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Abstract Rapidly identifying protein complexes is signifi-
cant to elucidate the mechanisms of macromolecular interac-
tions and to further investigate the overlapping clinical man-
ifestations of diseases. To date, existing computational meth-
ods majorly focus on developing unsupervised graph cluster-
ing algorithms, sometimes in combination with prior biological
insights, to detect protein complexes from protein-protein in-
teraction (PPI) networks. However, the outputs of these meth-
ods are potentially structural or functional modules within PPI
networks. These modules do not necessarily correspond to the
actual protein complexes that are formed via spatiotemporal ag-
gregation of subunits. In this study, we propose a computational
framework that combines supervised learning and dense sub-
graphs discovery to predict protein complexes. The proposed
framework consists of two steps. The first step reconstructs
genome-scale protein co-complex networks via training a su-
pervised learning model of l2-regularized logistic regression
on experimentally derived co-complexed protein pairs; and the
second step infers hierarchical and balanced clusters as com-
plexes from the co-complex networks via effective but com-
putationally intensive k-clique graph clustering method or ef-
ficient maximum modularity clustering (MMC) algorithm. Em-
pirical studies of cross validation and independent test show
that both steps achieve encouraging performance. The pro-
posed framework is fundamentally novel and excels over ex-
isting methods in that the complexes inferred from protein co-
complex networks are more biologically relevant than those in-
ferred from PPI networks, providing a new avenue for identify-
ing novel protein complexes.

Keywords protein complexes, protein co-complex networks,
machine learning, L2-regularized logistic regression, graph
clustering

1 Introduction
Protein complexes, as a fundamental macromolecular orga-
nization of multiple subunit proteins, provide insights into
understanding how individual gene products form the struc-
tures required for advanced biological activities [1]. Once some
subunits within multi-protein complexes malfunction, patients
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would develop a single symptom or overlapping clinical man-
ifestations of diseases [2]. Systematically investigating pro-
tein complexes helps to elucidate the cellular mechanisms un-
derlying various disorders. Tandem Affinity Purification with
mass spectrometry (TAP-MS), as a well-established experimen-
tal technique, has been successfully employed to detect Yeast
[3] and human [4,5] protein complexes. Besides experimen-
tal methods, recent years have witnessed intensive investiga-
tions of computational modeling for complexes identification
as reviewed in the comprehensive surveys [6–8]. From data
point of view, existing methods could be classified into protein-
protein interaction (PPI) networks-based methods and TAP-MS
based methods. From methodological point of view, the PPI-
based methods largely belong to unsupervised graph clustering,
while the TAP-MS based methods often combine supervised
learning with graph clustering. In essence, the TAP-MS based
methods still identify complexes from PPI networks, the dif-
ference is that these methods use supervised learning to learn
the edge weights of PPI networks from TAP-MS data. The
former category far outnumbers the latter one [6–8], partly
because development of novel graph clustering methods on
PPI networks seems to be more attractive to bioinformatics re-
searchers. Graph clustering especially dense subgraphs discov-
ery could be mathematically viewed as discovery of cliques in
a graph and finding all maximal cliques has been proven to
be a challenging NP-complete problem [9]. To achieve opti-
mal structural modularity, sophisticated techniques are highly
needed to achieve good balances between cluster size, the num-
ber of clusters, cluster hierarchy, cluster overlap and algorith-
mic complexity.

The PPI networks-based methods detect functionally or
structurally cohesive substructures in the form of cliques in PPI
networks and treat the inferred clusters as protein complexes.
A portion of densely connected regions in PPI networks dis-
covered via graph clustering have been validated to surely cor-
respond to the experimentally verified protein complexes [6–8],
indicating the effectiveness of identifying complexes from PPI
networks. These graph clustering methods focus on topolog-
ically partitioning PPI networks into clusters, e.g., molecular
complex detection (MCODE) [10], markov clustering (MCL)
[11], ClusterONE [12], COREPEEL [13], DAPG [14], etc.
MCODE [10] prioritizes the vertex with the highest clustering
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density as a seed and recursively moves outward to generate a
cluster. MCL [11] simulates random walks via expansion and
inflation operators to extract dense regions from a graph. In
each iteration, the two operators make the flow thicker in dense
regions and thinner in sparse regions, so that the probability
of intra-cluster walks is increased and the probability of inter-
cluster walks is decreased. ClusterONE [12] defines a metric
of cohesiveness score to guide a greedy growth process, so that
the vertexes with high cohesiveness scores in PPI networks are
clustered together. COREPEEL [13] uses a tight upper bound
to guide the core decomposition for discovery of quasi cliques
and then peels out the vertexes with minimum degree. DAPG
[14] uses node ordering algorithms to turn PPI networks into a
directed acyclic prefix graph (DAPG), based on which to detect
the maximal dense subgraphs via objective function optimiza-
tion.

The above-mentioned graph clustering methods usually treat
PPI networks as unweighted graphs. To measure the confidence
level of each interaction in PPI networks, several methods have
been proposed to take advantage of biological insights to weigh
the edges in PPI networks, e.g., gene ontology, gene expres-
sion profiles and TAP-MS data [15]; socio-affinity scores mea-
suring the frequencies that two proteins are observed to co-
occur in CoIP purifications [16], etc. Besides weighted PPI net-
works, bipartite graph has also been used to represent the co-
immunoprecipitation data to identify protein complexes [17].
These PPI network-based methods, though appealing and in-
tuitive in themselves, suffer from two major aspects of draw-
backs. The first major drawback is that the modules identified
from PPI networks are potentially less biological relevant, and
the structural or functional modules do not necessarily corre-
spond to spatiotemporally formed protein complexes. The sec-
ond major drawback lies in the complexity of graph cluster-
ing on PPI networks. First, the dense and sparse regions in
PPI networks are prone to yield highly unbalanced clusters in
terms of cluster size; Second, the small complexes in sparse re-
gions are prone to be ignored with a high probability; Third,
it is challenging for graph clustering methods to recover the
hierarchical organizations between super-complexes and sub-
complexes; Fourth, the complexes yielded via most graph clus-
tering algorithms are usually not overlapped; and lastly, the ex-
perimentally verified complexes and subunits are not easy to be
explored as prior to guide the generation of biologically inter-
pretable clusters. TAP-MS is a well-established experimental
technique that naturally captures the co-complex relationships
between proteins, but to our knowledge the available TAP-MS
data are only used as auxiliary data to assign confidence scores
to the edges of PPI networks to date. For instances, Krogan
et al. [18] train a supervised learning model on TAP-MS data
to assign weights to the edges of PPI networks, from which
to further infer complexes via Markov Clustering (MCL) [11].
Wu et al. [15] quantify protein affinities from TAP-MS data via
so-called C2S scores, which are defined as the log-likelihood
ratio of probability that a protein pair is co-complexed relative
to the probability that the protein pair is drawn randomly; and
then train a linear ranking SVM to integrate heterogeneous data
to assign scores to the edges of PPI networks, from which to
identify protein complexes via hierarchical clustering. Qi et al.

