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Abstract Underwater images often exhibit severe color
deviations and degraded visibility, which limits many practical
applications in ocean engineering. Although extensive research
has been conducted into underwater image enhancement, little
of which demonstrates the significant robustness and generali-
zation for diverse real-world underwater scenes. In this paper,
we propose an adaptive color correction algorithm based on the
maximum likelihood estimation of Gaussian parameters, which
effectively removes color casts of a variety of underwater
images. A novel algorithm using weighted combination of
gradient maps in HSV color space and absolute difference of
intensity for accurate background light estimation is proposed,
which circumvents the influence of white or bright regions that
challenges existing physical model-based methods. To enhance
contrast of resultant images, a piece-wise affine transform is
applied to the transmission map estimated via background light
differential. Finally, with the estimated background light and
transmission map, the scene radiance is recovered by
addressing an inverse problem of image formation model.
Extensive experiments reveal that our results are characterized
by natural appearance and genuine color, and our method
achieves competitive performance with the state-of-the-art
methods in terms of objective evaluation metrics, which further
validates the better robustness and higher generalization ability
of our enhancement model.

Keywords underwater image enhancement, adaptive color
correction, background light estimation

1 Introduction

Images captured in underwater environments usually suffer
from degraded quality in terms of severe color distortion, poor
visibility and contrast. This is because floating particles in
water lead to selective lighting absorption and scattering when
the light propagates between the scene and the camera. With
the rapid development of aquatic robot inspection, ocean
engineer, marine archaeology and ecological research, the
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degraded underwater images seriously restrict the performance
of various computer vision algorithms used for observation
and analysis [1,2].

As a significant and challenging research task, underwater
image enhancement has attracted much attention within the
past decade [3—12]. In order to improve the quality of under-
water images, a great variety of approaches have been pres-
ented and can be divided into three groups: image formation
model (IFM)-based, non-IFM-based, and deep learning-based
methods. Some existing methods treated the problem as image
dehazing based on an IFM, mainly including the background
light and the transmission map estimation, then achieved the
clear images by solving an inverse problem based on the
estimated IFM parameters [13—15]. Non-IFM-based appro-
aches are designed to modify pixel values to improve visual
effects, such as color correction and stretch of dynamic pixels
range [16—18]. Recently, deep learning techniques achieve
significant advance from low-level to high-level computer
vision problems, which motivates various underwater image
enhancement methods based on deep learning, especially
generative adversarial networks (GANs) to be proposed and
pushed forward [19-21].

Even though previous underwater image enhancement
methods have obtained a measure of success, most of which
only provide limited analysis and discussion about the
robustness and generalization. Since multifarious underwater
images with different degraded issues depend on complicated
underwater environments, it is necessary to verify the
effectiveness on various kinds of real-world underwater image
datasets instead of some specific images. Besides, the perfor-
mance of current underwater image enhancement methods
based on deep learning still lag behind the traditional ones in
terms of some indicators due to insufficient training data and
network models not designed for this task. In other words, the
deep learning-based methods just provide limited generali-
zation capability to the real-world underwater images [1].

In this paper, we first propose an adaptive color correction
algorithm for diverse underwater scenes including multi-types
of greenish and bluish tone, low and high backscatter, and
turbid images with severe degradations. Then, we adopt
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weighted combination of gradient maps in HSV color space
and absolute difference of intensity of grayscale images to
accurately estimate the background light. To the best of our
knowledge, it is the first time to use a map of background light
estimation for obtaining the latent parameter of IFM. Next, a
piece-wise affine transform is employed to enhance the
estimated transmission map, which effectively boost the
sharpness and contrast of final enhanced images. Since both of
these two latent parameters (i.e., background light and
transmission map) deciding the scattering removal effects are
estimated from a given image, we can finally obtain the scene
radiance (i.e., a haze-free image) via addressing an inverse
problem based on IFM.

The remainder of this paper is organized as follows. In
section 2, we review different methods for underwater image
enhancement. Then, we provide parameters estimation of
Gaussian model for adaptive color correction and details of the
proposed method for background light estimation and
transmission map enhancement in Section 3. In Section 4,
some experimental results and analysis are described. Finally,
the conclusion is presented and the future work is given in
Section 5.

2 Related work

The past decade has witnessed the rapid development of
underwater image enhancement. There are three mainstream
approaches for the enhancement of underwater images
comprising [FM-based, non-IFM-based, and deep learning-
based methods.

