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Abstract Image super-resolution (SR) is one of the classic
computer vision tasks. This paper proposes a super-resolution
network based on adaptive frequency component upsampling,
named SR-AFU. The network is composed of multiple cas-
caded dilated convolution residual blocks (CDCRB) to extract
multi-resolution features representing image semantics, and
multiple multi-size convolutional upsampling blocks (MCUB)
to adaptively upsample different frequency components using
CDCRB features. The paper also defines a new loss function
based on the discrete wavelet transform, making the reconstru-
cted SR images closer to human perception. Experiments on the
benchmark datasets show that SR-AFU has higher peak
signal to noise ratio (PSNR), significantly faster training speed
and more realistic visual effects compared with the existing
methods.

Keywords super-resolution, multi-resolution features, adap-
tive frequency upsampling, wavelet transformation

1 Introduction

Image super-resolution (SR) [1] is a classical problem in
computer vision research, which refers to the reconstruction of
the corresponding high-resolution (HR) images from the
available low-resolution (LR) images. The higher the resolu-
tion is, the more details the image can provide. HR image data
is of great importance to the image related applications. For
example, HR medical images help doctors make the correct
diagnosis [2,3]; HR satellite images (HRSI) can help to easily
distinguish similar objects [4,5]; With HR images, the
performance of pattern recognition can be greatly improved
[6]. However, most digital images are currently captured by
image sensors such as charge-coupled devices (CCD) or
complementary metal oxide semiconductors (CMOS), with
the resolution not sufficient to meet the needs for consumer
applications and scientific research. Therefore, it is essential to
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conduct research on image resolution enhancement.

The traditional SR methods are primarily based on inter-
polation [7], sparse representation (Dictionary Learning) [8],
neighbor embedding [9], etc. The quality of HR images
obtained by these methods is usually unsatisfactory as they
use only the information contained in the LR images, not
being able to reconstruct high-frequency details. In recent
years, significant breakthrough has been made in SR research
with the development of deep convolutional neural networks.
Examples include SRCNN [10] proposed by Dong et al.,
VDSR [11] and DRCN [12] proposed by Kim et al., RDN [13]
based on ResNet, and RCAN [14] using attention mechanism.

However, there are still some disadvantages in the methods
mentioned above. Firstly, few models take the correlation
between distant pixels (i.e., pixel context) into account, which
is very valuable for SR reconstruction. For example, if the
model can recognize that the LR image depicts small objects
and complex textures, it can be inferred that its corresponding
HR image contains lots of high-frequency components, so the
model can adjust the upsampling strategy to favor high-
frequency data. Secondly, most previous methods add only
one upsampling layer as the last layer of the network. All the
information required for upsampling is only obtained from the
feature map of the last layer, while the information of other
layers cannot be fully utilized. Thirdly, existing methods often
use MAE or MSE to define loss functions. Although the
reconstructed SR image could get higher peak signal to noise
ratio (PSNR), its visual effect is not always satisfactory.
Oppositely, the perceptual loss used in some methods [15] can
achieve realistic visual effects despite the relatively low PSNR
of the reconstructed images. Finally, methods like RCAN use
a second-order module to achieve higher PSNR. However,
they often require a larger video memory capacity and have
lower prediction speed. These defects are more prominent
when the size of predicted images is large. This makes the
methods inconvenient for practical use.

To solve the above problems, this paper proposes an
adaptive frequency components upsampling (AFU) model
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based on the deep parallel dual-network structure for SR
image reconstruction. The entire network contains two sub-
networks: cascaded dilated convolution residual network
(CDCRN) and multi-size convolutional upsampling network
(MCUN). The CDCRN is cascaded with 32 cascaded dilated
convolution residual blocks (CDCRB) and so is the MCUN
that is cascaded with 32 multi-size convolutional upsampling
blocks (MCUB). Each CDCRB can perceive the multi-
resolution features of the image and extract image semantics
based on the pixel context information. Note that in order to
reduce the training cost and make the model lighter, we avoid
the use of second-order modules, even if doing so may cause a
loss of PSNR. The output of each CDCRB is the input of each
corresponding MCUB. Each MCUB upsamples an image
which has the same size with the final SR image, i.c., (h, w,
3), by sub-pixel convolution, and allocates a coefficient to the
image. This image is a component of the SR image, which
contains only part of frequency band. The deeper the MCUN
layer is, the higher frequency the upsampled image contains.
The final SR image is the weighted sum of these components
output by each MCUB. Such an upsampling structure can
automatically adjust the training rate of each block. Since the
low frequency and medium frequency components in the SR
image can be quickly learned and reconstructed by shallow
blocks, the overall training speed is greatly accelerated. In
order to balance PSNR and visual effects, a new loss function
based on wavelet transform is defined. Using high-order
wavelet decomposition, the function can calculate the errors of
different frequency components in the local space of the
image, so that the reconstructed image is closer to human
perception.

