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Abstract Currently, security-critical server programs are well
protected by various defense techniques, such as Address Space
Layout Randomization(ASLR), eXecute Only Memory(XOM),
and Data Execution Prevention(DEP), against modern code-
reuse attacks like Return-oriented Programming(ROP) attacks.
Moreover, in these victim programs, most syscall instructions
lack the following ret instructions, which prevents attacks to
stitch multiple system calls to implement advanced behaviors
like launching a remote shell. Lacking this kind of gadget
greatly constrains the capability of code-reuse attacks.

This paper proposes a novel code-reuse attack method cal-
led Signal Enhanced Blind Return Oriented Programming
(SeBROP) to address these challenges. Our SeBROP can
initiate a successful exploit to server-side programs using only
a stack overflow vulnerability. By leveraging a side-channel
that exists in the victim program, we show how to find a variety
of gadgets blindly without any pre-knowledges or reading/dis-
assembling the code segment. Then, we propose a technique
that exploits the current vulnerable signal checking mechanism
to realize the execution flow control even when ret instructions
are absent. Our technique can stitch a number of system calls
without returns, which is more superior to conventional ROP
attacks. Finally, the SeBROP attack precisely identifies many
useful gadgets to constitute a Turing-complete set. SeBROP
attack can defeat almost all state-of-the-art defense techniques.
The SeBROP attack is compatible with both modern 64-bit and
32-bit systems.

To validate its effectiveness, We craft three exploits of the
SeBROP attack for three real-world applications, i.e., 32-bit
Apache 1.3.49, 32-bit ProFTPD 1.3.0, and 64-bit Nginx 1.4.0.
Experimental results demonstrate that the SeBROP attack can
successfully spawn a remote shell on Nginx, ProFTPD, and
Apache with less than 8500/4300/2100 requests, respectively.
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1 Introduction
The code-reuse attack reuses the code snippets in the program
to implement unintended behaviors. The Return-oriented
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Programming (ROP) attack [1] is a kind of code-reuse attack.
In the ROP attack, the code snippet consists of basic instruc-
tions followed by a return instruction, which are called
gadgets. The return instructions play a crucial role in the ROP
attack because a normal ROP attack requires them to connect
useful instructions distributed in the victim program. The ROP
attack poses great security threats to programs. Many defense
techniques, such as Address Space Layout Randomization
(ASLR) [2] and eXecute Only Memory(XOM) [3], are
proposed to defend against ROP attacks. These techniques
prevent the ROP attack by providing strong protection for the
memory location of the code segment. By deploying these
protections, it is difficult for adversaries to obtain the exact
memory locations of gadgets. Another prerequisite of this
paper is the program source or binary code is unknown [4]. It
further increases the difficulty because existing ROP attacks
require the code for either binary analysis or source code
scrutiny.

Moreover, according to our survey in Section 2, most victim
programs lack an important kind of gadget, i.e., syscall gadget
syscall; ret. This kind of gadget has a syscall instruction
followed by a ret instruction. It enables the attacker to execute
a system call and return back to the remaining ROP chain on
the stack. The syscall gadget is critical in ROP attacks because
attacks require it to implement advanced behaviors, such as
executing malicious code to launch a remote shell.

Previous attacks usually search libraries for syscall gadgets.
However, current software systems are protected by strong
memory-protection methods, such as address randomization
and encryption mechanisms (e.g., ASLR [2] and ASLR-Guard
[5]). Therefore, it is difficult to search for these gadgets
because the memory-mapping addresses of these libraries are
unknown. To overcome this issue, Sigreturn Oriented Program-
ming (SROP) [6] searches the vsyscall page for the syscall
gadget. Blind Return Oriented Programming (BROP) attack
[4] directly uses the functions (e.g., dup, exec) provided by the
Procedure Linkage Table (PLT). However, these approaches
also have limitations. The vsyscall utilized in the SROP
method is now emulated in the newer kernel version and thus
the vsyscall code is protected by the high-privileged OS
kernel. In addition, the required attack functions in the PLT
are missing in the 32-bit system.
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To address aforementioned challenges, this paper proposes a
new attack method named Signal Enhanced Blind Return
Oriented Programming (SeBROP). Exploiting a stack buffer
overflow vulnerability in server-side programs, the SeBROP
attack can gather a set of gadgets that satisfy Turing-comple-
teness and initiates a dangerous code-reuse attack without
reading or disassembling the code segment. SeBROP attack
finds all kinds of gadgets by blind execution. Our experimen-
tal result manifests that each kind of gadget has its unique
runtime characteristics, which can be leveraged to differentiate
them from each other. As opposed to prior work, SeBROP
attack need not read or disassemble the program code seg-
ment, so it can bypass most existing protections, e.g., stack
canary [7], Data Execution Prevention(DEP), ASLR [2], fine-
grained ASLR [8], and XOM [3], Readactor [9] and
Readactor++ [10]. In the SeBROP attack, we even do not have
to possess the victim program source or binary code
beforehand. All the code details are inferred by execution.
SeBROP attack is also compatible with both 32-bit and 64-bit
systems.