2.1 IFM-based methods

Inspired by conventional terrestrial image dehazing schemes,
some researchers concentrated on specialized underwater
image restoration problems based on IFM in recent years.
Carlevaris-Bianco et al. [22] employed the difference among
the maximum intensity of the red, green and blue channels to
estimate the depth information of a scene that was used to
remove haze in underwater images. Chiang et al. [23]
exploited wavelength compensation to restore underwater
images by dehazing, which could simultaneously achieve
color correction and dehazing. Lu et al. [24] proposed a novel
IFM compensating for attenuation discrepancy along the path
of propagation and developed a color-lines-based background
light estimator for turbid underwater images. Based on the
minimum information loss and histogram distribution prior, Li
et al. [25] presented a method to enhance underwater images
and obtained high contrast results. Peng et al. [26] proposed an
approach to estimate underwater scene depth based on image
blurriness and light absorption, which is used to enhance
underwater images. Berman et al. [27] utilized spectral
profiles of various water bodies for color constancy and
evaluated this method on a new underwater image dataset.
Based on adaptive attenuation-curve prior depending on
statistical distribution of pixel values, Wang et al. [28]
proposed an effective method for single underwater image
restoration. Peng et al. [29] generalized the dark channel prior
(DCP) based on depth-dependent color change for diverse
degraded image restoration including underwater scene with

different color casts and lighting conditions. However, it is
hard to effectively remove color distortion for a wide range of
underwater images by these existing IFM-based methods. To
solve this issue, we propose an effective method as
independent pre-processing step for color correction, which is
applicable to diverse underwater scenes.

2.2 Non-IFM-based methods

Another line of research is straightforward to improve image
quality and generate an enhanced image without IFM. Ancuti
et al. [30] introduced a novel fusion-based strategy deriving
the inputs and weights only from the original underwater
scene without multiple images. Fu et al. [31] proposed a
retinex-based approach which consists of three steps: color
correction, decomposing the reflectance and the illumination,
and post-processing for fuzz and under-exposure. Zhang et al.
[32] employed an extended multi-scale retinex-based method
(LAB-MSR) to process the underwater images in CIELAB
color space. A two-step method for underwater image enhance-
ment was presented in [33], which contains an effective color
correcting strategy and a novel optimal contrast improvement.
Ancuti et al. [34,35] proposed an approach to fuse the
advantages of color balance and multiscale fusion strategy for
underwater image enhancement. Then, color channel compen-
sation (3C) as a pre-processing method is further discussed
and employed for various image enhancement solutions.
Although this type of enhancement technique obtains better
global color correction for underwater images, it tends to
produce visually unpleasing results (i.e., over enhancement or
over saturation). By contrast, we treat color correction
problem as a global color redistribution using parameters
estimation of Gaussian model built on each color channel,
which is different from the above methods and is able to
generate natural results with genuine color.

2.3 Deep learning-based methods

Recently, deep learning substantially improves the perfor-
mance of various low-level computer vision tasks including
underwater image dehazing. Li et al. [36] employed synthetic
training data to train a two-stage deep network, called
WaterGAN, for underwater image enhancement. Based on
Cycle-GAN [37], a weakly supervised color transfer model
(i.e., Water Cycle-GAN) was proposed for underwater image
color correction [38], which relaxes the unavailability of
paired real-world training data. Guo et al. [39] proposed a
residual multi-scale dense block using dense connections and
residual learning in generator for underwater image enhan-
cement. Li et al. [40] proposed an end-to-end CNN model,
called UWCNNSs, which is trained by synthetic underwater
image datasets generated by the revised underwater image
formation model. Fu et al. [2] introduced a two-branch
network to compensate the global color distortion and local
reduced contrast, and then the compressed histogram equali-
zation was used to avoid the over-enhancement problem.
Nonetheless, most of the deep learning-based methods are
facing the problems that they have to follow the IFM or
simplified underwater IFM to synthesize their training data,
which is unrealistic for real-world tasks of underwater image
enhancement.
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Compared with these methods mentioned above, our
underwater image dehazing model combines the merits of
non-IFM and IFM-based methods, which contains not only the
natural appearance and high contrast but also global color cast
removal for diverse underwater images. The main contribu-
tions of this work can be summarized as follows:

1) We propose an adaptive color correction algorithm using
parameters estimation of Gaussian model, providing redistri-
bution of histograms on each RGB color channel based on a
linear transformation. The significant peak deviation of
histogram distributions of the original underwater images can
be effectively modified to concentrated area among RGB
channels and the histogram are characterized by more broad
range of distribution after color correction.

2) With weighted combination of gradient maps in HSV
color space and absolute difference of intensity of grayscale
images, the background light can be accurately selected from
the location of the darkest pixel in this map, which effectively
avoids the influence of white or bright regions that challenges
existing methods. To our best knowledge, it is the first
algorithm of background light estimation that based on the
superposed map for inference.

3) We propose a piece-wise affine transform applied for
stretching the transmission map, which aims at revealing more
details and valuable information and increasing contrast of the
scene radiance.

4) As a thorough work of underwater image enhancement,
extensive experiments on diverse underwater datasets show
that our method can effectively eliminate color cast and the
haze of the original underwater images, which thus
demonstrated better robustness and higher generalization of
our method compared with the state-of-the-arts.