Overall, this paper has three main contributions:

e A cascaded dilated convolution residual block (CDCRB)
is proposed to provide additional receptive fields, whi-
ch is connected to the upsampling block to form a
parallel dual-network structure;

e A multi-size frequency component upsampling block
(MCUB) is proposed to make full use of the features
from each CDCRB and the training rate of each MCUB
can be automatically adjusted to accelerate the entire
training speed;

e A new loss function based on high-order wavelet decom-
position is defined, which makes the reconstructed SR
images closer to human perception.

The rest of the paper is organized as follows: Section 2
introduces the related work in the SR community. Section 3
details the SR-AFU method proposed in this paper. Experi-
ments in Section 4 not only verify the effectiveness of the
AFU module and the wavelet decomposition-based loss
function but also compare the performance of SR-AFU and
other related models including several state-of-art methods
using benchmark datasets. Section 5 concludes the paper.

2 Related work

In the study of single image super-resolution (SISR), tradi-
tional interpolation-based or reconstruction-based methods
[16] have been gradually replaced by CNN-based single image
super-resolution (SISR) methods [17] due to their excellent

performance. Dong et al. [10] are the first to introduce CNN to
image SR task and proposed a super-resolution convolutional
neural network (SRCNN). The method uses bicubic interpola-
tion to enlarge the low-resolution image to the target size, and
uses a three-layer convolutional network to fit a non-linear
map to achieve good results. Later, Dong et al. [18] further
propose a fast super-resolution convolutional neural network
(FSRCNN), adding a deconvolution layer at the end of the
CNN for upsampling, so that the original low-resolution
images can be directly input to the network.

Note that ResNet [19] can alleviate the training difficulties
while improving learning performance when the network is
deep. Kim et al. proposed a very deep convolutional network
(VDSR) [11] and a deeply-recursive convolutional network
(DRCN) [12] to further improve SRCNN. The two residual
network-based methods not only accelerate the convergence
speed, but also avoid the problem of gradient disappearance or
explosion. Lai et al. [20] proposed Laplacian pyramid super-
resolution network (LapSRN), which takes coarse-resolution
feature maps as input to predict high-frequency residuals and
then uses transposed convolution to upsample them to a finer
level.

Although the above methods achieve a high PSNR, the
reconstructed SR images tend to be smooth due to the use of
single pixel loss without processing high-frequency image
details. Ledig et al. [21] proposed to use generative adversarial
network (GAN) in image super-resolution task (i.e., SRGAN)
to reconstruct realistic textures from a large number of down-
sampled images. Subsequently, Wang et al. [22] proposed an
enhanced super-resolution generative adversarial network
(ESRGAN) to address the issue of hallucinated details. The
reconstructed images have more realistic natural textures.
However, the PSNR of both SRGAN and ESRGAN are not
satisfactory. To further improve the PSNR, Lim et al. [23]
proposed an enhanced deep super-resolution network (EDSR),
which removes the redundant modules of SRResNet to
increase the model depth and achieves better PSNR. Yu et al.
[24] used wide activation for efficient and accurate image
super-resolution (WDSR), which further improves the struc-
ture of EDSR. Specifically, WDSR removes a lot of redundant
convolutional layers to reduce training parameters and enlar-
ges the feature map before the ReL U activation function in the
residual module, so it can improve the accuracy of super-
resolution while reducing the training time.

However, the above proposed methods mainly focus on
improving the network structure, ignoring the existence of
redundant low-frequency information in the extracted image
features and thus treating high-and low-frequency information
equally. To solve this problem, Zhang et al. [14] introduced
the attention mechanism to the SR task and proposed a
channel attention (CA) mechanism that takes into account the
correlation between feature channels to adaptively rescale
features. The attention mechanism allows the model to recon-
struct more details and textures. Based on RCAN, Dai et al.
[25] further proposed a second-order attention network (SAN)
for more powerful feature expression and feature correlation
learning. A trainable second-order channel attention (SOCA)
module is developed to adaptively rescale the channel-wise
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features by using second-order feature statistics for more
discriminative representations.

