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Abstract    Recently,  addressing  the  few-shot  learning  issue
with  meta-learning  framework  achieves  great  success.  As  we
know,  regularization  is  a  powerful  technique  and  widely  used
to  improve  machine  learning  algorithms.  However,  rare
research focuses on designing appropriate meta-regularizations
to  further  improve  the  generalization  of  meta-learning  models
in  few-shot  learning.  In  this  paper,  we  propose  a  novel  meta-
contrastive  loss  that  can  be  regarded  as  a  regularization  to  fill
this gap. The motivation of our method depends on the thought
that the limited data in few-shot learning is just a small part of
data  sampled from the whole data  distribution,  and could lead
to various bias representations of the whole data because of the
different  sampling  parts.  Thus,  the  models  trained  by  a  few
training  data  (support  set)  and  test  data  (query  set)  might
misalign in the model space, making the model learned on the
support  set  can  not  generalize  well  on  the  query  data.  The
proposed meta-contrastive loss is designed to align the models
of  support  and  query  sets  to  overcome  this  problem.  The
performance  of  the  meta-learning  model  in  few-shot  learning
can  be  improved.  Extensive  experiments  demonstrate  that  our
method  can  improve  the  performance  of  different  gradient-
based meta-learning models in various learning problems, e.g.,
few-shot regression and classification.
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1    Introduction
Nowadays,  deep  models  sweep  many  fields,  such  as  classifi-
cation,  segmentation,  and object  detection.  However,  most  of
them  require  large-scale  annotated  training  data  to  achieve
promising  performance.  This  predicament  poses  a  great
challenge to apply the existing deep learning models to some
real  environments,  for  example,  medical  image  analysis
intrinsically  lacking  data.  Recent  literature  formulates  this
problem  as  a  few-shot  learning  problem,  i.e.,  expecting  the
deep models  can generalize to new concepts  with only a  few
labeled  samples.  Generally,  the  learning  model  for  few-shot
learning  needs  some  prior  knowledge  to  achieve  this  goal.
Much recent research in few-shot learning notice that a kind of
technology,  named  meta-learning,  can  automatically  learn

cross-task meta-knowledge as the prior knowledge to help the
learning  algorithm perform on new tasks.  It  makes  the  meta-
learning framework is  fit  for  few-shot learning.  Hence,  much
literature has implemented this idea and achieve great success
in few-shot learning [1−3].

ℓp

As  we  know,  regularization  techniques  are  helpful  to
improve the learning algorithm and are widely adopted in the
machine learning community. For example, penalizing the -
norm of the weights in feature selection [4], Kullback-Leibler
(KL)  divergence  to  constrain  the  approximate  posterior  in
Bayesian Learning [5], dropping out random units or filters in
deep  models  [6],  and  so  on.  However,  back  to  few-shot
learning,  rare  research  exploits  appropriate  regularization
techniques  to  improve  the  performance  of  meta-learning
methods in the few-shot settings.

2

To overcome this  problem, in  this  paper,  we focus on how
to  develop  a  meta-regularization  to  regularize  the  learned
meta-knowledge  for  improving  the  gradient-based  meta-
learning method in few-shot learning. In the machine learning
community,  regularization  techniques  are  always  built  on
human  prior  knowledge  on  the  learning  tasks.  Our  method
also  utilizes  the  understanding  of  good  meta-knowledge  in
few-shot  learning  to  design  an  appropriate  meta-regulariza-
tion. Considering that in the few-shot learning task, we usually
contact a training dataset (a.k.a., support set) containing a few
annotated data and a test dataset (a.k.a., query set) containing
numerous  test  data.  The limited data  cause  a  bias  representa-
tion of the whole dataset because it is usually sampled from a
small  part  of  the  data  distribution.  This  problem leads  to  the
data  discrepancy  between  support  and  query  set.  Hence,  the
model learned from support set can not fit the query set well.
Figure 1 shows  the  overview  of  the  problem  of  biased
representation. Effective  meta-knowledge should  help  the
learning  model  trained  by  the  support  set  generalize  well  on
the  query  set.  Based  on  this  cogitation,  we  assume  that  the
models trained by the support and query set should be aligned
to  each  other  in  the  model  space  with  the  help  of  meta-
knowledge. For example, in the -way classification task, the
classification hyperplanes learned respectively by support and
query set should be aligned to make the hyperplane learned by
the  support  set  fit  the  query  set  well,  otherwise,  the
classification hyperplane of the support set can not generalize
well  on  the  query  set.  Thus,  we  focus  on  designing  a  meta-
regularization  to  improve  the  ability  of  meta-knowledge  on
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aligning  the  models  of  support  and  query  set  in  the  model
space. Inspired by recent contrastive learning algorithms [7,8],
we  consider  designing  a  meta-contrastive  loss  to  maximize
agreement of the models trained by the support and query set
to  achieve  this  goal  and  further  improve  the  meta-learning
model in few-shot learning.