In our SeBROP attack, we exploit a side-channel in sever-
side programs. This side-channel is first discovered by the
BROP work [4]. Nevertheless, we show this side-channel is
more powerful than they thought. In SeBROP, we carefully
divert the control flow by overwriting the return address with
candidate gadgets. Furthermore, we propose a variety of
techniques to identify all details of the gadget. We propose an
efficient algorithm to precisely differentiate every instruction
operator. Besides, we also infer instruction operands by
carefully analyzing the memory vestige. In summary, our
SeBROP attack can blindly collect memory load/store gad-
gets, arithmetic operation gadgets, logical operation gadgets,
and control-flow gadgets. Gathering a Turing-compete set of
gadgets is necessary because the current XOM technique [3]
can thwart the BROP attack by prohibiting it from dumping
the binary from a remote server.

In addition, the syscall instruction widely exists in libraries
and applications. However, most syscall instructions miss a
subsequent ref instruction. As a result, it is infeasible to
construct a gadget chain without necessary return instructions.
SeBROP provides an alternative solution to realize execution
flow control based on the vulnerable signal mechanism. In the
commodity operating system kernel, when the OS kernel
finishes executing a system call routine, it would check
pending signals. If there exists, it will execute the signal
handler and then return to the user-space. Thus, a pending
signal during system call execution can divert the normal
execution flow. As a consequence, signal checking is vuln-
erable. We design a crafted signal handler to carefully divert
the control flow. This signal handler functions as a trampoline
to skip the sigreturn function and signal frame and redirect the
control flow to gadgets that are pre-set on the stack.

Note that the timing of the signal arrival is critical. If the
signal arrives before or after system call execution, the control
flow hijacking can not succeed. We provide two solutions to
solve this challenge. First, we take advantage of a shared flag
to synchronize the signal sending and receiving process. The
second method does not require another process to send the

signal. It registers a signal handler for SIGSEGV signal, which
is sent by the OS kernel when illegal memory access occurs.
When the program executes the instructions after the syscall
instruction, it will encounter illegal memory access in most
cases. Therefore, we can hijack the control flow as the first
solution.

More generally, we can repeat this process to stitch a
sequence of system calls without any return instructions. As
we survey in current software libraries and applications, it is
extremely difficult to find a useful syscall gadget. Therefore,
our approach advances the existing code-reuse attack because
it eliminates a prerequisite in ROP attacks.

To evaluate the effectiveness and efficiency of the proposed
SeBROP attack. we conduct three practical attacks using three
real-world applications, i.e., Apache 1.3.49, ProFTPD 1.3.0,
and Nginx 1.4.0. Exploiting a stack overflow vulnerability, we
identify a Turing-complete set of gadgets remotely without
any pre-knowledges of victim programs. We successfully
implement a chain of syscall gadgets based on our signal
hijacking techniques. Putting it all together, we craft three
exploits to launch the remote shell. All of these attacks can be
completed within 45 minutes.

This paper makes the following contributions:

e We analyze existing ROP attack variants from both
adversary and victim aspects. We conclude that mis-
sing syscall gadgets prevents current ROP attack
evolution.

e We propose a novel code-reuse attack method called
SeBROP, which blindly finds a Turing-complete set of
gadgets without any pre-knowledge of the victim pro-
gram or reading/disassembling the code segment.
SeBROP greatly enhances the ROP attack by removing
the constraint of return instructions.

e We conduct three practical exploits of the SeBROP
attack with stack vulnerabilities for three server pro-
grams. Experimental results suggest that the SeBROP
attack can defeat state-of-the-arts defense techniques.

The rest of the paper is organized as follows. Section 2
provides the necessary background and related works. Section
3 specifies the assumption of the attack environment and gives
an attack outline. Section 4 describes SeBROP attack in detail.
Section 5 presents the evaluation results. Section 6 mainly
demonstrates the generality and limitations of our attack.
Section 7 discusses possible defenses to mitigate our SeBROP
attack. Section 8 summarizes our paper.