After reviewing the existing SR methods, we believe that
the following important issues remain unsolved. Firstly, there
exists a lot of unnecessary training in previous models, which
leads to slow training convergence. They reconstructed all
frequency components of SR images simultaneously through
the same upsampling layer. Since low-frequency components
can be easily reconstructed without deep structures, a better
method is to reconstruct different frequency details of the
image through different upsampling layers. Secondly, most
SR methods do not learn the multi-resolution features of the
image, so they cannot focus on the global and local areas of
the image at the same time. Thirdly, many SR methods with
high PSNR use L1 or L2 loss in the spatial domain, making it
difficult to reconstruct high-frequency details of the image and
thereby making the reconstructed SR image too smooth.
Fourthly, although the RCAN or SAN methods can obtain
higher PSNR, they use a second-order module, which has the
problems of large number of model parameters, slow
prediction speed, and high memory capacity, making them
difficult to adapt to real-world application scenarios.

3 The proposed method

An image can be seen as the result of superimposing with
different frequency components [25]. The low-frequency
information can be effectively reconstructed only with the
information of surrounding pixels, but the reconstruction of
high-frequency information usually requires long-distance
correlation between pixels. Therefore, a larger receptive field
and a deeper convolutional network are required to extract
multi-resolution features, and a more differentiated upsam-
pling method is needed to reconstruct different frequency
components.

This paper proposes a Super-Resolution network based on
Adaptive Frequency component Upsampling (SR-AFU). The
method uses cascaded dilated convolutional residual blocks
(CDCRB) to extract multi-resolution features and multi-size
convolutional upsampling blocks (MCUB) for SR image
reconstruction.

The entire framework (shown in Fig. 1) is mainly composed
of two networks, named as cascaded dilated convolutional

f = — .
iz §

LR image

Super-resolution network using adaptive frequency component upsampling 3

residual network (CDCRN) and multi-size convolutional
upsampling network (MCUN), respectively. CDCRN is cas-
caded with multiple CDCRBs, which can exponentially
increase the receptive field for understanding the image
semantics and extracting potential features. MCUN is casca-
ded with MCUBs, which can upsample different frequency
components to reconstruct the SR image. Note that the output
of each CDCRB is also part of the input of the corresponding
MCUB.

3.1 Cascaded dilated convolution residual block

After down-sampling, it is difficult even for human eyes to
recognize the content of the image area far away from the
shooting point. Therefore, it is necessary to use the surro-
unding pixels to assist in determining the image semantics.
Pooling is a commonly used technique, but it reduces the
resolution and makes it difficult to reconstruct small objects.
Instead, dilated convolution [7] supports exponential expan-
sion of the receptive field without reducing resolution or
coverage. Therefore, dilated convolution is used in SR-AFU to
establish the correlation between a wide range of pixels. It is
also the first time that dilated convolution is introduced into
the SR problem.

Specifically, we use cascaded convolutions with dilation
rates of 1, 2, 4, and 8 in each CDCRB and concatenates
feature maps under different receptive fields (3x3, 7x7,
15x15, and 31x31) (see Fig.2). Thus, each CDCRB has a
maximum receptive field of 31x31 and can obtain multi-
resolution features of images.

Here, the receptive field is defined as:

fi= (i =D+ @x(k=1)+ 1), (1)
where f; is the size of the receptive field of the /th layer, d is
the dilation rate, and £ is the size of the convolution kernel.

Correspondingly, the resolution is defined as:

Ri=Ri_1+2p—k—(k—1)x(d-1)+1, 2)
where R; is the resolution of the ith feature map and p is the
padding size.

To sum up, a large receptive field can be quickly obtained to
extract the contextual information with the help of cascaded
dilated convolution and the model can obtain more diverse
features by generating feature maps with different resolutions.
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Fig.1 The framework of SR-AFU
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3.2 Multi-size convolutional upsampling block

The previous deep networks were designed to reconstruct
high-frequency information, but they spent a lot of unneces-
sary calculations to reconstruct low-frequency information.
Actually, the latter can be easily reconstructed using shallow
networks.

To solve this problem, this paper proposes a multi-size
upsampling method (shown in Fig. 1). Here, MCUBs with
different depths upsample different frequency components in
the image details.