We  conduct  abundant  experiments  to  demonstrate  the
effectiveness  of  our  method.  The  experiments  show  that  the
proposed method is model agnostic and can be easily inserted
into  the  hierarchical  gradient-based  meta-learning  framework
as  a  regularization  to  improve  the  different  meta-learning
models  in  few-shot  learning.  Moreover,  compared  with  other
techniques which can also improve the gradient-based model,
e.g., scale factor, our method can be applied to many learning
problems, i.e., classification and regression.

The contributions of this paper are summaries as follow:

●  We  consider  the  fact  that  too  limited  data  in  few-shot
learning task can lead to the data discrepancy between
support  and  query  set.  Under  this  consideration,  we
propose  a  novel  meta-contrastive  loss  to  improve  the
performance of gradient-based meta-learning models in
few-shot  learning  by  helping  the  learned  meta-
knowledge to eliminate this discrepancy.

●  Compared  with  the  traditional  contrastive  loss  in
unsupervised learning,  our method focuses on the task
level and deals with how to align the parameter matrix
in the model space. However, the traditional contrastive
loss  aims  to  align  the  feature  vector  in  the  feature
space.

●  Extensive  experiments  show  that  our  method  can
improve  the  performance  of  various  gradient-based
meta-learning  models  and  work  well  in  few-shot
classification and regression.

 

2    Related work
 

2.1    Meta-learning for few-shot learning
Recently,  meta-learning  framework  is  widely  used  to  over-
come the few-shot learning problem. Meta-learning method in
few-shot learning can be broadly divided into three categories,
metric-based  method,  model-based  method,  and  gradient-
based method.

●  Metric-based  method:  The  motivation  of  this  method
can  be  introduced  as  learning  to  comparison.  For
example,  Matching  networks  [9]  use  recurrent  neural
network  with  attention  block  as  the  embedding  model
to  learn  how  to  evaluate  the  similarity  between
examples in Euclidean space. Prototypical network [2]
represents  each  category  by  a  prototype  (a.k.a.,  mean
embedding  of  the  examples)  and  utilize  Euclidean
distance to measure the similarity between test  images
and  the  prototypes.  Different  from  the  predefined
metric  space,  Sung et  al.  [10]  use  a  neural  network  to
automatically  learn the metric  function.  However,  it  is
difficult to design an appropriate metric to measure the
similarity  between  the  data  in  some  learning  problem,
which  restricts  metric-based  method  to  the  classifica-
tion task.

●  Model-based  method:  This  method  usually  adopts  an
extra  memory  to  store  the  past  experience  or  an
elaborate  system  to  lead  optimization  of  the  learning
model  in  the  low  data  region.  Ravi  et  al.  [11]  used
recurrent neural network as a high-level model to direct
the updating of the learner in the specific task. Santoro
et  al.  [12]  used an external  memory-augmented neural
network to save the seen examples and leveraged them
to predict the results with a few examples. This kind of
method is usually very complex and difficult to train.

● Gradient-based method: Gradient-based method usually
utilizes  the  hierarchical  architecture  to  learn  meta-
knowledge. Model-agnostic meta learning (MAML) [1]
aims to learn a  good initialization for  the task-specific
learning  model.  In  the  new  task,  the  task-specific
learner  can  be  obtained  by  a  few  gradient  steps  from
this  initialization.  However,  there  are  still  many
limitations  of  MAML.  Many  works  [13,14]  are  pro-
posed  to  improve  it.  Besides  MAML,  some  gradient-
based approaches [15,16] built  on bilevel  optimization
framework [17] aim to learn a cross-task representation
as meta-knowledge to help learn new tasks. Almost all
the  gradient-based  methods  adopt  an  inner-loop
learning  process,  causing  that  how  to  efficiently
optimizing  the  gradient-based  approaches  becomes  a
problem.

