models. For the running time,
we summarize it in Table 4.

Effect  of  the  parameters There  are  several  model
parameters  affecting  the  performance  of  our  clustering
algorithm  (the  main  parameters  affect  the  algorithm  are
pseudo  feature  dimension  and  maximum  cluster  number).  In

   
Table 2    Parameters used in the five real datasets

Data COIL20 COIL100 BALLET USPS MNIST
Feature Original image+noise rotated image
D 100 100 130 70 30
K 70 130 60 60 50
Feature Original image+SIFT
D 90 90 60 90 40
K 70 130 110 70 40
 

   
Table 3    Clustering accuracy (NMI) and the estimated cluster number on the real world datasets

Method COIL20 COIL100 BALLET USPS MNIST COIL20 COIL100 BALLET USPS MNIST
Feature Original image+noise rotated Image Original image+SIFT+TNT
BHAC 0.51 0.54 0.45 0.49 0.47 0.61 0.55 0.23 0.41 0.41
DP-space 0.07 0.02 0.07 0.02 0.01 0.02 0.02 0.01 0.05 0.02
SCAMS 0.26 0.24 0.15 0.07 0.24 0.08 0.03 0.04 0.05 0.11
AutoSC-N 0.22 0.18 0.17 0.18 0.21 0.01 0.12 0.13 0.09 0.13
CFSFDP 0.17 0.21 0.29 0.21 0.34 0.36 0.17 0.19 0.21 0.21
DPM 0.05 0.12 0.03 0.03 0.26 0.06 0.04 0.03 0.07 0.11
GFMM 0.01 0.06 0.04 0.08 0.04 0.04 0.02 0.02 0.06 0.03
BLRASC 0.41 0.03 0.11 0.30 0.37 0.29 0.22 0.27 0.24 0.03
ACIDS 0.32 0.39 0.26 0.32 0.42 0.33 0.13 0.39 0.10 0.17
ClusterGAN 0.27 0.17 0.04 0.23 0.47 0.11 0.13 0.01 0.14 0.04
Spectral-Net 0.29 0.32 0.35 0.28 0.39 0.34 0.17 0.36 0.22 0.21
Feature Original image+noise rotated image+DAMA Original image+SIFT+CDLS
DP-space 0.04 0.12 0.02 0.07 0.03 0.06 0.01 0.02 0.02 0.04
SCAMS 0.26 0.25 0.14 0.21 0.27 0.11 0.02 0.02 0.01 0.02
AutoSC-N 0.31 0.37 0.11 0.23 0.31 0.31 0.07 0.06 0.14 0.12
CFSFDP 0.21 0.24 0.17 0.31 0.37 0.39 0.12 0.27 0.21 0.17
DPM 0.17 0.09 0.04 0.06 0.31 0.31 0.02 0.03 0.05 0.13
GFMM 0.12 0.16 0.02 0.06 0.02 0.03 0.01 0.01 0.01 0.04
BLRASC 0.39 0.42 0.27 0.34 0.44 0.37 0.21 0.11 0.17 0.12
ACIDS 0.41 0.44 0.27 0.27 0.51 0.42 0.11 0.36 0.13 0.14
ClusterGAN 0.36 0.32 0.05 0.38 0.58 0.07 0.04 0.07 0.08 0.02
Spectral-Net 0.31 0.40 0.22 0.35 0.54 0.34 0.09 0.29 0.12 0.17
Ground truth 20.0 100.0 44.0 10.0 10.0 20.0 100.0 44.0 10.0 10.0
Estimated number 31.2 127.6 60.4 20.2 21.2 25.1 125.2 7.1 30.1 17.1
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this  subsection,  we  conduct  some  experiments  on  these
parameters to analyze the effect (Fig. 5).