In each MCUB (see Fig. 3), the input features come from
the corresponding CDCRB, then multi-scale convolution
(rather than ordinary convolution) is used to extract adaptive
multi-scale features, and finally the corresponding frequency
component is upsampled.

The output of each MCUB is multiplied by a weighting
coefficient a; (a learnable parameter) and added to generate
the final SR image by Eq. (3):

N
x= ) aigi 3)
i=1

where x is the reconstructed SR image, ¢; is the component
reconstructed by the ith MCUB and q; is its corresponding
weight coefficient. The coefficient ¢; is learned by

N
a=) <x.¢i> g @)
i=1

where <.> represents inner product.
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Fig.3 The structure of MCUB

orthogonal, that is

. I, i=}
<@i,pj>= {0’ i# ] Q)
and < x,¢; > is the similarity between the signal x and ¢;. The
smaller the difference between x and ¢;, the larger the value of
a;.

Any image can be regarded as a discrete two-dimensional
signal xgw). After training SR-AFU, the two-dimensional
tensors  Qi(a,wy, P2H,W)s---»Pnc,wy of the image and the
corresponding weight coefficients aj,as,...,a, are output and
reconstruct the SR image:

N
YsrHw) = Z aiPiH,W).- (6)
i=0

The upsampling method proposed in this paper has the
following advantages: Firstly, the low and medium frequency
components can be reconstructed by the shallow blocks,
thereby eliminating the need for redundant calculations in
deep blocks and reducing training time. Secondly, deep blocks
can focus more on the reconstruction of high-frequency details
of the image. Thirdly, the network can adaptively learn the
weight of each upsampling result and adjust the learning rate
of each MCUB, so the overall training speed of the network is
greatly improved.

The upsampling process in this paper is visualized in Fig. 4.
Here, the number before the hyphen refers to the image label
in the DIV2K dataset X2 and the number i after the hyphen
indicates that the image was generated by the ith MCUB of the
network. The figure shows that the shallow blocks of MCUN
upsample the low-frequency information, such as large
smooth background areas, while the deep blocks reconstruct
the high-frequency details of the image, such as contour and
texture details. In short, different frequencies components of
the image are reconstructed by blocks of different depths.

3.3  Wavelet-based loss function

Most previous SR methods use L1 loss (MAE) or L2 loss
(MSE) as loss function [26]. However, both of them only
calculate the errors between individual pixels, without consi-
dering the multi-resolution features. As a result, the recon-
structed SR images are often too smooth.

This paper defines a new wavelet-based loss function, which
is the weighted sum of the average absolute error of the two
images after high-order wavelet decomposition in YUV space
and the average absolute error of the two images in the spatial
domain.

Wavelet transform can analyze the local frequency of the
space-time domain and can gradually refined the signal
through zooming and translation operation. The error value of
the high-order wavelet transform reflects the distortion of the
light and dark in the SR image, which can effectively prevent
the over-smooth visual effect.

The loss function of SR-AFU is defined in Eq. (7), aiming
to better reflect the multi-resolution texture and structural
features of the image.
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Fig. 4 The visualization of upsampling process in SR-AFU

ax MAE(W,,, W), ) +B+MAE(f.f"), i ={H,V.D}. ~ (7)

The first term in Eq. (7) represents the average absolute
error of the high-order wavelet decomposition of two images
in YUV space. The second term is used to calculate the
average absolute error of two images. a and f are
hyperparameters.

Equations (8) and (9) are used to decompose low-frequency
components and high-frequency components from the image,
respectively.

1 M-1N-1
Wy(0,m,n) = —— FCY)00,mn(x,y), ®)
MN x=0 y=0
1 M-1N-1
W, (jym,n) = —— FCW, (x,Y), i = {H,V,D},
v VMN ; = it

)
Here, f is the image signal, j is the wavelet order and
H,V,D represent horizontal, vertical and diagonal directions.

Different wavelet decomposition operators are used
(Egs. (10)—(13)).

@(x,y) = e(xX)e(y), (10)

¥ (6,y) = Y(0p(), (1n

¢ (x,y) = pOY (), 12)

P, y) = (), (13)

where ¢(-) and y(-) refer to the scaling function constructed by
a low-pass filter and the wavelet function constructed by a
high-pass filter, respectively, ¢(x,y) is the low-frequency
component of the image in both horizontal and vertical
directions, ¥ (x,y) represents the high-frequency component
of the image in the horizontal direction and low-frequency
component in the vertical direction, " (x,y) represents the
low-frequency component of the image in the horizontal
direction and the high-frequency component in the vertical
direction, and y/°(x,y) is the high-frequency component of the
image in both the horizontal and vertical directions.