Compared  with  metric-based  and  model-based  methods,

 

 
Fig. 1    The motivation of our method. Too limited data in few-shot learning leads to data discrepancy of support and query set, because they are
sampled from different parts. This problem causes the model learned by the support set can not generalize well on the query set
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gradient-based  approaches  attract  more  attention  in  few-shot
learning,  because  they  can  be  applied  to  many  learning
problems and the time consumption is  acceptable  in  the few-
shot  setting.  In  this  work,  we  focus  on  how  to  improve  the
performance  of  the  gradient-based  method  in  the  few-shot
setting. 

2.2    Meta-regularization
Regularization  is  a  useful  technique  in  machine  learning  to
explicitly  design  to  improve  the  learning  algorithm.  In  this
part, we firstly introduce some existing regularizations in deep
models. Dropout [6] is a regularization to randomly drop units
(along with their connections) from the neural network during
training  to  prevent  units  from  co-adapting  too  much.  Early
stopping  is  another  popular  regularization  method  in  deep
learning due to both its effectiveness and simplicity [4]. In the
meta-learning  models,  Balaji  et  al.  [18]  proposed  a  meta-
regularization  to  achieve  good  cross-domain  generalization.
Tseng  et  al.  [19]  used  gradient  dropout  to  mitigate  the  over-
fitting problem in meta-learning, however, it is customized to
the MAML-based methods. 

2.3    Contrastive learning
Contrastive  learning  is  a  hot  topic  in  the  machine  learning
community  and  at  the  core  of  several  recent  works  on
unsupervised  learning  [20].  Much  research  in  contrastive
learning uses  contrastive  losses  to  measure  the  similarities  of
sample  pairs  in  a  representation  space  to  learn  the  data
representation.  This  representation  can  be  applied  to  many
downstream  tasks.  Some  literature  owes  the  success  of  their
methods  to  maximization  of  mutual  information  between
latent  representations  [21].  However,  it  is  not  explicit  if  the
success of contrastive approaches is determined by the mutual
information,  or  by  the  specific  form  of  the  contrastive  loss
[22]. 

3    Preliminary
In this section, we describe the problem definition of few-shot
learning.  Then,  the  hierarchical  framework  used  in  gradient-
based method is introduced. Our method aims to improve the
performance  of  the  meta-learning  model  built  on  this
framework. 

3.1    Problem definition

x 7→ ŷ (xi,yi) i
T

S = {T i}Ti=1

T i

S i
s S i

q

The standard supervised learning problem considers learning a
function  by  a  set  of  training  data  indexed  by 
and sampled from a task .  In few-shot learning, we usually
have  a  set  of  tasks  as  the  training  examples  to
learn  the  prior  knowledge,  which  can  help  the  task-specific
learner  effectively  learn  in  the  new  task  with  a  few  labeled
data.  Similar  to  the  standard  supervised  learning  problem,
each task  is made of a training dataset (a.k.a., support set)

,  and  a  testing  dataset  (a.k.a.,  query  set) .  However,  the
number  of  training  data  in  support  set  is  very  small  in  few-
shot learning.

T i N K
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According  to  the  different  learning  problems,  the  form  of
the  training  task  is  different.  For  example,  in  few-shot
classification,  the  learning task  is  described as -way -
shot  classification  task,  indicating  categories  given 
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samples per category, i.e., . The query set 
also consists of the same  categories and each category has

 examples. As for few-shot regression, the learning task 
can be considered as a -shot regression task, i.e., the support
set  and the query set  consist  of  training data and 
test data, respectively. 