2 Background and related work

2.1 ROP and its variants

ROP attack reuses the code snippets in the victim program to
implement malicious behaviors. In the following section, we
describe two variants of ROP attacks. We also provide a
detailed comparison of these attack methods from different
technical dimensions, as shown in Table 1.

BROP The BROP attack [4] utilizes a blind execution
method to find enough gadgets without reading the code
segment. The BROP attack first blindly identifies a specific
type of gadget (i.e., pop; ret gadgets) and then locates the



Tianning ZHANG et al.

SeBROP: blind ROP attacks without returns 3

Table 1 Comparison of four ROP attacks. Syscall gadget means the gadget in the form of < syscall; ret >or <int 0x80; ret >. x means the attack
can bypass the protection. 4/ means that the protection can defend the attack
Attack Precondition Environment Protections

Dump code Syscall gadget 32-bit 64-bit JIT compiler DEP Fine-grained ASLR XOM Readactor
BROP [4] Yes No No Yes No X X Y, Vv
SROP [6] Yes Yes No Yes No X v v v
JIT-ROP [11] Yes Yes No No Yes X X v v
SeBROP No No Yes Yes No X X X X

PLT table. It exploits the pop; ret gadgets and functions in
the PLT table to implement a write system call to dump the
code segment from the remote server. Finally, the BROP
attack disassembles the code segment to search for more
useful gadgets. The BROP attack can bypass many system
protection mechanisms, such as stack canary, DEP, and fine-
grained ASLR.

Unfortunately, BROP is unable to defeat the XOM protec-
tion because the XOM technique restricts the read permission
for the code segment. In addition, the BROP attack is merely
applicable to the 64-bit system. It is because many necessary
attack functions like stremp and write are absent in the PLT
table on the 32-bit system.

SROP In Sigreturn Oriented Programming (SROP) method
[6], attackers set up a fake signal stack frame and invoke a
sigreturn system call. SROP skips the signal sending and
handling steps in the normal signal mechanism and directly
returns from the signal. During the signal return procedure, the
OS kernel will restore the process’s environment with register
values that are preserved on the signal stack. Since the signal
stack frame is crafted by the attacker, the SROP attack can
easily manipulate all register values.

SROP also has two limitations. First, SROP cannot defeat
ASLR and XOM defenses because it needs to know the gadget
locations in advance. It searches for the required gadgets by
means of traditional methods. Nonetheless, the traditional
methods usually require dumping the code online or offline to
find gadgets. However, the action of dumping code segment is
prohibited by the XOM defense. Second, the SROP method
searches the vsyscall page for syscall gadgets. However, the
vsyscall is emulated in the newer kernel version, which
prevents the adversary from using the gadgets in the user-
space.

Other approaches such as [11,12] require a JIT compiler.
They use additional code injection methods to defeat the two
recently proposed defense mechanisms: fine-grained ASLR
and XOM.

2.2 ROP defense methods
The fine-grained ASLR method can thwart code-reuse attacks
by randomizing executable code at function granularity [8,13],
basic code block granularity [14,15], or instruction granularity
[16,17], so gadgets’ memory locations become unpredictable.
Meanwhile, a defense mechanism called XOM (execute-
only memory) [3] is proposed, which prevents attackers from
reading the code content by restricting its read permission. For
instance, XnR [18] uses a page fault handler to implement the
XOM mechanism. R"X [19] makes use of an extended page
table to achieve XOM. Moreover, XOM can be easily realized
by leveraging a new Intel hardware feature, i.e., memory

protection key (MPK). MPK utilizes four reserved page-table
bits in the page entry to achieve efficient intra-process
memory isolation. XOM-switch [20] uses MPK to enable
execute-only memory for unmodified binaries, which only
introduces little runtime overhead. In the kernel, kR"X [21] is
proposed as a kernel hardening scheme based on execute-only
memory and code diversification.

Methods that hide or encrypt critical pointers also have been
proposed. Crane et al. [9,10] introduce the concept of leakage-
resilient diversification. They propose a protection mechanism
called code-pointer hiding (CPH), which is used to facilitate
fine-grained ASLR and XOM defense. It hides code pointers
by replacing code pointers in readable memory with pointers
to trampoline functions. Trampoline functions are protected by
XOM and thus cannot be leaked. Even fine-grained ASLR and
XOM can defeat direct JIT-ROP attacks, while the CPH
technique can thwart the enhanced JIT-ROP attacks.