4 Experiments

4.1 Datasets and settings

Following the previous methods [23,13], we use the DIV2K
dataset [27] for training and Set5 [28], Set14 [29], BSDS100
[30], and Urban100 [31] datasets for testing. The 800 images
from DIV2K are used for training. Each training image is

randomly split with the size of 128%128 (x2), 85%85 (x3) and
64x64 (x4), rotated by 90°, 180° and 270° and flipped
horizontally and vertically. The batch size is 16. For training,
we use the Adam optimizer [32] with 8; = 0.9, 8, = 0.999 and
€ = 1078 and weighted normalization. The initial learning rate
is set to 1073 and the learning rate is halved at every 2 x 103
iterations.

The SR-AFU is implemented by TensorFlow in a NVIDIA
GeForce RTX 2080Ti GPU. The number of blocks in SR-
AFU is set to 32, and each CDCRB uses 32 filters (the number
of convolution kernels in the block). The weight of each
MCUB is initialized as 0.01. In our loss function, « is set to 2,
p is set as 0.5, and sym4 wavelet basis is used. We conduct
experiments with Bicubic (BI) degradation model [13].

The SR results of all methods are evaluated with PSNR,
SSIM [33] and visualization.

4.2 Evaluation of AFU

In order to verify the effectiveness of AFU, we remove all the
upsampling blocks (MCUB) except the last one in the SR-
AFU model and then compare it with the original SR-AFU
model. Figures 5(a) and 5(b) shows the comparison of PSNR
and loss values of two models trained on the DIV2K x4
dataset with a learning rate of 1073, respectively.

The experimental results show that using AFU, the conver-
gence speed of the SR network is significantly improved, the
training time is greatly shortened, and the PSNR of the model
with AFU is still higher than that of the model without AFU.
When iterating to about 17000 batches, the loss of the model
without AFU surges and the PSNR drops from above 30 to
almost 15 due to noise interference. In contrast, the PSNR of
the model with AFU remains stable and the loss shows a
steady decline. Even if the iteration reaches 48000 batches, the
PSNR of the model with AFU is still 0.9 dB higher than that
without AFU.

The main reasons for the above results are as follows. The
ordinary residual structure simply adds the front-layer feature
maps directly during initialization, and the data distribution of
the back-layer feature maps is unstable, resulting in a slower
gradient decline at the initial stage of training. The AFU
method avoids this direct addition, but adjusts the ratio of the
output of each layer to make the distribution of the output
layer data relatively uniform, so the gradient declines faster in
the initial training. As the training progresses, the network
begins to converge, and the ratio adjustment of the output
layer of SR-AFU also affects the gradient propagation,
making the model more stable.
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Fig.5 Comparison of SR models with and without AFU trained on the
DIV2K x4 dataset with a learning rate of 1e—3. (a) PSNR; (b) loss

4.3 Evaluation of loss function based on wavelet transform
To evaluate the loss function defined in this paper, we com-
pare the SR-AFU with the wavelet-based loss (SR-AFU,,,,)
and the SR-AFU with L1 loss (SR-AFUy) in visual effects.

Figure 6 shows two image examples from the DIV2K x4
dataset. The leftmost in the figure is the original LR image, the
middle is the local area of the SR image reconstructed by
SR-AFUyp, and the rightmost is the same local area of the SR
image reconstructed by SR-AFU,,,,.

By comparing the output images of the two SR-AFU
models, it can be seen that the details of the SR images
reconstructed by SR-AFUy; are relatively blurred, while the

DIV2K 0845.PNG
LR image

Fig. 6 Two images from DIV2K x4 and their local area reconstructed by SR — AFU;; and SR — AFU,,,,

contrast of light and dark of the SR images reconstructed by
SR-AFU,,,, is more obvious. The results indicate that the
SR-AFU,,,, has more advantages in image visual effects.

4.4 Ablation study

In order to further explore the influence of the three factors of
dilated convolution, AFU, and the loss based on wavelet
transform (Loss,q,) on the SR-AFU method, we conducted a
ablation study. We use the PSNR Set5 (2X) for comparison.
The experimental results are shown in Table 1. The tick
indicates that the proposed method is used, and the cross
indicates that an alternative benchmark method is used, which
are ordinary convolution, last layer upsampling and L1 loss,
respectively.