3.2    Hierarchical gradient-based method

S

S

In few-shot  learning,  the purpose of  meta-learning is  to learn
useful meta-knowledge over  as the prior knowledge to help
the  learner  learn  in  the  low-data  region.  Hence,  how to  learn
useful meta-knowledge over  is crucial for the meta-learning
model.  Current  gradient-based  meta-learning  methods  are
highly  related  to  the  hierarchical  architecture.  This  architec-
ture can be optimized as a bilevel optimization problem [17].
Following [23], the two-level meta-learning framework can be
defined as:
 

min
θ

T∑
i=1

Lmeta(θ,wi(θ);S i
q), (1)

 

s.t. wi(θ) =min
θ
L(w;θ,S i

s), (2)

Lmeta L

Lmeta L

where  and  refer to the functions of meta loss (as the
outer  objective  in  bilevel  optimization)  and  task  loss  (as  the
inner  objective  in  bilevel  optimization).  In  fact,  and 
usually adopt the same loss function.

S i
s

Note that the inner part (a.k.a., base learner) Eq. (2) aims to
learn  a  task-specific  learner  for  every  single  task  with  the
support set , while, the upper part (a.k.a., meta-learner) Eq.
(1)  learns  meta-knowledge  from  how  to  improve  these  base-
learners  with  the  query  sets.  In  this  way,  the  learned  meta-
knowledge can help learn unseen tasks.

Under this formulation, MAML can be written as:
 

min
θ

1
T

T∑
i=1

L(θ,wi;S i
q), (3)

 

s.t. wi = θ−α∇θL(θ;S i
s), (4)

α θ−α∇θL(θ;S i
s)

T i

T j

θ

where  is the stepsize.  means one step of the
inner updating, and aims to obtain a base-learner for task .
When encountering a new task , the task-specific predictor
can be easily obtained in a single (or a few) inner gradient step
from the initial .

Different  from  MAML,  MetaOpt  [15]  and  R2D2  [16]  use
support vector machine [24] and ridge regression as the base-
learner  in  Eq.  (2),  respectively.  Both of  them want  to  learn a
cross-task  meta-representation,  which  can  improve  the  base-
learner of a new task in the low-data region. 

4    Method
Although  gradient-based  meta-learning  methods  achieve
success  in  few-shot  learning,  little  literature  pays  attention to
develop  meta-regularization  for  the  meta-learning  method  to
improve the performance in few-shot learning.

To  overcome  this  problem,  we  propose  a  novel  meta-
contrastive  loss  to  regularize  the  learned meta-knowledge for
better  generalization.  Our  method  is  built  on  a  prior  under-
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standing that the models trained by the support and query set
should  be  aligned  well  in  the  model  space  in  each  few-shot
task.  In  this  way,  the  base-learner  learned  from  a  few
supervised  information  can  generalize  well  on  the  query  set
which may contain many unseen cases.

5

W = [w1, . . . ,w5],W ∈ Rd×5

wi ∈ Rd d

In  order  to  achieve  the  purpose  of  helping  meta-learning
algorithm  align  the  models  trained  by  the  support  and  query
set,  inspired  by  the  role  of  the  contrastive  loss  in  contrastive
learning, we develop a meta-contrastive loss to address how to
align  the  learning  models.  Review  contrastive  learning,  the
contrastive  loss  is  designed  to  maximize  agreement  between
differently augmented views of the same data example in the
latent  space  to  learn  representation.  We  can  find  that  the
feature  vectors  are  needed  to  be  matched  in  contrastive
learning.  In  our  method,  we utilize  this  idea  to  align models.
However,  the  learning  model  might  contain  multiple
components,  e.g.,  a  weight  matrix,  not  a  weight  vector.  For
example, in -way classification task, the parameter matrix of
base-learner  in  MetaOpt  or  R2D2  includes  five  vectors,
corresponding to five classes, i.e., 
and .  is the dimension of feature vector.