3 Proposed method

As shown in Fig. 1, we first introduce an adaptive color
correction algorithm based on maximum likelihood estimation
of Gaussian parameters for a wide range of underwater
images. Then, we propose a novel approach for effective
background light estimation. And the enhanced transmission
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map is obtained by a piece-wise affine transform for scene
radiance restoration. At last, the dehazing result can be
calculated by IFM. As follows, we will introduce these key
algorithms in our method.

3.1 Adaptive color correction

Color correction for underwater images primarily aims at
balancing undesired color distortions caused by the selective
absorption theory of water, i.e., the red light is much easier to
be absorbed than the green and blue light, and the shorter
wavelengths of green and blue light will be much more easily
scattered than the longer wavelength of the red light [8].
Therefore, underwater images often show greenish or bluish
tone in most cases. According to the observations in [30], the
red and blue channels are supposed to be compensated at each
pixel location. However, it is insufficient to compensate just
red and blue channels when the green channel is noticeably
attenuated (see Fig.2. (bl), for display, the global linear
contrast stretching is performed by clipping 0.1%o of the pixel
values in the shadows and 0.1% in the highlights [41]). Thus,
we further take the green compensation into consideration for
a more natural appearance as follows:

Irc(x,y) = I(x,y) + (Ig — IR)(1 — Ir(x,y)IG(x,y), (1)
Ige(x,y) = Ig(x,y) + (I — 1)1 - I(x, y)Ip(x,y),  (2)
Ic(x,y) = Ig(x,y) + (Ig — Ip)(1 — Is(x,y)IG(x,y),  (3)

where Ig, 1p, and Ig represent the mean value of red, green,
and blue channel respectively.

In order to further reduce discrepancy of distribution among
color channels, we employ the maximum likelihood estima-
tion (MLE) for unknown Gaussian parameters determining
RGB color histogram modification after color compensation.
The probability density function of Gaussian distribution can
be commonly defined as follows:

1
f(x)= —ex

(_(x—ﬂ)z)
Voo P\"T202 )

where 4 and o represent mean and variance of Gaussian
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Fig. 1 The flowchart of the proposed method
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Fig.2 Adaptive color correction for underwater images. (al) Greenish image. (b1) Bluish image. (c1) Greenish-blue image. (d1) Bluish-green
image. (a2), (b2), (c2) and (d2) Color compensation using red, green, and blue channels. (a3), (b3), (¢3) and (d3) The results of our proposed
adaptive color correction. The corresponding RGB histograms are shown under each result

distribution.

Then we can obtain the parameters of Gaussian model via
maximizing the likelihood of a given set of observations of
each color channel. The MLE of u and o can be denoted as
follows:

1 N
= NZIxn (5)
1 & )
== =, (©)
N;

where N is the number of pixels and x,, is the grayscale value
of the nth pixel in each channel.

According to the results of MLE, the distribution of color
histograms can be adaptively adjusted as:

I§ = 0.5+ (max Igc —min IRC)(O_R )(IRC pre), (7
= 0.5+ (maxIgc - mlnIGC)( p— )(IGC Hce),  (8)
15 = 0.5+ (maxIpc - mmIBC)(o-B )(IBC Hupc),  (9)

where ugc, UGe, UBc, ORC, 0Ge, and o e represent mean and
standard deviation of red, green and blue channel after color
compensation, I, Ig, and If denote results of adaptive color
correction on different color channels respectively. According
to relative degree of dispersion between red and green in Eq.
(7), green and blue in in Eq. (8), blue and green in Eq. (9), the

coefficients (max I,; —min/y;) (
x1

)xl x2 € {RC,GC, BC} are
in the interval [0, 1] to control the ratio of the intensity

mapping, while (max/, —mmlxl)( )yxl x1,x2 € {RC,GC,
o

BC} is employed to control the shifting range from normalized
median 0.5. As for most underwater images with attenuated
red channel, especially when it comes to severe attenuation,
orc is often smaller than ogc and pgc is generally the
smallest in RGB color channels. Therefore, the relatively
smaller red channel values tend to be mapped to larger value
in a wider range.

3.2 Underwater image dehazing

Our proposed underwater image dehazing method is compri-
sed of two main parts: background light and transmission map
estimation, where the corresponding parameters of IFM are
estimated for solving the inverse problem. As shown in Fig. 3,
the simplified underwater imaging model employed in most
existing techniques [41,42] can be described as Eq. (10). The
transmission map describes the proportion of the scene
radiance reaching the camera without scatter or absorption and
the image intensity of each pixel (x,)) in each color channel
includes two components: background light and attenuated
signal.

I3 y) = T (et (x,y) + BY(1 = 1(x, ), (10)
wherec € {r, g,b},1,(x,y) denotes the observed intensity at pixel
(x,y) after adaptive color correction, the scene radiance J(x,y)
blended with the transmission map #(x,y) describes the direct
attenuation, while the second term related to the background
light B¢ accounts for remaining portion.