The results in Table 1 show that when none of the three
methods are used, the PSNR of the model is 38.12, which is
equivalent to EDSR [23] (its PSNR is 38.11). When the three
methods are used simultaneously (i.e., SR-AFU), the PSNR of
the model is 38.27, which is the same as that of RCAN [14].

4.5 Results with bicubic (BI) degradation model

Experiment on the method comparison is based on the Bicubic
(BI) degradation model, which is the most commonly used
model.

e Comparison by PSNR/SSIM

We compare SR-AFU with ten state-of-the-art methods (Bicu-
bic, SRCNN [34], FSRCNN [18], VSDR [11], LapSRN [20],
MemNet [35], ESDR [23], DBPN [36], RDN [13], and
SRFBN [37]) by PSNR and SSIM values.

All quantitative comparisons for SR with the scale x2, %3,
and x4 are reported in Table 2. The results of most previous
methods are cited from their papers. The results show that SR-
AFU outperforms most of the previous methods on all four
datasets with three scaling factors, which verifies the effecti-
veness of our model in PSNR and SSIM.

e Comparison of SR-AFU and RCAN by PSNR, parameter
size and prediction speed

SR-AFU,, SR-AFU,,,
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Table 1 Investigations of Dilated Conv., AFU and Loss,yq,. The best PSNR values on Set5 (2x) in 4 x 10* iterations are listed
Method Dilated Conv. AFU Loss,,, PSNR/dB
x x x 38.12
v x x 38.19
x v x 38.21
. v v x 38.25
SR-AFU variants o o N 1815
v x v 38.23
x v v 38.24
v v v 38.27
Table 2 Quantitative results with BI degradation model
Set5 Set14 BSDS100 Urban100
Scale  Method
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
2 Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
SRCNN [34] 36.66 0.9542 3245 0.9067 31.36 0.8879 29.50 0.8946
FSRCNN [18] 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020
VDSR [11] 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140
LapSRN [20] 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9140
MemNet [35] 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195
EDSR [23] 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351
DBPN [36] 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9326
IMDN [38] 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283
PAN [39] 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273
AWSRN [40] 38.11 0.9608 33.78 0.9189 32.26 0.9006 32.49 0.9316
RDN [13] 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353
SR-AFU (ours) 38.27 0.9615 34.03 0.9215 32.34 0.9016 33.12 0.9361
3 Bicubic 30.39 0.8682 27.55 0.7742 27.21 0.7386 24.46 0.7340
SRCNN [34] 32.75 0.9090 29.30 0.8215 28.14 0.7863 26.24 0.7989
FSRCNN [18] 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080
VDSR [11] 33.67 0.9210 29.78 0.8320 28.82 0.7980 27.07 0.8280
LapSRN [20] 33.82 0.9227 29.87 0.8350 28.96 0.8001 27.56 0.8376
MemNet [35] 34.09 0.9248 30.01 0.8350 28.96 0.8001 27.56 0.8376
EDSR [23] 34.65 0.9280 30.52 0.8462 28.97 0.8025 27.57 0.8398
IMDN [38] 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519
PAN [39] 34.40 0.9271 30.36 0.8423 29.11 0.8050 28.11 0.8511
AWSRN [40] 34.52 0.9281 30.38 0.8426 29.16 0.8069 28.42 0.8580
RDN [13] 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653
SR-AFU (ours) 34.74 0.9293 30.60 0.8471 29.28 0.8097 28.91 0.8665
4 Bicubic 28.42 0.8103 26.00 0.7027 25.96 0.6676 23.14 0.6576
SRCNN [34] 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221
FSRCNN [18] 30.72 0.8660 27.61 0.7500 26.98 0.7150 24.62 0.7280
VDSR [11] 31.35 0.8830 28.02 0.7680 27.29 0.7026 25.18 0.7540
LapSRN [20] 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560
MemNet [35] 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630
EDSR [23] 32.46 0.8969 28.81 0.7875 27.71 0.7421 26.62 0.8033
DBPN [36] 3247 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946
SRFBN-S 31.98 0.8920 28.45 0.7780 27.44 0.7310 25.71 0.7720
SRFBN [37] 32.39 0.897 28.77 0.7860 27.68 0.740 26.47 0.798
IMDN [38] 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838
PAN [39] 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854
AWSRN [40] 32.27 0.8960 28.69 0.7843 27.64 0.7385 26.29 0.7930
RDN [13] 3247 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028
SR-AFU (ours) 32.47 0.8987 28.82 0.7879 27.73 0.7420 26.65 0.8042