2.3 Missing returns behind syscalls

The syscall gadget is syscall; ret gadget (64-bit) or
int 0x80; ret gadget (32-bit). Generally, attackers require
return instructions in syscall gadgets to stitch a sequence of
system calls. However, it is extremely hard to find these
gadgets in either victim programs or libraries. According to
our investigation in Section 5, we find that all of the three
victim programs evaluated in our experiments, Nginx (64-bit),
ProFTPD (32-bit), and Apache (32-bit), have no syscall
gadgets. Here we further conduct some surveys on common
programs and libraries to illustrate this issue. Detailed results
are given in Fig. 1.

We survey several libraries, including glibc, Id, libpthread.
In common cases, there is no ret instruction following the
syscall instruction. In glibc-2.19.s0, there are a total of 435
syscall instructions. Only nine of them are directly followed
by a ret instruction. Five of them have the ref instruction

I syscall without ret
I <syscall; ret>

400

300

200

100

libc 1d

libpthread vim  gnome

Fig. 1 The number of syscall gadgets in x86_64 libraries and binaries
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behind them, but there are some other instructions between
syscall and return. The remaining 421 syscalls have no ret
instructions behind them. In 1d-2.19.s0, there exist 38 syscall
instructions. Only one is followed by a ret. In libpthread-
2.19.s0, 172 syscall instructions are found in code. Among
them, two syscall instructions are directly followed by a ret.
We also investigate some other commonly used applications,
such as vim and gnome. In vim-3.0, there are 48 syscall
instructions in total. Among them, only one instruction is
directly followed by a ret. In gnome-3.4.1, 54 syscall instruc-
tions are found in the code segment. Only two instructions are
directly followed by a rer. In the 32-bit system, we survey
some web programs, including Ghttpd, Orzhttpd, and Wuftpd.
All of them have no int 0x80; ret gadget.

3 Overview

3.1 Attack assumption

In this section, we present some necessary assumptions of
defense techniques and victim programs in SeBROP attack.

3.1.1 Assumption of defense techniques
During our SeBROP attack, we assume the following defense
mechanisms are enabled in the system.

e Stack canary The stack canary [7] is placed on the
stack to prevent attackers from overwriting the return
address.

e DEP Data execution policy stops malicious code injec-
tion attacks by setting writable pages non-executable.

o ASLR Address space layout randomization technique
[2] randomizes the memory-mapping address of code
segments, data segments, stack segments, heap seg-
ments, and segments of libraries.

o Fine-grained ASLR Fine-grained address space layout
randomization [8] is a variant of ASLR. It randomizes
the order of basic code blocks in code segments and
libraries. We assume fine-grained ASLR is deployed in
all code segments, involving text and libraries.

e XOM or heisenbyte Both execution-only memory [3]
and destructive code read [22] aim to prohibit attackers
from reading the content of the code segment. We
assume all code segments are non-readable.

e Code pointers hidden We assume that all code pointers
to library functions are hidden by CPH method [10]. It
prevents attackers from leaking function addresses.

3.1.2  Assumptions of victim program
In our SeBROP attack, the vulnerable program should meet
the following requirements.

e The victim program must be a server-side program. The
server should restart automatically after a crash without
invoking execve. The program will not be re-rando-
mized after a crash and the stack canary remains unch-
anged.

e The victim program should contain a stack buffer
overflow vulnerability. If the stack canary is in use, the
buffer overflow must not be a null-terminated string
overflow.

e The attacker can crash the server as many times as they
wish while conducting the attack.

3.2 Attack outline

Our goal is to find all kinds of gadgets blindly to construct a
Turing-complete set. Generally, our attack consists of four
steps: (1) Speculating the stack layout to leak the stack canary
and a return address. (2) Fingerprinting all valuable gadgets
blindly. These gadgets include memory load/store gadgets,
arithmetic gadgets, logic gadgets, and branching gadgets.
(3) Stringing a sequence of syscall instructions by leveraging
the signal mechanism. (4) Launching a remote shell with
found gadgets in previous steps.

4 SeBROP method

In this section, we first illustrate how to blindly fingerprint all
kinds of gadgets excluding the syscall gadget. Then, we
implement the syscall gadget based on the signal mechanism.
Finally, we launch a remote shell and complete the attack.

4.1 Stack reading and find basic gadget

This step is analogous to the original BROP attack [4]. The
attacker speculates the stack canary in three steps. First, the
attacker overwrites a single byte of the canary with a value
ranging from 0 to 255. If the value matches the first byte of
the canary, the program will not crash. Then, the attacker
continues to overwrite the remaining bytes until identifying
the entire canary. Afterward, the attacker can overwrite the
stack frame pointer (rbp) or return address byte-by-byte to
obtain the exact value.