[19] extract local graph features from the complexes captured
via TAP-MS technique to train a supervised Bayesian network
and then use the learned features or patterns to search for novel
complexes in PPI networks. In this study, we propose a frame-
work that combines supervised learning and dense subgraphs
discovery to predict human protein complexes. The critical dif-
ference between this framework and existing methods is that
protein complexes are identified from protein co-complex net-
works rather than PPI networks. Protein co-complex networks
are defined as a graph , where each node in the vertex set V de-
notes a protein and each edge in the edge set E denotes the rela-
tionship that two proteins are co-complexed. In this framework,
the process flow consists of two steps. The first step reconstructs
genome-scale protein co-complex networks via exploring the
experimentally verified co-complexed protein pairs to train a
predictive model of l2-regularized logistic regression. To vali-
date the effectiveness of predicting protein co-complex relation-
ships, we compare this framework with existing methods on the
experimental co-complexed proteins pairs of Saccharomyces
cerevisiae via cross validation and independent test. The second
step identifies protein complexes via hierarchical graph cluster-
ing on the predicted protein co-complex networks. The clusters
detected from protein co-complex networks are more biological
relevant and are easier to interpret as complexes than those de-
tected from PPI networks. To cope with the complexity of graph
clustering, we evaluate a variety of available graph clustering
methods on the experimental complexes from CORUM [4] and
HPRD [5] and choose the optimum method that achieves a good
balance between performance and efficiency.

2 Materials and methods
2.1 Data and materials
To our knowledge, the database CORUM (version 2.0) [4] and
HPRD (as of November 2008) [5] have curated a number of
human protein complexes, and Reactome (version 54) [20]
has collected a large number of co-complexed protein pairs
from the study [21]. CORUM [4] and HPRD [5] provide a
full list of subunits for each protein complexes, while Reac-
tome [20,21] only contains pair-wise protein co-complex in-
teractions without the information of subunit-complexes mem-
bership. The first step of this framework predicts protein co-
complex interactions to reconstruct genome-scale protein co-
complex networks, and thus uses the co-complexed protein
pairs from Reactome [20,21] as training data. The second step
of this framework splits protein co-complex networks inferred
by the first step into complexes, and thus uses the subunit-
complexes memberships from CORUM [4] and HPRD [5] as
independent test data. Of course, the complexes from CORUM
[4] and HPRD [5] could be binarized into co-complexed pro-
tein pairs as training data, but Reactome [20,21] does not pro-
vide subunit-complexes memberships and thus cannot be used
as independent test data to evaluate the second-step clustering
performance of this framework.

The quality of training data is of pivotal importance to
machine learning modeling of biological problems. Choosing
training data heavily depends on particular problems or applica-
tions. In this study, we follow three inclusion criteria to choose
data. First, the proteins that lack gene symbols are removed,
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because the proteins may be hypothetical and are not helpful
for biological interpretation of the results; Second, the genes or
gene products that are obsolete or uncurated in UniprotKB are
removed, because the GOA database annotates genes/proteins
based on UniprotKB. Obsolete genes/proteins would result in
null feature vectors (see the next section Multi-instance GO
feature construction); and lastly, the less-studied genes/proteins
that have not been annotated in GOA database are also removed
for similar reasons. As such, we obtain 61,755 co-complexed
protein pairs from Reactome [20,21] as the positive training
data (see Online Resource S1). However, there are no available
protein pairs that are observed not to be co-complexed and we
need negative data to train a two-class l2-regularized logistic re-
gression model. For the reason, we have to randomly sample the
negative training data from the huge space of protein pairs. To
reduce the risk of false negative sampling, we resort to the avail-
able human physical PPI networks to increase the probability of
sampling protein pairs that are actually not co-complexed. We
restrict the sampling to the three cases (i) protein pairs with no
path between them in human physical PPI networks; (ii) pro-
tein pairs whose shortest path is more than one; (iii) protein
pairs whose shortest path is just one. As the chances that two
proteins are co-complexed in the three cases decrease, we em-
pirically determine the sampling ratio of these three cases to be
6:3:1. The first case could most probably reduce the risk of co-
incidence of sampled protein pairs with the known PPIs. Nev-
ertheless, only consideration of this case would yield bias, be-
cause two physically-interacting (path length equals to one) and
indirectly-interacting (path length equals to two or more) pro-
teins still are potentially not co-complexed. The last two cases
are considered to cover these protein pairs. The ratio could be
treated as a hyperparameter and is empirically determined here
for simplicity. The human physical PPI networks guiding the
negative data sampling are constructed from the physical PPIs
from HPRD [5], BioGrid (as of September 2014) [22], and In-
tAct (as of November 2013) [23]. The sampled negative train-
ing data are provided in Online Resource S2.

As regards the independent test data, we obtain 2157 and
1502 non-redundant protein complexes from CORUM [4] and
HPRD [5], respectively. After filtering out the complexes whose
co-complexed protein pairs already occur in the training data,
we finally obtain 1757 and 1375 non-redundant complexes
from CORUM [4] and HPRD [5], respectively. These com-
plexes are used as the positive independent test data to evaluate
both steps of the proposed framework. The first step uses the co-
complexed protein pairs from CORUM [4] and HPRD [5] for
co-complex networks evaluation; and the second step uses the
complexes and their member subunits from CORUM [4] and
HPRD [5] for complexes recovery evaluation. For co-complex
networks evaluation, the complexes of independent test from
CORUM [4] and HPRD [5] are binarized into co-complexed
protein pairs. For a given complex that consist of N subunits,
C2

N = N ∗ (N − 1)/2 co-complexed protein pairs are obtained.
In such a way, we obtain 37, 228 and 23,973 co-complexed
protein pairs as positive independent test data from CORUM
[4] and HPRD [5], respectively (see Online Resource S3 and
S4). To control the risk of model bias, we sample the equiva-
lent size of negative independent test set in the same way that

the negative training data are sampled. This step is to evalu-
ate the performance of predicting novel co-complexed protein
pairs. For the complexes recovery evaluation of the second step,
the complexes and their member subunits are used evaluate the
performance of recovering actual complexes from the predicted
co-complex networks via a variety of graph clustering methods.