T S T
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(wi
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Hence,  the  weight  vector  is  considered  as “data” in  our
meta-regularization  loss  that  is  different  from  contrastive
learning (image is the data). In our method, the weight vectors
related to the same category are supposed to be aligned in the
model  space.  Typically,  suppose  that  we  randomly  sample  a
training  task  from ,  the  support  and  query  set  in  are
defined as  and , respectively. The learning models of 
and  can be obtained by Eq. (2) via different meta-learning
methods,  which  are  defined  by  and ,  respectively.
Consider  that  and  involve  weight  vectors,  i.e.,

, the posi-
tive  pairs  are .  Then  the  proposed  meta-
contrastive loss for a positive pair of examples can be written
as:
 

ℓi,i = − log
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sim
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where  is an indicator function evaluating to  iff
 and  denotes  a  temperature  parameter.  The

 denotes  the  dot  product  between 
normalized  and  (i.e.,  cosine  similarity).  The  final  loss  is
computed  across  all  positive  pairs  in  and ,  both

 and .

1
N

In  some  situations,  the  learning  models  of  the  support  and
query  set  can  be  a  weight  vector,  for  example,  in  the -
dimension regression. We sample a minibatch of  tasks and
define the models of support and query set from the same task
as a  positive pair  in this  case.  The proposed meta-contrastive
loss can be written as:
 

ℓi,i = − log
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(
sim
(
wi

s,wi
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)
/τ
)
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k=1
1l[k,i] exp

(
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)
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Algorithm 1 summarizes the proposed method.
Remarks    We put forward some insights into our method.

Let  us  rethink  the  process  of  training  a  learning  model  for  a

S
Mw w S

f (w;S ) w
w = f (winit;S )

S
w Mw

S
Ms

w S s
S q

Ms
w Mq

w

dataset. Suppose that we have a training dataset , the learning
model  parameterized  by  for  can  be  obtained  by
optimizing  a  loss  function.  With  an  optimization  algorithm

, such as gradient descent, the learned parameter  can
be  obtained  via .  As  we can  see,  there  exists  a
one-to-one  mapping  between  the  dataset  and  the  learned
parameter .  From  this  perspective,  the  learned  model 
can  be  regarded  as  a  representation  of  the  corresponding
dataset  in  the  model  space.  Concentrating  on  few-shot
learning,  the  base-learner  trained  by  the  support  set 
should  also  be  a  good  representation  of  the  query  set .
Aligning  and  in  the  model  space  by  the  proposed
meta-regularization  influences  the  data  representation  in
support  and  query  set  and  implicitly  regularize  the  learned
meta-knowledge. Figure 2 shows  a  simple  interpretation  of
our method. 

5    Experiments
In  experiments,  we  evaluate  our  method  in  three  challenging

 

 
 

 

 

T
Fig. 2    A  simple  illustration  of  meta-contrastive  loss.  In  few-shot  learning,
each  task  contains  a  support  set  and  a  query  set.  In  our  method,  we  use
meta-contrastive loss to align the models of support and query set to eliminate
the influence of the bias representation, caused by the limited data. Compared
with  the  traditional  contrastive  loss  to  align  the  feature  vector,  our  method
needs  to  deal  with  how  to  maximize  agreement  of  the  models  with  the
parameter matrix
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scenarios,  i.e.,  few-shot  regression,  few-shot  classification,
and  few-shot  fine-grained  classification.  Because  our  method
focuses  on  how  to  design  an  appropriate  meta-regularization
to  improve  the  gradient-based  meta-learning  model,  three
state-of-the-art  gradient-based  meta-learning  methods,  i.e.,
ANIL  [14],  MetaOpt  [15],  and  R2D2  [16]  are  chosen  as  the
benchmark  algorithms.  To  accurately  show  the  effect  of  our
method,  all  the  tricks  used  in  these  benchmark  methods  for
improving  their  performance  to  the  state  of  the  art  are
abandoned in our implementation. 

5.1    Few-shot regression

[0.1,5.0]
[0,π]

[−5.0,5.0] S s
S q [−5.0,5.0]

Experimental  setup. Our  experimental  setup  of  few-shot
regression follows [1]. Each task involves regressing from the
input to the output of a sine wave. The amplitude and phase of
the  training  tasks  are  uniformly  sampled  from  and

,  respectively.  The purpose of  meta-learning model  is  to
fit  the  unseen  sine  curves  with  a  few  training  data.  In  the
training  stage,  the  labeled  datapoints  are  uniformly  sampled
from  as , and twenty labeled datapoints are given
as  in  each  task  also  drawn  from .  We  adopt  a
neural  network with one hidden layer containing 40 nodes as
the  feature  encoder  and  mean-squared  error  (MSE)  as  meta
loss.