The basic gadget is a type of gadget in the form of
pop regs; ret. The regs are four general 64-bit registers,
i.e., rax, rdx, rdi, and rsi. In order to find the basic gadgets
remotely, we scan the application code segment by overwr-
iting the saved return address with a pointer and inspecting
program behavior. Two situations may happen: the program
crashes or it hangs; in turn, the connection either closes or
remains open. Most of the time the program crashes. How-
ever, when it does not, a stop gadget is found. By manipu-
lating the stack layout and inspecting program behavior, the
attacker can further find the pop regs; ret gadgets.

4.2 Control all registers

In an ROP attack, merely controlling four general registers
through the basic gadget is far from enough. We need to take
control of more registers. However, there present two chall-
enges to achieving this goal. First, after finding the pop regs;
ret gadgets by blind execution, we need to further identify
which register the gadget pops to. This procedure is quite
sophisticated and inefficient. Second, other general registers
are caller-saved registers. Consequently, there are no pop
regs;ret gadgets for them in the code segment. Therefore,
we cannot use the pop; ret gadget to manipulate these
register values.

Hence we use the SROP method [6] to address these issues.
We leverage the sigreturn system call instead of the
pop regs; ret gadget to manipulate these general registers.
This system call restores the values preserved on the stack into
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the corresponding registers. If we place a crafted signal frame
on the stack and execute this system call, we can control
arbitrary general registers.

4.3 Blindly find turing complete gadgets

Next, we need to fingerprint more useful gadgets blindly. The
Turing-complete gadget set includes six types of gadgets:
memory load/store gadgets, arithmetic gadgets, logical gad-
gets, branching gadgets, and syscall gadgets. In the following
section, we will describe how to find each kind of gadget on
the x86_64 platform. The methodology of finding gadgets on
the 32-bit x86 platform or other platforms is similar.

4.3.1 Load/store gadget

A memory load/store gadget is a kind of gadget that can be
exploited to manipulate the register value or memory value.
There are six steps to identify a load/store gadget.

Store gadget In the following, we take mov [rax-20],
rdi;ret as an example to illustrate how to find the store
gadget.

Step 1 This kind of gadget may cause a crash if the
addressing register is an invalid address. In this case, if rax
minus offset 20 is not in the legal memory area, the program
will crash. Hence we set all register values as writable
addresses (some lower addresses on the stack) and place a
testing address on the stack to validate whether the program
will crash. If not, we set all register values as zero and test
again. Supposing this time the program crashes, we can assert
that the testing address points to a memory access gadget, and
the gadget is in the form of op regl, [reg2+off]; ret or
op [regl+off], reg2; ret. Note that we have to figure
out an address on the stack for use. We locate the on-stack
address through stack reading, at the very beginning of our
attack. As mentioned above, after we brute-forcing the stack
frame pointer value, we obtain an on-stack address.

Step 2 Then we set all registers as read-only addresses. If
the program crashes, we can ensure that the gadget is in the
form of op [regl+off], reg2; ret. There is a read-only

Table 2 Turing-complete gadget set. The sigreturn gadget consists of
pop rax; ret and syscall instruction and a counterfeit signal frame. The
sigreturn can set all registers’ value, including rsp, eflags. regl and reg2
represents any general registers, off represents the immediate offset in the
gadget.

Gadgets
< sigreturn>

Catagory

Set register
<mov regl, [reg2+off]; ret>

Load/Store ret >

<mov
<add

< adc

[regl+off], reg2;

[regl+off], reg2; ret>

Arithmetic [regl+off], reg2; ret>

<neg rax; ret>

<xor [regl+off], reg2; ret>

<or [regl+off], reg2; ret>

<and [regl+off], reg2; ret>

Logical
<rol [regl+off], reg2; ret>

<not rax; ret >
< sigreturn > (unconditional jump)

Branchin . .
¢ < instry...instr,,sigreturn > (conditional jump)

System Call <syscall; ret>
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area in the process address space called vsyscall. It is mapped
into the fixed address in every process. We can use the
vsyscall to distinguish the memory load gadget from the
memory store gadget. We set all registers as a vsyscall
address. If the program crashes, it is a memory store gadget.
Otherwise, it is a memory load gadget.

Step 3 This step infers the addressing register reg/. We can
validate all candidate registers one by one. However, we
propose a method to improve its efficiency. Since we can
control all fifteen general registers, the addressing register is
among them. We set the first seven general registers as a
writable address and set the remaining eight registers as zero.
If the program does not crash, the addressing register is in the
first set. Otherwise, the addressing register is in the second set.
Then we can reduce the range of the addressing register. The
test repeats until the correct register is found. Now we find
that the gadget is in the form of op [rax+off], reg2; ret.