We further compare the PSNR (Urban100), the number of
parameters and the average prediction speed of SR-AFU and
RCAN [14] under different experimental settings (Table 3).
The PSNR of SR-AFU is slightly lower than RCAN because
the latter uses the attention mechanism, which can success-
fully improve the PSNR. However, the channel attention used
by RCAN is a second-order module, requiring the matrix

multiplication after enlarging the image. It consumes a lot of
calculation and memory. This will bring some difficulties to
use RCAN in practical applications, for example, the predic-
tion speed is too slow or the memory capacity cannot be met.
In contrast, our model can be trained by only using a laptop
with a GTX1050Ti video card.

Moreover, the parameter size of RCAN increases exponen-
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Table 3 Comparison of parameters and prediction speed of SR-AFU and
RCAN

Image shape Index SR-AFU RCAN
29 Parameters 2,357,264 15,513,283
X .
(1,320,480.3) Time/s 1.9074778 3.2828535
PSNR 33.12 33.34
@ Parameters 2,497,124 15,882,563
X .
(1,160,240.3) Time/s 0.5087615 1.096696
PSNR 28.91 29.09
@) Parameters 2,692,928 16,399,555
X .
(1,80,120,3) Time/s 0.1530186 0.4655488
PSNR 26.65 26.82

tially (16M), but some parameters may actually be redundant.
For example, the image recognition accuracy of GoogleLeNet
with 20 million parameters is higher than that of VGG with
138 million parameters, many of which are redundant. The
AFU method in this paper can remove unnecessary parameters
in the model, making it run faster with a still high PSNR.
Compared with EDSR (using 43M parameters), RDN (using
22.3M parameters) and RCAN (using 16M parameters), our
model has less (2.6M) parameters.
e Comparison by visual effects
We finally compare SR-AFU with Bicubic, SRCNN [34],
ESDR [23], DBPN [36], RCAN [14] and SAN [25] in visual
effects.

Figure 7 shows visual comparisons on scale x4 for two
images in Urban100 dataset. It can be seen that our model is

Urban100 (4x):
img_076

more sensitive to light and dark changes of images. The main
reason is that SR-AFU uses the loss function based on the
discrete wavelet transform, which allows the model to better
process images with high frequencies in the horizontal and
vertical directions. Moreover, the CDCRB allows the model to
observe images from multiple receptive fields, thereby
enabling SR-AFU to recover the structural features more
effectively.

Taking the image “img 076 as an example, we observed
that the results of Bicubic, SRCNN and EDSR lose details and
produce blurring structures. The details of the images
reconstructed by DBPN, RCAN and SAN are clearer than the
previous three methods. They can recover most horizontal
lines, but it is difficult to recover vertical lines well. SR-AFU
can reconstruct details in different directions very well, and
the reconstructed image has the best visual effect.

5 Conclusion

This paper proposes a super-resolution network based on
adaptive frequency component upsampling (SR-AFU). Specifi-
cally, the cascaded dilated convolution residual block
(CDCRB) can expand receptive field to understand image
semantics. Meanwhile, the multi-size convolutional upsamp-
ling block (MCUB) adaptively upsample different frequency
components, so that the deep network can focus more on high-
frequency details. The loss based on wavelet transform allows
to generate more realistic SR images. Comparative experi-

SRCNN
15.50/0.1922

EDSR
15.72/0.2312

Bicubic

15.69/0.1776

DBPN
16.86/0.4019

RCAN
17.35/0.4969

SAN SR-AFU(ours)

18.25/0.5986 18.96/0.6967
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Fig. 7 Visual comparison for 4x SR with BI model on two datasets
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ments show that the use of AFU can accelerate the conver-
gence speed of training while effectively maintaining a high
PSNR.

In the future, we will study the performance of AFU module

in different network structures and on different image
generation tasks. In addition, considering that the inverse
process of the AFU module can retain both the shallow
features and abstract semantics of the image, we will combine
AFU and its inverse process to build a new image autoencoder
for solving more difficult computer vision tasks.
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