5 7,000
0.001

5 0.01
2,000

100

Because  MetaOpt  and  R2D2  are  tailored  to  classification,
ANIL  is  adopted  as  the  baseline  model  in  this  scenario.  The
batchsize is set to . All models are trained  iterations by
Adam [25] with a learning rate of . The number of inner
updating  step  is  and  the  inner  learning  rate  is .  During
the test, we present the model with  newly sampled tasks
with  test points in each task.

Results. Table 1 shows  the  results  of  different  models.
ANIL-ours  indicates  that  ANIL  integrated  with  meta-
contrastive  loss.  We  can  see  that  our  method  improves  the
generalization  of  ANIL on the  unseen  new tasks.  The  results
also  verify  that  our  method  can  work  well  in  the  regression
problem. 

5.2    Few-shot classification
Dataset. We  evaluate  our  method  on  two  few-shot  image
classification  datasets:  miniImageNet  [9]  and  tieredImageNet
[26].

1. 100
64

16 20

 MiniImageNet  consists  of  randomly  chosen  classes
from ImageNet [27]. These classes are randomly split into ,

,  and  classes  for  meta-training,  meta-validation,  and
meta-testing respectively. Each class contains 600 images.

2.
608 34

20
6 8

351 97 160

 TieredImageNet  benchmark  is  a  larger  subset  of  Image-
Net,  composed  of  classes  grouped  into  high-level
categories.  These  are  divided  into  categories  for  meta-
training,  categories for meta-validation, and  categories for
meta-testing  respectively,  corresponding  to , ,  and 
classes for each split.

Experimental setup. Consider that the performance of meta-

4 3×3 64

2×2
64 128 256 512

{3×3 k
} 2×2

1,600

learning  model  in  few-shot  learning  is  influenced  by  the
architecture  of  the  embedding  model.  Two  feature  extractors
are adopted, four-layer ConvNet in [2] and ResNet-12 in [28].
ConvNet  has  modules  with  a  convolution  with 
filters,  followed  by  a  batch  normalization,  a  ReLU  nonlin-
earity, and a  max-pooling. ResNet-12 uses four residual
blocks  with , , ,  and  filters,  respectively,  and
each  block  consists  of  three  convolution  with  filters,
batch  normalization,  ReLU  followed  a  max-pooling
layer. In ANIL, we adopt one fully connected layer containing

 hidden units as the classification head.
84×84
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All the images are resized to . Adam with a learning
rate of  is used as the meta-optimizer. The inner learning
rate of ANIL is , and the step of inner gradient descent is

.  All  the  models  are  trained  by  iterations,  and  each
iteration  includes  five  training  tasks.  The  number  of  query
data in each training task is .

5

2,000
10

Results. We show the results of ANIL, MetaOpt, and R2D2
with  our  method  or  not  on -way  classification  on  miniIma-
geNet and tieredImageNet in Tables 2 and 3, respectively. All
the  reported  results  are  averaged  over  tasks  randomly
sampled  from  the  meta-testing  set.  Each  task  contains 
queries per category.

As seen,  with meta-contrastive loss,  three baselines,  ANIL,
MetaOpt,  and  R2D2  achieve  better  generalization  on  the
unseen  tasks.  Compared  with  miniImageNet,  tieredImageNet
is  more  challenging  for  few-shot  classification.  Our  method
also can work well. Although the deeper network can improve
the  performance  of  baseline  models,  the  effectiveness  of  our
method to help meta-learning model align the learners trained
by  support  and  query  set  is  obvious.  In  this  sense,  using
deeper  networks  can  not  replace  the  effectiveness  of  the
proposed meta-regularization. 