Step 4 This step infers the immediate offset value off. We
set the addressing register as a lower address on the stack
(unused space). Then we initiate a write system call to dump
the memory area of the lower stack. We dump one page and
the middle address is the addressing register’s value. The
dumped memory page contains a non-zero value, which is the
same as one of the general registers’ values we set beforehand.
According to the location of the non-zero value in the buffer,
we can identify the immediate offset. We utilize this location
to subtract the middle location of the buffer to calculate the
immediate offset. Here we confirm the gadget is in the form of
op [rax-20], reg2; ret.

Step 5 To infer the source register, we set all general
registers except the addressing register to different values.
Then we implement a write system call to dump the memory
that the gadget writes to from remote. The received value is
the same as one of the general register values we previously
set. According to the received value, we can easily identify
which register is the pass value register.

Step 6 To infer the operator, supposing that the written
value is always equal to the value in the pass value register,
we can confirm that it is a mov instruction. The algorithm of
differentiating various operators is given in algorithm 1.
Finally, we recognize that the gadget is mov [rax-20],
rdi; ret.

Load gadget Here we take mov rax, [rdx+40]; ret as
an example to describe how to find the load gadget.

Step 1 and Step 2 are similar to finding the memory store
gadget. The difference is that the memory load gadget will not
cause the program to crash when setting all registers to read-
only addresses. As a result, this gadget is in the form of
op regl, [reg2+off]; ret.

Step 3 is also the same as finding store gadget. Now we can
confirm that the gadget is in the form of op regl, [rdx+
off] ;ret.

Step 4 This step speculates the immediate offset value off.
In contrast with the method used in finding the store gadget,
we leverage the address range of a valid memory region to
identify the immediate offset of a memory load gadget. If the
value of the addressing register plus an immediate offset is in
the memory-mapping area, the program will not crash. Other-
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wise, the program crashes. As the offset may be a positive
value or a negative value, an upper boundary and a lower
boundary are both needed. The upper boundary is used to
identify a positive offset, the lower boundary is for a negative
offset (depicted in Fig. 2). To identify the immediate offset,
we can test the addresses one by one. When the value of the
addressing register does not cause the program crash, we set it
to a larger/smaller one. Eventually, we can find a critical point
that does not cause the program to crash, but the addition or
subtraction of one will produce a crash. The mapped boundary
address is a page-aligned value, so we can use the mapped
boundary address minus the critical point value to get the
immediate offset. Here we find the gadget is in the form of
op regl, [rdx+40]; ret.

Step 5 and Step 6 show important distinction from finding
memory store gadget. Identifying the operator and destination
operand of load gadgets is more complicated than memory
write gadgets by blind execution. The method is based on the
memory store gadget we already found. We take advantage of
the memory store gadgets to dump some registers to inspect
the value change. If the register value is identical to the
memory load gadget source operand, we find the appropriate
register and confirm that the operator is a mov instruction.

4.3.2 Arithmetic and logical gadget

The arithmetic/logical gadget involves instructions that
perform some arithmetic/logical operations, such as add, adc
neg, xor, or, and, rol, neg.

Add/Ade We merely target two types of gadgets which are
intheformofadd [regl+off], reg2; retandadc [regl+
off], reg2; ret.

Step 1 to Step S5 are the same as finding memory store
gadgets.

Step 6 We identify the operator in this step. The insight is
that the dumped value is doubled when the add or adc gadget
execute twice. In contrast, the dumped value won’t change for
a mov gadget. Furthermore, as we can control the eflags
register using SROP method, we can easily differentiate the

High addr
crash * Unmapped area
Mov rax, [rax+0x40] End_addr
ax — N - End_addr-0x20
Mapped area
x — e e——— Start addr+0x10
Mov rax, [rax-0x20] { Start_addr
crash Unmapped area| [ ow addr

Fig.2 Indentifying immediate offset of the load gadget. For instance, the
gadget is mov rax, [rax+40]; ret. If we set the rax register value bigger
than end addr minus 0x40, the gadget will cause the program crash.
Otherwise the program won't crash. The end addr minus 0x40 is the critical
point. If we find this value, it can reveal the immediate offset. The start_addr
and end_addr represents the memory mapping upper and lower boundaries

add operator from the adc operator. If the CF flag is zero, the
result of adc is equal to add. Once the CF flag is one, the
result of adc is greater than add.

Xor/Or/And/Rol Here we only identify gadgets in the form
of op [regl+off], reg2; ret.

Step 1 to Step 5 make no difference with finding memory
store gadgets.