Existing methods are generally developed for Saccha-
romyces cerevisiae. For methodological comparisons, we also
evaluate the proposed framework on the complexes of Sac-
charomyces cerevisiae. We use the 9070 co-complexed protein
pairs of high quality provided by Collins et al. [24] as positive
training data and resort to the physical PPI networks of Saccha-
romyces cerevisiae to guide the sampling of negative training
data. The physical PPI networks of Saccharomyces cerevisiae
are taken from the studies [25–27] The 408 complexes provided
by Pu et al. [28] (also called CYC2008 Complexes) and the 482
complexes provided by Gavin et al. [16] are used as the positive
independent test data.

2.2 Supervised learning for genome-scale reconstruction of
protein co-complex networks
Multi-instance GO feature construction. The first step of this
proposed framework is to train a supervised learning model to
predict whether two proteins are co-complexed. Recent stud-
ies [29–33] have shown that gene ontology (GO) terms are the
most discriminative features to represent protein pairs and pre-
dict protein-protein interactions. Our previous work [31–33]
has proposed a multi-instance feature representation of pro-
teins to cope with the sparsity and potential unavailability of
GO terms, especially for the less-studied genes/proteins. Each
gene or gene product is depicted with two instances. The target
instance depicts the GO knowledge of the gene/protein itself,
and the homolog instance depicts the GO knowledge of the ho-
mologs. The homolog instance serves the purpose of enriching
or substituting the target instance of less-studied genes/proteins.
Such the representation method has been successfully applied
to predict pathogen-host protein interactions [31–33]. In this
study, we apply the representation method to the problem of co-
complex prediction. The homologs are searched via PSI-BLast
[34] against SwissProt (downloaded as of April 2012) [35] and
the GO terms are retrieved from GOA (downloaded as of De-
cember 2017) [36]. For each protein i in the training set U, i.e.,
i ∈ U, we obtain a homolog set of GO terms (S i

H) and a target
set of GO terms (S i

T ). The whole set of GO terms of the training
set is defined as follows.

S =
⋃

i∈U
(S i

T ∪ S i
H). (1)

For each protein pair (i1, i2), the target instance and the homolog
instance are formally defined as follows.

Vec(i1,i2)
T [g] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, g � S i1
T ∧ g � S i2

T ,

2, g ∈ S i1
T ∧ g ∈ S i2

T ,

1, otherwise,

Vec(i1,i2)
H [g] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, g � S i1
H ∧ g � S i2

H ,

2, g ∈ S i1
H ∧ g ∈ S i2

H ,

1, otherwise,

(2)
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For GO term g ∈ S , Vec(i1,i2)
T [g] and Vec(i1,i2)

H [g] denote the com-
ponent g of the target instance and the homolog instance, re-
spectively. The GO terms that are not contained in the whole
set of GO terms (g � S ) are discarded. The two-instance fea-
ture representation as described in Eq. (2) is symmetric and
could intuitively depict the distribution of GO terms between
two proteins (i1, i2).

L2-regularized logistic regression. L2-regularized logistic re-
gression [37] is a well-established machine learning method
that could efficiently deal with large data with linear time com-
plexity and penalize noise to prevent model overfitting via regu-
larization technique. We have applied its toolbox LIBLINEAR
[38] to counteract potential noise from homolog instances in
our previous work [31–33]. In this study, we also choose l2-
regularized logistic regression as the base learner to predict pro-
tein co-complex relationships.

Given the training data (xi, yi), i = 1, 2, . . . , l; xi ∈ Rn; yi ∈
{−1,+1} where xi denotes the ith instance and yi denotes its la-
bel, l2-regularized logistic regression transforms the prime lo-
gistic regression hypothesis h(x) = 1/(1 + exp(−yωT x)) to the
dual optimization problem as follows.

min
ω

1
2
ωTω + ζ

l∑

i=1

log(1 + e−y,ωT xi), (3)

where ω denotes weight vector, ζ denotes regularizer or slack
variable. The second term adopts regularization technique to
penalize noise and prevent overfitting. The prime problem as
defined in Eq. (3) is solved via its dual form as follows.

min
α

1
2
αTOα +

l∑

i:αi>0

αi logαi +

∑

i:αi<C

ζ − αi) log(ξ − αi) −
l∑

i

ζ log ζ,

subject to 0 � αi � ζ, i = 1, . . . , l, (4)

where αi denotes Lagrangian operator and Oi j = yiy jxT
i x j.

For each test protein pair (i1, i2), we combine the
target-instance and homolog-instance outputs (h(Vec(i1,i2)

T ),
h(Vec(i1,i2)

H )) into one final decision value as defined below.

Decision_value(i1, i2) =

⎧⎪⎪⎨⎪⎪⎩
h(Vec(i1,i2)

T ), if |h(Vec(i1,i2)
T )| > |h(Vec(i1,i2)

H )|,
h(Vec(i1,i2)

H ), otherwise,
(5)

Then the predicted label for the test protein pair (i1, i2) is determined as follows.

L(i1, i2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, Decision_value(i1, i2) > 0 ∧ decision_value(i1, i2) − 0.5 > δ,

−1, Decision_value(i1, i2) < 0 ∧ decision_value(i1, i2) + 0.5 > δ,

∞ otherwise,

(6)

where threshold δ is introduced to increase the confidence level
of predictions, generally assuming 0 if weak positive predic-
tions still provide valuable information. The choice of thresh-
oldcould affect the predicted protein co-complex networks and
yield different dense subgraphs or protein complexes. Symbol
∞ means that the labels cannot be determined.

2.3 Graph clustering for complexes identification
In protein co-complex networks, any two subunits within the
same complex potentially have a connective link or edge, while
the edges between complexes are much sparser. Identification
of complexes from protein co-complex networks is a problem
of dense subgraphs discovery. In this study, we use the classi-
cal k-clique finding method CFinder [39,40] to identify dense
subgraphs in protein co-complex networks. CFinder [39] uses a
clustering algorithm with exponential computational complex-
ity to find all k-cliques (i.e., maximal complete subgraphs),
from which to further analyse the clique-clique overlap ma-
trix. However, finding all maximal cliques is a NP-complete
problem [9], so that CFinder could not be applicable anywhere.
For this reason, we adopt the maximum modularity clustering
method (MMC) [41,42] as an alternative solution in the case
that CFinder [39] cannot yield desirable complexes. The MMC
method [41,42] includes a coarsening step and a refining step.
The coarsening step iteratively merges clusters and the refining
step refines the resulting clusters by iteratively moving indi-
vidual vertices between clusters according to a criterion called

modularity increase. In order for readers to grasp the core idea
of this method, we choose to briefly reformulate the MMC
graph clustering method below.