3.2.1 Background light estimation
According to the traditional DCP-based method, I5°F ., (x,y) =

min min I5(x where I, (x,y) represents the image
(x,y)eQ(i,j){ce{RGB} ( y)} a(xy) rep 8

processed by adaptive color correction, can provide the
information of scene depth for a hazy image due to effect of
scattered light, i.e., the foreground (close scene pixels)
generally contains more dark pixels while the background (far
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Fig. 3 Underwater imaging model

scene pixels) lacks dark pixels under appropriate lighting
conditions. Thus, the background light B¢ can be selected
from one of the top 0.1% brightest scene pixels in the dark
channel and the pixel with the highest intensity among these
candidates can be used for background light estimation.
However, it is inaccurate to estimate the background light via
the DCP when it comes to a bright object, foreground or
highlight region captured in underwater images. As can be
seen from Fig. 4, the red dots denote locations where
background light is estimated by means of traditional dark
channel, while the yellow dots represent the background light
locations of our proposed method. Apparently, traditional
DCP leads to incorrect background light selection due to the
bright area.

In general, we can observe that objects or regions near the
camera tend to show more details including texture and edge
information, while far scene points are likely to have smoother
regions and thus smaller gradients than close scene points due
to the effect of forward and backward scattering in underwater
environment. Therefore, the background light can be estimated
according to inference of the scene depth using a gradient map

under the assumption that scene depth is uniform in a small
local patch [29]. Inspired by this observation, we use gradient
maps of each component in HSV color space containing
complementary information of edges combined with the
absolute difference of intensity values to accurately estimate
the background light.

The gradient maps of H, S, and ' components are computed

as Mpysv(x,y) = \/Mh()c,y)2+Mv()c,y)2 in HSV color space
respectively (Figs. 5. (a2)—(a4)), where M; and M, signify
horizontal and vertical 3 x 3 Roberts operators. While Fig. 5
(bl) shows the absolute difference of intensity values of gray-
scale image, which is computed as Mg(x,y) = 0.4 — Gray(I)|,
with the purpose of excluding those very bright or dark
regions that can hardly be detected due to smoothness. As can
be observed from Figs.5 (b2)—(b4), a group of modified
gradient maps Mysy(x,y) are estimated by dilating Mgy (x,y)
followed by filling holes, which aims at expanding regions
containing detected edge and texture information. The
integrated map of background light estimation consists of four
parts that are combined with appropriate weights as follows:

(cl) (c2)

(dn) (d2)

(c3) (c4)

(d3) (d4)

Fig. 4 Background light estimation using results of the proposed adaptive color correction. (al)—(a4) Original images. (b1)—(b4) The locations
of estimated background light (red and yellow dots signify DCP-based and our proposed methods respectively). (c1)—(c4) RGB color of the
corresponding red dots. (d1)—(d4) RGB color of the corresponding yellow dots
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Background light estimation map

Fig. 5 Background light estimation map. (al) Original images. (a2)—(a4) The gradient maps of H, S, V component in HSV color space. (bl)
Absolute difference map. (b2)—(b4) The modified gradient maps of (a2)—(a4) respectively. The yellow dot denotes the location of estimated

background light in bottom estimation map

K
Mp(x,y) = Z wiM(x,y),
k=1

(11)

where K =4 and the weighted coefficients are empirically
selected as w1 = 0.1, wy = 0.4, w3 = 0.4, and w4 = 0.1. In order
to obtain the final vector B¢, it will be selected from one
location of the darkest pixels (0.01%) in the integrated map.

3.2.2 Transmission map estimation and enhancement
As described in Eq. (10), it can be rewritten as:

“EI0y) =B =[5 0an - B, celrngbl.  (12)
According to the observation that closer scene points consist
more of scene radiance and less of background light while
farther scene point consists less of scene radiance and more of
background light [29], both sides are divided by max{B“, 1 — B}
and the maximum operators are applied to Eq. (12), so that the
transmission map estimation can be described as:

0,

(f(x,J’) — Vinin )

£, y) |, y) — B
max
e, (x))EQ(, ) max{B¢, 1 — B¢}
IC ()C, ) - BC
= —| ALY | ] (13)

= max
c.(x)€Q,j)| max{B¢, 1 — B¢}
Within 15x15 local patch Q(x,y), more than 75% of pixels
in 60 natural degradation-free images can be found that
|J"(x,y) - B"l
max ——— X | ® 1 [6], so that:
e, (xy)eQ(.j) | max{B¢, 1 — B}
156 - B

max{B¢,1 - B¢} |

f(x,y)~ max
(x.7) ¢, (xy)EQ(x.,y)

(14)