From  the  figure,  we  can  know  that  clustering  accuracy  is
decreasing along with  the increasing of  the  maximum cluster
number on the COIL20 dataset. The reason may be that large
maximum cluster number leads to a much more difficult  task
for  the  model  to  select  the  right  cluster  number.  For  the
COIL100  and  BALLET  dataset,  the  clustering  accuracy  is
increasing  along  with  the  increasing  of  the  maximum cluster
number.  The  reason  may  be  that  COIL100  and  BALLET
dataset  have  100  and  44  classes,  smaller  maximum  cluster
number doesn’t have the capability to model this complicated
distribution.  The second experiment on the hidden dimension
of the pseudo features indicates that high dimension increases
the clustering accuracy on the COIL100 and COIL20 dataset.
But, this improvement is limited in the BALLET dataset.

For  the  estimated  cluster  number,  we  can  observe  that,  it
increases  when  the  maximum cluster  number  and  the  hidden
dimension is increasing. The reason may be that, (1) the large
maximum cluster number enlarges the model capability to find
much more clusters;  (2)  the large hidden dimension indicates

that  the  dataset  enlarges  its  features  space,  which  leads  to  a
result  that  many samples  will  form as  a  outlier  in  the  feature
space.  This  makes  the  BHAC  model  increase  the  cluster
number when the hidden space is increasing.

D
uk,Bk

ux
n

α

In  addition  to  these  effects,  we  also  conduct  some
experiments  on  our  method  to  measure  the  stable  of  the
estimated cluster number (Table 5). We exploit the variance of
the estimated cluster number. In our experiments, we test our
model on the COIL20, COIL100 and BALLET dataset. There
are three parameters (or trick) which could affect the stable of
the model, maximum cluster number, the hidden dimension of
the  pseudo  features  ( )  and  the  trick  we  initialize  the
variational parameter  (That is, initializing the parameter
with  the  estimated  variational  parameter  of .).  For  the
comparison,  we  also  report  the  stable  cluster  number
estimation experimental results.  That is:  (1) experiments with
the same parameter but run at different times. (2) Experiments
with different hyper parameter of the DP (we mainly test our
method on the ; the other hyper parameters of the DP are the
same).  From  the  experiments,  we  can  conclude  that:  (1)  our
method  with  the  same  parameters  or  different  hyper

 

 
Fig. 4    Illustration of generated images with the COIL20 and BALLET dataset. (a) and (d) demonstrate the samples from original data.  (b) and
(e) show the samples with the noise and rotation.  (c) and (f) are the images generated from our model

 

   
Table 4    Running time on the five real datasets (seconds)

Data COIL20 COIL100 BALLET USPS MNIST COIL20 COIL100 BALLET USPS MNIST
Feature Original image+noise rotated image Original image+SIFT
Time 4813.5 22620.6 78160.3 67296.3 222426.7 3210.2 13108.1 34047.5 35915.9 110821.2
 

 

 
Fig. 5    Illustration of the clustering result of the BHAC parameter effect on the COIL20, COIL100 and BALLET dataset. The 1st two figures
(a) and (b) show the clustering accuracy (NMI), while the last two figures (c) and (d) demonstrates the estimated cluster number

 

   
Table 5    Variance of the estimated cluster number

Method COIL20 COIL100 BALLET
Same parameters 1.51 2.12 0.69

αHyper parameter 1.67 2.02 0.68
Different stretagy 6.55 15.62 3.67
K 7.20 38.33 0.84
D 6.31 41.32 0.54
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parameters  of  the  DP  will  lead  to  a  stable  cluster  number
estimation.  (2)  The  maximum  cluster  number,  dimension  of
the  hidden  variable  and  the  strategy  that  we  initialize  the
variational  parameters  and  can  affect  the  stable  of  the
estimated cluster number.

 4    Conclusion
In  this  paper,  a  deep  heterogeneous  clustering  problem  with
unknown cluster number has been studied. We first construct a
heterogeneous  similarity  metric  to  measure  the  difference
between different features. Then, a hierarchical Bayesian deep
generative  model  has  been  proposed  to  handle  the  deep
clustering problem with unknown cluster number. Finally, we
derive  an  efficient  optimization  method  for  the  model
inference  and  parameter  estimation.  Experimental  results  on
different  synthetic  and  real  datasets  validate  our  theoretic
analysis, and show the effectiveness of our method.
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