Given a graph (V,f) that consists of vertex set V and a func-
tion f : V × V → N, the function f assigns a weight to each
edge connecting two vertexes within V and the degree of ver-
tex v is defined as deg(v) =

∑
u∈V f (u, v). The degree of a set of

vertices is generalized as deg(V) = f (V,V) =
∑

u∈V,v∈V f (u, v).
Assuming that the vertex set V is partitioned into k non-empty
subsets Ci by a clustering C = {C1, . . . ,Ck}, the weight of edge
(u, v) ∈ V2, i.e., f (u, v), is binomially distributed with the ex-
pected value deg(u)deg(v)/deg(V)2 in the null model that the
end-vertices of edges are chosen at random, and then the ex-
pected value of the whole edge set within cluster Ci is general-
ized as deg(Ci)2/deg(V)2 [43]. Then the modularity of cluster-
ing C = {C1, . . . ,Ck} is defined as follows.

Q(C) :=
∑

Ci∈C

(
f (Ci,Ci)
f (V,V)

− deg(Ci)2

deg(V)2

)
, (7)

where the first term is the actual fraction of intra-cluster edge
weight and the second term is its expected value in the null
model. Then the modularity increase of coarsening by merging
cluster Ci with C j is defined as follows.

ΔQCi ,C j :=
2 f (Ci,C j)

f (V,V)
− 2deg(Ci)deg(C j)

deg(V)2
. (8)

Accordingly, the modularity increase of refining by moving a
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vertex v from its cluster Ci to cluster C j is defined as follows.

ΔQv→C j :=
2( f (v,C j) − f (v,Ci − v))

f (V,V)
−

2(deg(v)deg(C j) − deg(v)deg(Ci − v))

deg(V)2
. (9)

The coarsening as defined in Eq. (8) and the refining as de-
fined in Eq. (9) iterate greedily until the maximum modularity
is achieved without modularity increase (i.e., ΔQv→C j < 0).

2.4 Experimental settings and model evaluation

Experimental settings

For the first step of this framework, three experimental set-
tings (namely combine-instance, homolog-instance and target-
instance) are provided to check how well the homolog knowl-
edge transfer via homolog instance solves the problem of GO
term sparsity. For model evaluation, the combined decision
value as defined in Eq. (5), the decision value of the homolog
instance alone (i.e., h(Veci1,i2

H ) and the decision value of the tar-
get instance alone (i.e., h(Veci1,i2

T ) are used in the combined-
instance setting, the homolog-instance setting and the target-
instance setting, respectively.

For the first step of this framework, the experimentally ver-
ified protein complexes from CORUM [4] and HPRD [5] are
binarized into co-complexed protein pairs to check whether
CFinder [39,40] and MMC [41,42] could correctly recover
these complexes from the predicted protein co-complex net-
works.

Model evaluation

For the first step of protein co-complex networks reconstruc-
tion via supervised l2-regularized logistic regression, the per-
formance is estimated using the five frequently-used metrics in-
cluding PR (precision), SE (sensitivity), MCC (Matthews cor-
relation coefficient), ROC-AUC (Area Under ROC Curve) and
F1 score. Except that ROC-AUC is calculated based on the de-
cision values as defined in Eq. (5), all the other metrics are cal-
culated based on a confusion matrix M, whose element Mi, j

records the counts that class i (i = 1, 2, . . . , L) are classified
to class j ( j = 1, 2, . . . , L). In this framework, L assumes 2
for the binary classification of protein co-complex associations.
To calculate PR, SE and MCC, several intermediate variables
as defined in Eq. (10) are first calculated based on M. Based
on these variables, we further calculate PRl, SEl and MCCl for
each label according to Eq. (11) and the overall MCC according
to Eq. (12).

pl = Ml,l, ql =

L∑

i=1,i�l

L∑

j=1, j�l

Mi, j,

rl =

L∑

i=1,i�l

Mi,l, sl =

L∑

j=1, j�l

Ml, j, (10)

p =
L∑

l=1

pl, q =
L∑

l=1

ql, r =
L∑

l=1

rl, s =
L∑

l=1

sl,

PRl =
pl

pl + rl
, l = 1, 2, . . . , L,

S El =
pl

pl + sl
, l = 1, 2, . . . , L, (11)

MCCl =
(plql − rlsl)

(pl + rl)(pl + sl)(ql + rl)(ql + sl)
, l = 1, 2, . . . , L,

Acc =

L∑

l=1

Ml,l

L∑

i=1

L∑

j=1

Mi, j

, MCC =
(pq − rs)

(p + r)(p + s)(q + r)(q + s)
,

(12)

F1 score is further calculated as follows.

F1 score =
2 × PRl × S El

PRl + S El
, l = 1 denotes the positive class.

(13)
For the second step of protein complexes detection via unsu-

pervised maximum modularity graph clustering, Jaccard Index
as defined in Eq. (14) is used to measure how well the predicted
complex P matches the reference complex R.

Jaccard(P,R) = |P ∩ R|/|P ∪ R|. (14)

Given a threshold ξ, P is deemed to match R if Jaccard(P,R) �
ξ is satisfied (ξ generally assumes 0.5). Given a set of refer-
ence complexes R = {R1, . . . ,Ri} and a set of predicted clusters
P = {P1, . . . , Pm}, the metrics of Precision, Recall and F-score
are defined as follows.

Precision =
|{Pi ∈ P|∃R j ∈ R, Jaccard(Pi,R j) � ξ}|

|P| ,

Recall =
|{Ri ∈ R|∃P j ∈ P, Jaccard(Pi,R j) � ξ}|

|R| , (15)

F-score =
2 × Precision × Recall

Precision + Recall
.

3 Results
3.1 Performance of cross validation and independent set on
predicting protein co-complex relationships
Cross validation
As described in the section Data and materials, the co-
complexed proteins pairs from Reactome [20,21] are used as
the positive training data and the negative training data are
randomly sampled under the guidance of prior knowledge of
human physical PPI networks to train a two-class l2-regularized
logistic regression model. The ROC curves of 5-fold cross val-
idation are illustrated in Fig. 1(a). It is evident that the ROC
curves of the three experimental settings nearly coincide with
each other with the AUC scores all above 0.91, indicating
that the solution of homolog knowledge transfer via homolog
instances is effective to address the problem of GO terms spar-
sity. The other performance metrics are provided in Table 1.
As demonstrated by these metrics, the l2-regularized logistic
regression model achieves encouraging performance of pre-
dicting protein co-complexed relationships with a good balance
as a whole without showing a high risk of model bias. Never-
theless, the metrics of PR, SE and MMC on the two classes still
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Fig. 1 Performance of cross validation and independent test on identifying human protein co-complex relationships. (a) Homo sapiens (cross
validation); (b) homo sapiens (independent test)

Table 1 Results of 5-fold cross validation and independent set on identifying human protein co-complex relationships