   
Table 1    Mean square error of few-shot regression. Lower is better

Methods 5-shot 10-shot
ANIL 0.746 ± 0.044 0.354 ± 0.018
ANIL-ours 0.744 ± 0.044 0.345 ± 0.018
 

   
5Table 2    Accuracy(%) of -way classification on miniImageNet

Methods Embedding 5miniImageNet -shot
ANIL ConvNet 58.51 ± 0.46
ANIL-ours ConvNet 60.11 ± 0.46
R2D2 ConvNet 56.79 ± 0.41
R2D2-ours ConvNet 61.70 ± 0.41
MetaOpt ConvNet 64.06 ± 0.41
MetaOpt-ours ConvNet 65.80 ± 0.40
R2D2 ResNet12 58.48 ± 0.43
R2D2-ours ResNet12 70.04 ± 0.40
MetaOpt ResNet12 66.64 ± 0.41
MetaOpt-ours ResNet12 68.49 ± 0.42
 

   
5Table 3    Accuracy(%) of -way classification on tieredImageNet

Methods Embedding 5tieredImageNet -shot
ANIL ConvNet 58.64 ± 0.49
ANIL-ours ConvNet 61.72 ± 0.50
R2D2 ConvNet 59.53 ± 0.45
R2D2-ours ConvNet 64.21 ± 0.45
MetaOpt ConvNet 63.97 ± 0.46
MetaOpt-ours ConvNet 65.75 ± 0.45
R2D2 ResNet12 60.10 ± 0.46
R2D2-ours ResNet12 70.21 ± 0.45
MetaOpt ResNet12 66.02 ± 0.46
MetaOpt-ours ResNet12 71.82 ± 0.47
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5.3    Few-shot fine-grained classification

200 11,788

Dataset. For  few-shot  fine-grained  classification,  we  use  the
CUB-200-2011 [29] (referred to as CUB2011 hereafter) as the
dataset that is widely adopted in much previous literature. This
dataset  contains  classes  and  images  in  total.  We
follow  the  same  class  split  proposed  in  [30]  to  construct  the
experiment of few-shot fine-grained classification.

20,000

10

Experimental  setup. We  use  ConvNet  in  few-shot  classifi-
cation  as  the  embedding  model.  The  same  image  size  is
adopted. Adam with the same learning rate in few-shot classi-
fication  is  also  used  to  optimize  ANIL,  R2D2,  and MetaOpt.
All  the  models  are  trained  by  iterations,  and  each
iteration includes one training task. The number of test data in
each training task is also .

2,000
10

Results. Table 4 shows  the  results  on  CUB2011.  All  the
results  are  averaged  over  new  tasks,  and  each  task
contains  query images per category. The proposed method
can  improve  the  performance  of  all  the  benchmark  meta-
learning  methods,  similar  to  few-shot  classification.  The
experiments on different datasets also prove that the proposed
method  can  work  well  in  situations  containing  different  data
discrepancies. 

5.4    Meta-contrastive loss versus scale factor
Previous  works  show  that  many  techniques  can  be  used  to
improve the performance of meta-learning models in few-shot
learning. Multi-task learning and scale factor are two effective
techniques  widely  used  in  many  meta-learning  models.  In
few-shot  classification,  we  show  the  performance  of  our
method  under  the  multi-tasking  training.  In  this  part,  we
compare  our  method  with  scale  factor  in  few-shot  regression
to  exhibit  the  superiority  of  meta-contrastive  loss.  The
learnable  scale  factor  can  improve  performance  by  adjusting
the  prediction  score  predicted  by  the  base-learner,  which  is
customized for few-shot classification.

Table 5 shows  the  results.  In  few-shot  regression,  ANIL
with  scale  factor  even  underperforms  ANIL.  However,  inte-
grated  with  our  method,  ANIL-ours  achieves  better  generali-
zation.  This  phenomenon  demonstrates  our  method  can  be
applied to many learning problems. 

6    Conclusion
In this paper, we focus on how to design an appropriate meta-

1

regularization  to  improve  the  performance  of  gradient-based
meta-learning model in few-shot learning. Inspired by contras-
tive learning, we propose a meta-contrastive loss to help meta-
learning  model  align  the  learners  trained  by  the  support  and
query set. In this way, the meta-learning model is supposed to
learn  better  meta-knowledge.  The  experimental  results  show
that  our  method  is  model  agnostic  and  can  improve  different
gradient-based  methods  in  various  few-shot  scenarios.  The
analysis  demonstrates  that  our  method  can  be  applied  to
different  learning  problems.  In  the  future,  we  will  aim  to
improve our method in the -shot setting.
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