Step 6 The key observations are as follows. xor operator can
be casily identified when executes twice because the written
value will change to zero. The gadget with or instruction has
similar characteristic with mov. But if we change the value in
the pass value register between two executions, we can easily
differentiate a mov from an or operator. When the instruction
executes twice, only the second value is left in memory for the
mov instruction. For the or instruction, if the two values are
distinct, the first value still can be found in memory. The and
and rol instruction do not leave any trace when one of their
operands is zero. Therefore, we set an area full of 0x3f to
identify both and and rol. If the received value is the same as

Algorithm 1 Identify operators in gadgets

1: ROP_chainl = sigframe+ write syscall. Sigframe set registers
value forthe gadget.write syscall dump the memory location
that the gadget writes to from remote.

2: In sigframe, gen regs.value varies from 1 to 15. rip = test_addr.

Addr_reg =writable addr.

: Send the exploit and receive it from the network. The received

value is the valuethat the gadget writes.
:if receive_valuel = 0 then
The gadget may be a And or Rol, goto 31.

else
receive valuel € [1, 15]. The received value reveals the
pass value register,its location in the receive buffer tells the
offset.

8: end if

9: ROP_chain2 = sigframe+test_addr+ write syscall. The
test_addr is executed twice. Send the exploit again.

10: if received value2 = receive valuel then

11: The gadget may be a Mov or Or, goto 19.

w

RN B

12: else

13: if received value2 =2 * receive valuel then

14: The gadget may be a Add or Adc, goto 25.

15: else

16: received value2 = 0, The xor; ret gadget is found.
17: end if

18: end if

19: ROP_chain3 = sigframe+sigframe2+write syscall. In
sigframe?2, src_reg = 0x{0.
Send the exploit.

20: if received_value3 = 0xf0 then

21: The mov; ret gadget is found.

22: else

23: received value3 = 0xf0 + received_valuel. The or; ret gadget
is found.

24: end if

25: Send ROP_chainl. In sigframe, eflags = 1.

26: if received valued = received valuel then

27: The add; ret gadget is found.

28: else

29: The adc; ret gadget is found.

30: end if

31: Send ROP_chainl again. In sigframe, Addr_reg =
shared mem (full of 0x3f).

32:if receive_value5 € (1, 15) then

33: The and; ret gadget is found.

34: else

35: receive value5 = a cycle shift of 0x3f. The rol; ret gadget
is found.

36: end if
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one of the general registers, it is an and instruction. If the
received value is the cycle shift of 0x3f, it is a rol instruction.
What is worth mentioning is that we use the shared memory in
the process to store a series of Ox3f. Thus we can use it all the
time after the initial setting. Specifically, we use the ROP
chain to invoke a read system call to get the input (a series of
0x3f) from remote.

Not/Neg We observe that the operand of this gadget type are
mostly rax or eax. Therefore, we identify the gadgets like this,
neg rax; retornot rax; ret. We find that the execution
of this gadget will change the rax register value. For instance,
the rax value after neg gadget invocation is the negative value
of the original rax. We set the rax register value as a particular
one. Then, we place a memory store gadget after the gadget to
dump the rax value to see whether the value changes
accordingly. If so, we find the right gadget.

4.3.3 Branching gadget

Branching gadget adjusts rsp register to transfer the control
flow during gadget execution. It can be leveraged to imple-
ment the unconditional jump. To achieve a conditional jump,
it needs to cooperate with several other gadgets.

Unconditional jump. we utilize sigrefurn to realize an
unconditional branch gadget. The SROP method can mani-
pulate the rsp register. Thereby, we can jump to any locations
in the ROP chain by modifying the rsp register.

Conditional jump. We leverage the adc gadget combining
with neg, and, sigreturn gadgets to implement a conditional
branch gadget. As depicted in Fig. 3, we place a counter in the
unused lower space on the stack. Then, we subtract one from
it and load the result to the register rax. We execute the
neg rax; ret gadget subsequently. It influences the CF flag
based on rax value. If rax is zero, CF flag is set to zero.
Otherwise, the CF flag is changed to one. Next, we utilize an
adc gadget to propagate the CF flag value into memory. If the
counter becomes zero, the second memory location will be -1.
Otherwise, the second memory location will be 0. We perform
an and operation on the second memory location with A rsp. A
rsp is a precalculated value. The operation result could be
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either the value of A rsp or zero. Finally, we add the value to
the location of rsp in the fake sigreturn frame. The original
value of rsp in the sigreturn frame is pointed to the gadget that
subtract one from counter. After executing the sigreturn
gadget, the control flow transfers either to the next gadget or
back to the gadget that calculates the counter.