Combined-instance Homolog-instance Target-instance
Cross validation

PR SE MCC PR SE MCC PR SE MCC

Co-complexed 0.7948 0.8967 0.7161 0.7952 0.8966 0.7161 0.8092 0.8974 0.7192
Not co-complexed 0.8813 0.7682 0.7068 0.8810 0.7683 0.7067 0.8695 0.7636 0.7030
Accuracy 83.25% 83.25% 83.42%
MCC 0.7070 0.7071 0.7097
ROC-AUC 0.9196 0.9195 0.9191
F1 Score 0.8427 0.8429 0.8510

CORUM (positive) HPRD (positive) Negative independent data
Independent test

81.47% 50.15% 83.45%

Note: the performance metric of independent test denotes recognition rate.

show a little bias towards the positive class, for instance, PR
= 0.7948, SE = 0.8967, and MCC = 0.7161 on the positive
class versus PR = 0.8813, SE = 0.7682, and MCC=0.7068 on
the negative class in the combined-instance setting. The bias
partly results from the noise of negative data sampling that po-
tentially comes from two sources: (1) the randomly sampled
protein pairs connected by at least one path in PPI networks
probably yields false negatives; and (2) the protein pairs with-
out paths connecting them are also probably co-complexed be-
cause the available physical PPI networks are not complete. In
spite of the lower risk of model bias, the performance is quite
encouraging as compared to existing methods (see the section
Comparisons with the existing methods).

Independent test
As described in the section Data and materials, 1757 and 1375
complexes are obtained from CORUM [4] and HPRD [5] as the
positive independent test data, respectively. These complexes
do not contain any co-complexed protein pair that already oc-
cur in the training data. These complexes from CORUM [4]
and HPRD [5] are further binarized into 37,228 and 23,973 co-
complexed protein pairs, respectively. To estimate the potential

risk of model bias, we randomly sample 37,228 protein pairs as
the negative independent test in the same way that the negative
training data are sampled. The independent test performance is
illustrated in Fig. 1(b) and provided in Table 1. 81.47% of the
protein co-complex relationships in CORUM [4] are correctly
recognized. Meanwhile, 83.45% of the protein pairs in the neg-
ative independent test data are correctly recognized. These re-
sults show a low risk of bias between the positive and the neg-
ative class. However, only 50.15% of the protein co-complex
relationships from HPRD [5] are correctly recognized, which
means that there are a large fraction of missing links in the pre-
dicted protein co-complex networks. If the missing links do not
affect the recovery of protein complexes via MMC graph clus-
tering, this proposed framework could be deemed to be robust
against predictive errors of protein co-complex relationships.
This problem will be discussed in the next section.

3.2 Performance of complexes identification via graph clus-
tering
Validating the feasibility of MMC graph clustering in com-
plexes identification
Before embedding the MMC graph clustering method [41,42]
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into our proposed framework, we first validate its feasibility
in identifying complexes from protein co-complex networks.
The 2157 complexes from CORUM [4] and the 1502 com-
plexes from HPRD [5] are individually binarized into protein
co-complex networks, in which any two proteins within the
same complexes are assigned a link to indicate that they are
co-complexed. For the singleton complexes that contain only
one subunit, a link is assigned to the orphan subunit connecting
itself. As such, all the complexes are naturally the dense sub-
graphs in protein co-complex networks, in which the link den-
sity within complexes is high and the link density between com-
plexes is low. We need to verify that the MMC graph cluster-
ing method [41,42] could successfully recover most complexes
from the protein co-complex networks.

The performance of MMC graph clustering method on the
protein co-complex networks from CORUM [4] and HPRD
[5] is illustrated in Figs. 2(a) and 2(b), respectively. As per-
fect match between predicted complex and reference complex
is hard to achieve, the threshold of Jaccard index is relaxed to
vary from 0.2 to 1. With the decrease of Jaccard index thresh-
old, we could find more predicted complexes to match the ref-
erence complexes. We focus on the perfect match case ξ = 1
and the case ξ = 0.5 that more than a half of subunits overlap
between the predicted complexes and the reference complex.
The details of performance at ξ = 1 and ξ = 0.5 are provided
in Table 2. In the case of perfect match (ξ = 1), 11.71% of CO-
RUM and 11.78% of HPRD reference complexes are exactly
hit respectively as shown by the recall metrics; and 32.57%
of CORUM and 16.67% of HPRD predicted clusters exactly
match the reference complexes respectively as shown by the
precision metrics. These results show that the proposed frame-
work achieves fairly encouraging performance of perfect match
between predicted complexes and reference complexes, though
the task is very challenging. If the threshold of Jaccard indexis
relaxed to 0.5, 52.34% of CORUM and 54.26% of HPRD refer-

ence complexes are hit, respectively; and 80.99% and 77.68%
of the predicted clusters match CORUM and HPRD reference
complexes, respectively. These results demonstrate the feasibil-
ity of MMC graph clustering [39,40] to recover the complexes
from protein co-complex networks.

Further comparison of performance on CORUM with that on
HPRD shows that the MMC graph clustering method [41,42]
achieves equivalent recall rates on both datasets (Table 2),
which indicates that an equivalent number of CORUM and
HPRD reference complexes are matched by the predicted clus-
ters. Nevertheless, MMC achieves higher precision on CORUM
than on HPRD, e.g., 0.3257 versus 0.1667 (ξ = 1), 0.8099 ver-
sus 0.7768 (ξ = 0.5), indicating that more predicted complexes
match the reference complexes on CORUM than on HPRD.
These results are potentially attributed to the quality and the
number of reference complexes from CORUM and HPRD, and
are also potentially associated with the ratio of reference com-
plexes to predicted complexes, e.g., 1502 reference complexes
to 1062 predicted complexes on HPRD (ratio 1.41), 2157 refer-
ence complexes to 1173 predicted complexes on CORUM (ratio
1.84). Under these ratios, a potentially larger fraction of pre-
dicted complexes match the reference complexes on CORUM
than on HPRD.

Performance of identifying CORUM and HPRD independent
test complexes
In the first step that predicts protein co-complex relation-
ships, the proposed framework correctly recognizes 81.47%
of the co-complexed protein pairs on CORUM independent test

Table 2 MMC clustering performance on CORUM and HPRD co-complex
networks

Exact match (ξ = 1) Match (ξ = 0.5)
Precision Recall F-score Precision Recall F-score