In order to enhance contrast of recovery, the piece-wise
affine transform [43] is applied for stretching the transmission
map computed in Eq. (14), the transmission map is reshaped
as an array of M numeric values between [0, 255], [0, Vinin -],
[Vinin - Vminls [Vimin, Vimaxl> [Vinax> Vinax+] and [Viax +, 255]
are five possible ranges, which can be defined as follows:

f(x,y) < Viin -

255%0.05 x , Vinin — < 7x,5) < Vinin,
(len _ len _) min ('x y) min
. 1x,9) = Vi -
fg(x,y) = 255x %, Vinin < 7(%,Y) < Vinax, (15)
max min

255 % (0.99 X (1 +

255,

f(x’.Y) — Vinax ))

Vmax + = Vmax

Vinax < 1(%,y) < Vinax + »

f(x,y) > Vinax + »
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where V. and V_, denote the value of the ((1 — p%)xM
+1)th and the (p% x M)th pixel respectively, while V. . and
V..in. denote the pixel value which is ranked top 20% between
Vax and 255 and the lowest 20% between 0 and V, ; , p is set
to be 0.1.

Now that the background light and enhanced transmission
map are estimated (see Fig. 6), the clear scene radiance can be
computed by Eq. (16). In order to avoid less natural appear-

ance and too much noise, #, is set to be 0.75.
I5(x)— B¢

—L 4+ B%celrgb).
max (fg(x,y), o) 8

Jé(x,y) = (16)

4 Experimental results and discussion

In order to verify the effectiveness of our proposed method,
color accuracy test is firstly conducted on seven standard
underwater images taken in a swimming pool with Macbeth
Color Checker. These images were taken with seven different
cameras containing various kinds of color distortion provided
by [34]. Then, we further perform experiments on more
challenging underwater scenes provided by Berman et al. [27],
which also contain color charts and were taken in different
locations with varying water properties.

In the second part of experiments, we compare the proposed
method with six underwater image enhancement methods (i.e.,
Drews 2016 [5], Fu 2017 [33], Peng 2017 [26], Peng 2018
[29], Gao2019 [44], Fu 2020 [2]). Note that we mainly
compare with traditional methods for a fair comparison.
However, we also compare with a recent deep learning-based
method [2] which is a strong learning-based baseline. The
subjective and objective evaluations including full-reference
(PSNR, SSIM, MSE, and HCC [45]) and non-reference
metrics (UCIQE [46] and Image Entropy) are employed to
evaluate the performance of different methods on Underwater
Image Enhancement Benchmark (UIEB) [1], which consists of
890 real-world underwater images. In order to provide
additional evidence of the effectiveness of our dehazing met-
hod, we carry out the third part of experiments on challenging-
60 of UIEB dataset and high turbid data. It is worth noting that
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[44] directly provides a limited number of results and results
of [2] are implemented with Python3.5 on a Linux PC, while
other tested algorithms are implemented with Matlab R2018a
on a Windows PC.

4.1 Color accuracy test

The standard color checker including 24 patches in a 4 X 6 grid
is usually employed for testing robustness of various methods.
Therefore, our first experiment is designed to demonstrate the
effectiveness and robustness of our adaptive color correction
(ACC) method, and the results are visualized in Fig. 7. There
are seven different testing images taken with Canon D10,
Olympus T8000, Olympus T6000, FujiFilm Z33, Pentax W80,
Pentax W60 and Panasonic TSI respectively. In addition to
classic color constancy methods including Shades of Grey
[47], Max RGB [48], Grey World [49], and Grey Edge [50],
we compare our method with Gao 2019 [44] and Fu 2020 [2],
which are based on biologically inspired adaptive retinal
mechanisms and deep global-local network architecture res-
pectively.

As can be seen in the first row, all the original images suffer
from extreme color distortion and low contrast. Those classic
color constancy methods and Gao 2019 are not capable of
accurately removing the distorted color, which are displayed
from the second to the sixth rows. By contrast, Fu 2020 is able
to correct color distortion for most testing underwater images
except for the last one taken with Panasonic TS1. While our
proposed method can effectively address such issues and
obtain relatively genuine color and natural appearance by
color compensation and adaptive correction without complex
and time-consuming network training with massive training
data.

In order to further evaluate our dehazing method and
compare it to other five methods, we employed more
challenging Berman dataset. From Fig. 8, the original images
taken in different diving spots with varying water properties
contained three different color charts that enclosed with red
rectangle and close-up views of the corresponding regions of
results are clearly displayed. In addition to obtaining better

—=NWAUNAIX OO

coocooooooo—

0 0.10.20.30.40.50.60.70.8091.0
12000 ¢ i

10000 -
8000 -
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2000 =
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0 0.102030405060.708091.0
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Fig. 6 Enhanced transmission map using the piece-wise affine transform. The original image is shown in (al). The result of adaptive color
correction is shown in (a2). The result of transmission map estimation when using Eq. (14) is shown in (b1). While utilizing our piece-wise affine
transform generates higher contrast, as shown in (b2). And the corresponding histograms of transmission map are displayed on the right side
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Cannon D10 Panasonic TS1

Original
image

Shades
of grey

Max
RGB

Grey
world
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(ours)

Fig. 7 Comparison to classic color constancy, Gao 2019 [44] and Fu 2020 [2] approaches. The original images taken with seven different
cameras are shown in the first row. The result of our proposed method (ACC) are shown in the last row

Original image  Drews 2016 Fu 2017 Peng 2017 Peng 2018 Fu 2020

Fig. 8 Qualitative comparisons on Berman dataset. The original images taken in different locations with varying water properties contain three
different color charts (red rectangle) and the corresponding standard color charts are shown below. From left to right are original images, the
results of Drews 2016 [5], Fu 2017 [33], Peng 2017 [26], Peng 2018 [29], Fu 2020 [2], and our proposed method



Bo WANG et al.

contrast and visibility, both Fu 2020 and our approach can
provide the relatively accurate color correction and thus obtain
more natural appearance compared with Drews 2016, Fu
2017, Peng 2017, and Peng 2018, respectively. Next, Table 1
reports the quantitative results using non-reference metrics in
terms of UCIQE and Entropy on scene A, B and C. The
average scores of our method perform the best across all
metrics followed by Fu 2020, which are marked in red and
blue respectively and consistent with subjective observation in
Fig. 8. As for different underwater scenes with color charts in
color accuracy test, our approach provides better results in
terms of both subjective and objective evaluations and thus
has better robustness.

4.2 Experimental results on 890 images of UIEB dataset
In this part, a large UIEB dataset, 890 of which have the
corresponding reference images and 60 of which as challen-
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ging data, is employed to verify the robustness of our
underwater image dehazing method. Because the underwater
images have various degradation issues, such as diverse
degrees of color shift and contrast decrease. Thus, a compreh-
ensive study will be carried out for several state-of-the-art
underwater image enhancement or restoration methods both
qualitatively and quantitatively.

To begin with, the underwater images are selected from
extreme greenish to bluish appearance which covers most
types of color casts. In Fig. 9, we can notice that the outputs of
Drews 2016, Peng 2017, and Peng 2018 are visually different
from that of other approaches, since color casts are hard to be
effectively removed by these algorithms, particularly the first
and sixth-row images with extreme greenish and bluish tone.
While the results of Fu 2017 and Gao 2019 show low degree
of saturation and contrast for most testing images. By com-
parison, the visual effects of the outputs of Fu 2020 and our

Table 1 Results of non-reference metrics in terms of UCIQE and Entropy. The best results are highlighted in red and the second best results are marked in

blue
Non-reference metrics
Method UCIQE? Entropy?
Scene A Scene B Scene C Average Scene A Scene B Scene C Average
Drews 2016 [5] 0.6959 0.5485 0.6691 0.6212 6.7810 4.4696 6.0323 5.7610
Fu 2017 [33] 0.6080 0.4380 0.6599 0.5686 7.2340 5.3133 6.7848 6.4441
Peng 2017 [26] 0.6355 0.4663 0.5772 0.5597 7.3876 5.1223 6.4637 6.3245
Peng 2018 [29] 0.6536 0.3771 0.4791 0.5033 7.3589 49163 6.3101 6.1951
Fu 2020 [2] 0.6428 0.5867 0.6542 0.6279 7.1995 6.4094 6.7895 6.7995
Ours 0.6883 0.6016 0.6803 0.6567 7.7000 6.8094 7.1749 7.2281
Original image Drews 2016 Fu 2017 Peng 2017 Gao 2019 Fu 2020 Ours

Peng 2018

Fig. 9 Qualitative comparisons on UIEB dataset (890 images). From left to right are original images, the results of Drews 2016 [5], Fu 2017
[33], Peng 2017 [26], Peng 2018 [29], Gao2019 [44], Fu 2020 [2], our proposed method and reference images
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Table 2 Quantitative evaluation of results on UIEB dataset. The best results are highlighted in red and the second best results are marked in blue

Full-reference metrics

Non-reference metrics

Method
PSNR?1 SSIM1 MSE(x103)] HCCt UCIQE} Entropy?

Drews 2016 [5] 12.4737 0.6173 4.3301 0.1631 0.5896 6.5381
Fu 2017 [33] 19.4887 0.8421 1.1258 0.4277 0.5761 7.2849
Peng 2017 [26] 17.9254 0.7821 1.5937 0.3334 0.5972 7.1622
Peng 2018 [29] 13.4894 0.7306 3.6482 0.1105 0.5947 7.1338
Fu 2020 [2] 21.3105 0.8779 0.6567 0.3577 0.6363 7.3254
Ours 19.9451 0.8466 0.8545 0.4290 0.6454 7.6090

proposed method illustrate the high robustness under different
underwater conditions.