CORUM 0.3257 0.1171 0.2294 0.8099 0.5234 0.6359
HPRD 0.1667 0.1178 0.1381 0.7768 0.5426 0.6389

Fig. 2 Graph clustering performance that validates the feasibility of MMC method for complexes identification. (a) MMC clustering performance
on CORUM co-complex networks; (b) MMC clustering performance on HPRD co-complex networks
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Fig. 3 Performance of identifying CORUM and HPRD independent test complexes with threshold of Jaccard indexvarying from 0.2 to 1. (a) MMC
performance of identifying CORUM independent test complexes; (b) MMC performance of identifying HPRD independent test complexes; (c) CFinder
performance of identifying CORUM independent test complexes; (d) CFinder performance of identifying HPRD independent test complexes

complexes and 50.15% of the co-complexed protein pairs on
HPRD independent test complexes, respectively. In the sec-
ond step of the proposed framework, we further estimate how
well CFinder [39,40] and MMC [41,42] recovers the CORUM
and HPRD independent test complexes from the predicted pro-
tein co-complex networks. The performance of independent test
with the threshold of Jaccard indexvarying from 0.2 to 1 is il-
lustrated in Figs. 3(a)–(d). Comparing Figs. 3(a) and (b) with
Figs. 3(c) and (d), we find that CFinder performs much better
than MMC in terms of identifying actual complexes from pre-
dicted protein co-complex networks. However, CFinder could
not yield outputs on CORUM because of its inherent NP-
complete characteristic, though it yields results on HPRD in
a reasonable time. After setting the time limit per node at 0.1
second according to the instructions at the website of CFinder,
CFinder adopts the policy of approximate clique finding and
its performance on CORUM independent test complexes is il-
lustrated in Fig. 3(c). The policy of approximate clique finding
performs a little worse (see Figs. 3(c) and 3(d)), though it could
reduce the computational complexity. Furthermore, the approx-
imate policy of CFinder is still much slower than MMC in dense
subgraphs discovery.

As shown in Table 3, MMC perfectly predicts 5.98% of the
CORUM and 4.87% of the HPRD reference complexes, respec-
tively (ξ = 1, Recall); and 14.46% of the CORUM and 7.94%
of the HPRD predicted clusters by MMC exactly match the ref-
erence complexes, respectively (ξ = 1, Precision). If the thresh-
old of Jaccard index is relaxed to ξ = 0.5, 26.18% of the CO-
RUM and 34.55% of the HPRD reference complexes match the
predicted complexes by MMC, respectively; and 60.33% of the
CORUM and 58.41% of the HPRD predicted clusters match the
reference complexes, respectively.

As shown in Table 3, CFinder comparatively performs much
better than MMC. 41.72% of the CORUM and 53.60% of the

Table 3 Performance of identifying CORUM and HPRD independent test on
protein complexes

Exact match (ξ = 1) Match (ξ = 0.5)
MMC

Precision Recall F-score Precision Recall F-score

CORUM 0.1446 0.0598 0.0846 0.6033 0.2618 0.3652
HPRD 0.0794 0.0487 0.0604 0.5841 0.3455 0.4341

Exact match (ξ = 1) Match (ξ = 0.5)
CFinder

Precision Recall F-score Precision Recall F-score

CORUM 0.1512 0.1554 0.1533 0.7324 0.4172 0.5316
HPRD 0.2340 0.2371 0.2355 0.6927 0.5360 0.6044

HPRD reference complexes are matched by the clusters pre-
dicted by CFinder, respectively (ξ = 0.5); and 73.24% of
the CORUM and 69.27% of the HPRD predicted clusters by
CFinder are matched by the reference complexes, respectively
(ξ = 0.5). These results encourage us to choose CFinder as the
optimal solution to dense subgraphs discovery in protein co-
complex networks. However, CFinder, due to its NP-complete
complexity, would be highly restricted in some particular appli-
cations, in which it cannot efficiently yield outputs even when
some approximate strategy of clique finding is adopted. In such
cases, MMC could be used as alternative solution. In the last
decades, many more novel and sophisticated graph clustering
methods have been developed to find dense subgraphs, e.g.,
Molecular COmplex Detection (MCODE) [10], Markov Clus-
tering (MCL) [11], ClusterONE [12], COREPEEL [13], DAPG
[14], etc. In the next section, we also provide performance com-
parisons with these methods. Interestingly, the computational
results show that CFinder and MMC are strongly robust to a
large fraction of missing and false links in the predicted protein
co-complex networks. In the case that only 50.15% of HPRD
co-complexed protein pairs are correctly recognized, CFinder
and MMC still achieve 0.5360 and 0.3455 recall performance
(ξ = 0.5), respectively.
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Fig. 4 Distribution of predicted complexes size on CORUM and HPRD independent test complexes and corresponding performance in terms
of precision (ξ = 0.5). The horizontal axis denotes the size of complexes and the vertical axis denotes the number of complexes of the specified
size. (a) Distribution of predicted complexes size on CORUM independent test complexes; (b) Distribution of predicted complexes size on HPRD
independent test complexes; (c) Distribution varying with the size of CORUM predictod complexes; (d) Performance varying with the size of HPRD
predicted compiexes

Cluster size is an important measure that evaluates a graph
clustering algorithm as well as the Jaccard index-based perfor-
mance metrics such as recall, precision and F-score. A good
graph clustering algorithm naturally yield similar distributions
between actual complexes size and predicted complexes size.
The distributions of predicted complexes size that CFinder and
MMC achieve on CORUM and HPRD independent test com-
plexes are illustrated in Figs. 4(a) and (b). Most reference com-
plexes and predicted complexes contain 2–5 subunits, and the
complexes identified by CFinder are more approximate to the
reference complexes in size than those identified by MMC. For
the large complexes exceeding 5 subunits, MMC performs bet-
ter with the size of predicted complexes more approximate to
that of reference complexes, whereas CFinder tends to yield
large clusters. Due to sparsity, the complexes exceeding 20 sub-
units are not considered. We further consider the performance
in terms of precision that varies with the size of predicted pro-
tein complexes. As shown in Figs. 4(c) and (d), CFinder and
MMC have a large fraction of small-sized predicted complexes
(3–8 subunits) matched by the reference complexes with pre-
cision ranging from 0.4400 to 0.8056. Interestingly, CFinder
achieves even higher precision on large predicted complexes,
while MMC does not perform so satisfactorily. Except for the
predicted complexes with 14 subunits on CORUM and 17 sub-
units on HPRD, the performance of MMC is acceptable.

3.3 Comparisons with existing methods
The proposed framework combines the first step of protein co-
complex prediction via supervised learning and the second step
of complexes identification via graph clustering into one inte-
grated framework, whereas existing methods treat the predic-
tion of protein co-complex relationships [44,45] and the identi-

fication of protein complexes via graph clustering [6–8] as two
independent research topics. Besides this, the fundamental dif-
ference between the proposed framework and existing methods
is that this framework identifies complexes from protein co-
complex networks instead of protein-protein interaction (PPI)
networks, which are used only to guide negative data sam-
pling in this framework. To demonstrate the effectiveness of
this proposed framework, we compare the two steps of the pro-
posed framework with existing methods from methodological
and performance points of view.

Prediction of protein co-complex networks via supervised
learning
The first step of this framework is to predict protein co-complex
networks via l2-regularized logistic regression, in which each
protein is represented with homolog instance and target in-
stance to tackle the sparsity of GO terms. Existing methods ex-
ploit heterogeneous data as attributes of decision tree [44] (e.g.,
correlated mRNA expression, sequence homology, gene fusion,
molecular function, etc.) or embed multiple features as indi-
vidual kernels of kernel fusion [45] (e.g., GO terms, gene co-
expression, gene co-regulation, interlogs, etc.) to predict pro-
tein co-complex relationships. These two existing methods both
focus on Saccharomyces cerevisiae. To make methodological
comparisons feasible, we rebuild the proposed framework on
the available protein complexes of Saccharomyces cerevisiae,
and we evaluate the proposed framework on the same indepen-
dent test data as the two methods [44, 45] have used.

The training data and the negative independent test data of
Saccharomyces cerevisiae are constructed as described in the
section Data and materials. The ROC curves are illustrated in
Fig. 5 and the other performance metrics are provided in Ta-



10 Front. Comput. Sci., 2022, 16(1): 161901

ble 4. The first step of predicting protein co-complex networks
via l2-regularized logistic regression achieves satisfactory per-
formance of cross validation with a low risk of bias on the
two classes. The ROC curves of the three experimental settings
nearly coincide with each other and the AUC scores are all
above 0.92. These results again indicate that homolog knowl-
edge transfer is effective to address the sparsity of GO terms.
As illustrated in Fig. 5, the true positive rate is over 80% at
10% false discovery rate, which is equivalent to 83.9% achieved
by the diffusion kernel method [45]. The method [45] does not
report the performance on the positive class and the negative
class individually, so that we have no knowledge about the risk
of model bias.

The positive independent test data of Saccharomyces cere-
visiae are taken from the studies [16,28]. The proposed frame-
work achieves 78.18% recognition rate on the complexes from
Gavin et al. [16], while diffusion kernel method [45] only
achieves 48.5% recognition rate on the same complexes. These
results demonstrate the superiority of the first step of this frame-
work over existing methods. From methodological perspective,
this framework uses much less feature information than the
methods [44,45], but achieves much better performance of in-

dependent test. One reason is that the newly updated informa-
tion of gene ontology potentially contributes to the performance
increase; and the other reason is that the sampling of negative
data guided by physical PPI networks is potentially more reli-
able than random sampling.

Identification of protein complexes via graph clustering
In recent years, several graph clustering methods, e.g., Markov
clustering (MCL) [11], ClusterONE [12], COREPEEL [13] and
DAPG [14], have been developed to identify protein complexes
from protein-protein interaction networks. However, the clus-
ters inferred by these methods are more structural or functional
modules than protein complexes. Furthermore, the available
PPI networks are far from complete and thus many actual com-
plexes cannot be captured from PPI networks. This framework
identifies complexes from the protein co-complex networks,
which are constructed from experimental TAP-MS data and
predicted co-complexed protein pairs. To demonstrate the su-
periority of CFinder [39,40] and MMC [41,42] over existing
graph clustering methods including Markov Clustering (MCL)
[11], ClusterONE [12], COREPEEL [13] and DAPG [14], we
conduct performance comparisons on the protein co-complex

Fig. 5 Performance of cross validation and independent test on identifying Saccharomyces cerevisiae protein co-complex relationships. (a) Sac-
charomyces cerevisiae (cross validation); (b) saccharomyces cerevisiae (independent test)

Table 4 Results of 5-fold cross validation and independent set on identifying Saccharomyces cerevisiae protein co-complex relationships

Combined-instance Homolog-instance Target-instance
Cross validation

PR SE MCC PR SE MCC PR SE MCC

Co-complexed (9070 pairs) 0.8261 0.8799 0.7275 0.8293 0.8825 0.7291 0.8261 0.8799 0.7275
Not co-complexed (8500 pairs) 0.8623 0.8024 0.7187 0.8604 0.7994 0.7180 0.8623 0.8024 0.7187
Accuracy 84.24% 84.31% 84.24%
MCC 0.7226 0.7236 0.7226
ROC-AUC 0.9207 0.9206 0.9207
F1 Score 0.8522 0.8551 0.8522

Pu et al. (positive) Gavin et al. (positive) Negative independent data
Independent test

75.99% 78.18% 85.43%

Note: the performance metric of the independent test denotes recognition rate.
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networks that are predicted from 1757 CORUM and 1375
HPRD independent test complexes, respectively. MCODE [10]
is not compared because it heavily depends on Yeast gene dic-
tionary and only works for Saccharomyces cerevisiae.

As illustrated in Fig. 6((a)–(d)), CFinder and MMC achieve
far better recall rates than the other methods on CORUM and
HPRD, ranking first and second, respectively. These results
show that CFinder and MMC hit more reference complexes
than the other methods. However, CFinder and MMC are not
so good as ClusterONE and COREPEEL from precision point
of view, which indicates that ClusterONE and COREPEEL
have more predicted complexes matched by the reference com-
plexes. Nevertheless, the two methods have their advantages of
precision sharply weakened by their worse recall values than
CFinder and MMC. Furthermore, the better precision perfor-
mance of ClusterONE and COREPEEL largely result from
the small number of predicted complexes. As illustrated in
Fig. 6(b) and Fig. 6(d), the number of complexes predicted by
CFinder and MMC is much larger than that of ClusterONE,
COREPEEL, and the other methods. Among these methods,
the number of complexes predicted by CFinder and MMC is
the closest to the actual number of reference complexes. Clus-
terONE and COREPEEL predict too small number of com-
plexes and achieve high precision performance, but many actual
complexes cannot not be captured. A graph clustering algorithm
could be deemed good only if it could achieve a good trade-
off between recall and precision. Contrary to ClusterONE and
COREPEEL, MCL predicts the largest number of complexes on
HPRD that is close to the actual number of reference complexes
(see Fig. 6(d)), so that the actual complexes are easily captured
to achieve good recall performance But MCL achieves the low-
est precision performance on HPRD and 60.99% of the clus-
ters predicted by MCL are unfortunately singleton clusters that
contain only one protein (see Fig. 6(c)). Comparatively, MMC

and CFinder seldom yield singleton clusters on CORUM and
HPRD. F-score shows that MMC and CFinder perform the best
among all the methods and yield a reasonable number of pre-
dicted complexes with a good trade-off between recall and pre-
cision (see Figs. 6(a) and 6(c)).

As two top-ranking methods, CFinder and MMC perform
much better than the other methods, wherein CFinder performs
the best. Furthermore, the number of complexes predicted by
CFinder is the close to the actual number of reference com-
plexes among these methods. However, the NP-complete com-
plexity of CFinder restricts its practical applications. We can-
not determine how much time it will take to yield outputs or
whether or not it could yield output. As the second-best so-
lution, MMC outperforms the other graph clustering methods,
and could be used as an alternative solution in the case that
CFinder fails to yield desirable outputs.