Moreover, four commonly-used metrics (PSNR, SSIM,
MSE and HCC) as full-reference evaluation can provide
quantitative image quality assessment as 890 images in UIEB
dataset contain the corresponding references, while UCIQE
and Entropy as non-reference evaluation are employed for
underwater image quality assessment. It should be noted here
that PSNR, SSIM, HCC, UCIQE and Entropy, the higher, the
better while the MSE, the lower, the better. As can be seen
from Table 2, except for HCC, Fu 2020 achieves the best
among the competitors in terms of full-reference evaluation,
while our method achieves promising results, ranking the
second best marked in blue. It is primarily because the first
700 images of the UIEB dataset are directly used for training
their network by Fu 2020. As a supervised deep learning-
based method, it is more likely to obtain higher PSNR and
SSIM when 890 images of UIEB dataset are used for full-
reference evaluation. On the contrary, our method performs
best on non-reference evaluation, which are consistent with
the qualitative results as shown in Fig. 9. A higher UCIQE
value denotes that the image has better balance among the
chroma, contrast and saturation, while higher entropy value
indicates more information contained in the image. As for
HCC, it is specifically presented for assessing the performance
of color restoration based on histogram correlation coefficient,
and higher values signify more histogram correlation between
the results and reference images.

4.3 Experimental results on challenging-60 of UIEB dataset
and high turbid data

In addition to 890 underwater images, we conduct experi-
ments on the rest 60 challenging data of UIEB dataset and 30
high turbid underwater images collected by ourselves to
validate the generalization of the proposed method. Some-
times underwater imaging systems suffer from so special
environment that the images taken there are entirely distinct
from common tone or hazy appearance, which can be
observed as the original images in Figs. 11 and 12. It should
be noted here that all the high turbid data are not contained in
UIEB dataset and were taken in the natural underwater
environment, which was not designed by man-made for
specific experimental purpose.

We resort to an effective metric which estimates the degree
of haziness based on the transmission component and wavelet
transform (TCWT) [51] to define high turbid data, and higher
score of TCWT represents better visibility. As shown in Fig. 10,
the average score of TCWT of the original 890 images on
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Fig. 10 Average scores of TCWT. From left to right are the results of
original images (Std = 0.2822), Drews 2016 [5] (Std = 0.2051), Fu 2017 [33]
(Std = 0.2401), Peng 2017 [26] (Std = 0.2978), Peng 2018 [29] (Std =
0.3305), Fu 2020 [2] (Std = 0.2205), our proposed method (Std = 0.2265), and
reference (Std = 0.2375)

UIEB dataset ranks last among these methods, which is
coherent with subjectively visual quality. It is obvious that all
the methods for enhancement or restoration yield significant
improvement in terms of TCWT. Since the average and
standard deviation of original images are u=1.6249 and
o = 0.2822 respectively, we define that high turbidity exists in
an underwater image when TCWT score is less than 1.3427
(u—o0) according to Gaussian distribution, while just slight
turbidity exists when TCWT score is more than 1.9071
(u+0). The average and standard deviation of TCWT score
of high turbid dataset are ¢ =1.1981 and o =0.1074 respec-
tively.

Figures 11 and 12 show visual results from UIEB dataset
(challenging-60 images) and high turbid data. As can be seen,
the methods of Drews 2016, Peng 2017, and Peng 2018 fail to
remove original color deviation. The results of Fu 2017 tends
to slightly correct distorted colors while yields low contrast
and visibility. By contrast, our proposed method and Fu 2020
are able to well correct color distortion and effectively remove
haze on different kinds of challenging real-world underwater
scenes with naturalness preservation. Furthermore, our method
still achieves the best performance on both UCIQE and
Entropy metrics from Table 3. Both qualitative and quanti-
tative evaluation demonstrate the validity of our color correc-
tion and dehazing method on more challenging tasks.

4.4 Application test
To further verify the effectiveness of our proposed method, we
perform experiments on computer vision applications. Harris
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Original image Drews 2016 Fu 2017 Peng 2017 Peng 2018 Fu 2020 Ours

<

Fig. 11 Qualitative comparisons on UIEB dataset (challenging-60 images). From left to right are original images, the results of Drews 2016 [5],
Fu 2017 [33], Peng 2017 [26], Peng 2018 [29], Fu 2020 [2], and our proposed method

Original image Drews 2016 Fu 2017 Peng 2017 Peng 2018 Fu 2020 Ours

Fig. 12 Qualitative comparisons on high turbid data. From left to right are original images, the results of Drews 2016 [5], Fu 2017 [33], Peng
2017 [26], Peng 2018 [29], Fu 2020 [2], and our proposed method

Table 3 Quantitative evaluation of results on UIEB dataset (challenging-60 images) and high turbid data. The best results are highlighted in red and the
second best results are marked in blue

Non-reference metrics

Method UCIQE? Entropy?