4 Discussion
Identifying protein complexes is significant to understand how
individual proteins spatiotemporally form the structures re-
quired for biological activities. Investigation of subunits mal-
function helps to understand the overlapping clinical manifes-
tations of disease and to find potential drug targets. From com-
putational point of view, existing methods focus on developing
novel graph clustering methods to identify protein complexes
from protein-protein interaction (PPI) networks. For instance,
PCDq [46] comprehensively curates a large number of human
protein complexes, but most complexes are predicted from
human PPI networks. Short- or long-range biological signals
are transmitted (possibly through complexes) to the receptors
of protein or complexes via protein-protein interactions. Most
PPIs only play the role of relaying signals in particular sig-
naling pathways and do not form protein complexes, so that
the clusters inferred via graph clustering on PPI networks are

Fig. 6 Performance comparisons between CFinder, MMC, and the other graph clustering methods with ξ = 0.5. (a) Performance comparison on
CORUM independent test complexes; (b) Number of predicted complexes on 1757 CORM reference complexes; (c) Performance comparison on
HPRD independent test complexes; (d) Number of predicted complexes on 1 375 HPRD reference complexes
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potentially structural or functional modules of PPI networks
and the modules unnecessarily correspond to spatiotemporally
formed protein complexes. These methods could to some ex-
tent capture a small number of complexes because the avail-
able physical PPI networks have already contained some com-
plexes experimentally derived by TAP-MS technique. However,
the physical PPI networks to date are by far not complete, let
alone the embedded co-complex interactions, which restricts
the applications of the purely PPI-based methods. For these
reasons, we need to develop biologically interpretable compu-
tational methods to identify biological-relevant complexes.

In this study, we attempt to identify complexes from pro-
tein co-complex networks instead of protein-protein interac-
tion networks. The available co-complexed protein pairs ex-
perimentally derived by TAP-MS technique are far from com-
plete and need to be computationally augmented for complexes
identification. For this purpose, we propose a framework that
combines supervised learning and graph clustering to predict
protein complexes. In this framework, the first step is to re-
constructs genome-scale protein co-complex networks via l2-
regularized logistic regression; and the second step is to iden-
tify complexes from the co-complex networks via k-clique find-
ing (CFinder) or maximum modularity clustering (MMC). Ac-
cording to the law of high link density within complexes and
low link density between complexes, the genome-scale protein
co-complex networks could be naturally split into a number of
complexes. To critically estimate the model performance, we
choose the experimentally derived co-complexed protein pairs
from Reactome [20,21] as training data, and choose the exper-
imental complexes from CORUM [4] and HPRD [5] as inde-
pendent test data. The physical PPI networks herein are used
to guide the sampling of negative only. It is worth noting that
the first-step supervised learning of this framework aims at pre-
dicting protein-protein interactions that potentially form pro-
tein complexes (i.e., co-complex interaction) instead of general-
purpose PPIs, e.g., PPI-Detect [47], PIPR [48], etc. The per-
formance of cross validation and independent test on CORUM
[4] and HPRD [5] demonstrates that the first-step supervised
learning of this framework well recognizes the experimental
co-complexed protein pairs with a low risk of model bias. Com-
parison on the previous Saccharomyces cerevisiae independent
test data shows that the l2-regularized logistic regression of
this framework outperforms the diffusion kernel method [45]
in terms of predicting protein co-complex relationships. Nega-
tive data sampling is critical to model performance and we take
three measures to sample those protein pairs that are likely not
to be co-complexed. As this study focuses on validating the as-
sumption that protein complexes can be identified from protein
co-complex networks, the sampling strategies could be chosen
as an independent research topic and the performance averaging
could be particularly conducted in practical application. Fur-
thermore, the second-step CFinder or MMC graph clustering
of this framework also outperforms the up-to-date graph clus-
tering methods such as MCL, ClusterONE, COREPEEL and
DAPG with a good trade-off between recall and precision (i.e.,
a high F-score). In addition, the number of complexes predicted
by CFinder and MMC is much closer to the actual number of
reference complexes. As regards the two top-ranking methods,

CFinder performs much better than MMC and more approx-
imate to the true complexes in terms of actual compositional
subunits and complexes size. However, CFinder is seriously re-
stricted in practical uses due to its NP-complete complexity.

In the case that CFinder could not yield desirable outputs in
a reasonable time, MMC is a good alternative because of its
efficiency. Computational results show that actual complexes
can be well recovered by CFinder and MMC from protein co-
complex networks with a large fraction of missing and false
links, that’s, the second-step graph clustering is strongly toler-
ant to errors in the predicted protein co-complex networks to
yield complexes of high quality. If all the co-complexed protein
pairs from Reactome, CORUM and HPRD are merged into the
training data, the derived protein co-complex networks would
be greatly enhanced with a lower risk of missing and false
links, which will further improve the quality and increase the
coverage of complexes. Although CFinder and MMC achieve
good trade-off between recall and precision with reasonable
cluster size and number of clusters, graph clustering for com-
plexes identification still is a challenging problem, e.g., detect-
ing small complexes in sparse regions, inferring hierarchical
and overlapping associations between complexes, etc. As an
independent research topic, novel graph clustering algorithms
have to consider many concerns to make the predicted clusters
infinitely approximate to the actual complexes. For the pure
PPI-based methods, prior knowledge of TAP-MS complexes
and other biological implications should be embedded into the
graph clustering methods, so that PPI networks contain more
information of co-complex interactions. At present, the perfor-
mance of pure PPI-based methods is not satisfactory and needs
to be further improved. For instance, the supervised graph local
clustering method [19] achieve much lower performance (0.489
recall, 0.312 precision and 0.381 F-score) on PPI networks than
CFinder (0.6927 recall, 0.5360 precision and 0.6044 F-score,
see Table 3) and MMC (0.5841 recall, 0.3455 precision and
0.4341 F-score, see Table 3) on protein-complex networks.

5 Conclusion
In this study, we propose an integrative framework that com-
bines supervised learning and dense subgraphs discovery to
predict protein complexes. The first-step supervised learn-
ing adopts l2-regularized logistic regression as base learner
to predict protein co-complex relationships. The second-step
graph clustering adopts k-clique finding (CFinder) or max-
imum modularity clustering (MMC) to identify complexes
from the protein co-complex networks inferred by the first-
step supervised learning. Performance comparisons show both
steps of this framework outperform existing methods. Identi-
fying complexes from protein co-complex networks instead of
protein-protein interaction networks provides a new avenue for
computational modeling in complexes identification.

Supporting information The supporting information is available online at
journal.hep.com.cn and link.springer.com.
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