Challenging-60 High-turbid-30 Average Challenging-60 High-turbid-30 Average
Drews 2016 [5] 0.5309 0.5049 0.5179 5.8613 5.5584 5.7099
Fu 2017 [33] 0.5445 0.5128 0.5287 6.9774 6.6771 6.8273
Peng 2017 [26] 0.5830 0.5104 0.5467 6.9195 6.5152 6.7174
Peng 2018 [29] 0.5589 0.5129 0.5359 6.8922 6.3590 6.6256
Fu 2020 [2] 0.6028 0.6072 0.6050 6.9457 7.0245 6.9851

Ours 0.6271 0.6170 0.6221 7.3745 7.5897 7.4821
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corner detection [52] and SIFT feature matching [53] are
firstly adopted to find interest points and correspondences
between underwater image pairs which have similar scenarios.
Then, salient region detection [54] is utilized to extract key
information of the target scene. According to the experimental
results in Fig. 13, the interest points that can be found as well
as the number of valid matched features are significantly
increased in the dehazing image pairs. Moreover, Figure 14
shows that our dehazing results achieve better performance of
salient region detection.

4.5 Failure cases and discussion

Two failure examples of our dehazing method are shown in
Fig. 15. Compared with other methods, our proposed approach
is capable of removing color distortion but amplifies lighting
areas when the scenes exhibit extreme non-uniform illumina-
tion conditions caused by active light sources, yielding locally
too bright visual effects. The global color compensation and
histogram modification cannot reduce effects of overexposure,
and subsequent wrong background light estimation may cause
our method to fail to process underwater images with active
light sources.

4.6 Ablation study

To examine the effect of correct background light estimation
in our proposed method, we conduct ablation study on UIEB
dataset and replace the integrated map with DCP-based
background light estimation (w/o ours) for comparison. It can
be seen from Fig. 16, the results of our method can provide
more natural appearance and genuine color while the results
with wrong estimation of background light show detail loss
and color distortion. In addition to subjective observation from
Fig. 16, our method still achieves the better performance on
PSNR, SSIM, UCIQE and Entropy metrics respectively. As
can be seen from Table 4, the higher UCIQE and image
entropy indicate that our proposed integrated map for
background light estimation introduces a better human visual
perception and more information contained in that image.

5 Conclusion

In this paper, we proposed adaptive color correction and
robust scattering removal for underwater image enhancement.
Using color compensation and MLE-based color histogram
modification, we demonstrate that the proposed method can
reduce discrepancy of distribution among color channels and

Fig. 13 Interest points detection and SIFT feature matching. For the left-side pair ((al) and (a3), (bl) and (b3)), Harris corner detections only
find 8 and 2 interest points that can be correctly matched when using SIFT features based on original image pairs. For the right-side pair ((a2),
(a4), (b2), (b4)), there are 80 and 90 interest points found and correctly matched when using Harris corner detection and SIFT feature matching
respectively based on dehazing image pairs. (a) The first pair of underwater images; (b) The second pair of underwater images
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G

(b)

Fig. 14 The visual comparison of salient region detection. Compared with the left-side pair ((al) and (a3), (b1l) and (b3)), salient regions can be
more accurately detected using the results of our dehazing method ((a2) and (a4), (b2) and (b4)), where the region is enclosed with red rectangle.
(a) The first pair of underwater images; (b) The second pair of underwater images

Original image Drews 2016 Fu 2017 Peng 2017 Peng 2018 Fu 2020 Ours

I

e

Fig. 15 Failure cases for underwater image dehazing. From left to right are original images, the results of Drews 2016 [5], Fu 2017 [33], Peng
2017 [26], Peng 2018 [29], Fu 2020 [2], and our proposed method

£

.

Fig. 16 Ablation study of the effect of correct background light estimation in our proposed method

Table 4 Quantitative evaluation of ablation study on UIEB dataset in terms of PSNR, SSIM, UCIQE and Entropy metrics respectively. The best results are
highlighted in red

Method Full-reference Metrics Non-reference Metrics

PSNR?T SSIM?T UCIQE?T Entropy?
w/o Ours 18.9534 0.8109 0.6394 7.4720
Ours 19.9451 0.8466 0.6454 7.6090

obtain relatively genuine color and natural appearance. Based can be further reduced for practical applications. Moreover,
on the accurate background light estimation and enhanced ynderwater images with active light source as tough issue

transmission map, our method can further work well for a  ghoy1d also be addressed by integrating non-uniform illumina-
great variety of underwater images in terms of both subjective

and objective evaluations.
Although this work provides an effective step-by-step model ~ Acknowledgements This work was supported by Higher Education
for underwater image enhancement, the computational time Scientific Research Project of Ningxia (NGY2017009).

tion processing in our future work.
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