4.4 Consecutive sigreturn and write system call

As mentioned above, we invoke a write system call after a
sigreturn system call. These two system calls can be executed
consecutively without a syscall; ret gadget. This happens
due to the unique characteristic of the sigreturn system call.
Nonetheless, this cannot occur in the case of arbitrary two
system calls. So we still need to introduce a signal mechanism
to facilitate our attack.

Most specifically, the sigreturn system call can take control
of the rip register’s value after it returns. It utilizes the
polluted on-stack value to restore the rip register’s value.
Normal system calls directly execute the instructions after
system call when returning from the kernel, while the
sigreturn system call returns to the location where attacker
sets to the rip register through the fake signal frame on the
stack. So unlike normal system calls, the program won’t crash
after the sigreturn system call. Here the attacker again seizes
the control and has an opportunity to execute an additional
system call.

4.5 Avoid system hanging

Our attack requires several working processes being available
and not ending up in a situation where all processes are
executing infinite loops. To avoid these circumstances, we
exploit a working process in the victim program and execute a
kill system call. The worker soon sends a SIGKILL signal to
all workers in the process group. Previously hanging workers
will restart. We monitor the number of living workers by
testing the socket state and keep it larger than one during the
attack.

4.6 Stitching a sequence of syscalls
The ROP attack relies on return instructions to stitch a

mov( meml, counter) (» add( meml,-1)

F»  mov(raxl,meml) (—» negrax,

)

add( mem3, rax, )

adc( mem2, -1)
and( mem2, delta_rsp )

Patch the rsp value [ mov( rax,, mem2 )  — 7 mem2.val=0
—————————————————————————— Stack
There are two situations
‘ CF=0 ‘—»‘ mem2 = -1 H rax, = delta_rsp ‘
sp

I sigframe

Fig. 3

Implementing conditional jump. We describe steps to realize the conditional jump with the gadgets we found. When we perform neg rax

operation, two situations will happen according to the rax value. We show these two situations in dotted box. Ultimately, we use a sigreturn

system call to divert the control flow
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sequence of system calls. Nonetheless, syscall instructions are
usually not followed by return instructions. Without the return
instruction, attackers cannot control the execution flow after
the syscall instruction. In this paper, we provide an alternative
solution to realize this functionality. We observe that there is a
potential point to divert the control flow before a system call
exit. Further, we show how to control it precisely and imple-
ment a sequence of consecutive system calls.

4.6.1 Control flow hijacking

In Unix-like operating systems, when the processor handles a
syscall instruction from a user program, the instruction causes
an exception, which transfers control to an exception handler
in the kernel. Notice that if a signal arrives while the processor
is executing the system call routine, then just before the
system call exiting, the kernel will check these pending
signals. If pending signals are present, the kernel calls the
signal handler. When it finishes, the kernel will return to the
use-space as usual. However, this routine is vulnerable to
control hijacking if we redirect the flow of the signal handler
and never return control.

To exploit the potential control flow hijacking point, we first
register a crafted signal handler for this process. Then, we
exploit another process to send a signal to the original process
when it executes a system call. The victim process checks the
pending signals after the system call execution. Consequently,
it diverts the control flow and executes the remaining gadgets
on the stack.

Further, we can stitch a sequence of system calls. As shown
in Fig. 4, attackers utilize the ROP chain to perform a
sigaction system call to register a forged signal handler for
process proci. Then, attacker use the ROP chain in process
procy to perform a kill system call to send a signal to proc;.
The signal handler redirects the control flow of proc; to the
remaining ROP chain on the stack. The gadget chain is placed
by attackers beforehand. In the ROP chain, the program
executes the second system call. In this period, the process
procs sends the second signal to proc; through the ROP
chain. proc| receives the signal and executes the third system
call.

There are two critical points for this control flow hijacking
mechanism: (1) a crafted signal handler that redirects the
control flow to the remaining ROP chain; (2) the timing that
the signal arrives.

Child process 1

Q_.

1*syscall

Signal handler()
Sigaction() . (

4.6.2 Malicious signal handler design

The signal handler is leveraged to trigger the execution of the
remaining gadgets. In order to circumvent the DEP defense
technique, the content of the signal handler can not be injec-
ted. It must be composed of ROP gadgets. So our signal
handler takes advantage of a special type of gadget, i.c.,
add rsp, big constant; ret gadget. This kind of gadget
widely exists in the program and thus can be easily found.
This gadget skips the sigreturn system call and never return
from the signal. Normally, after executing a signal handler, the
OS kernel will invoke the sigreturn system call and then
execute instructions behind the syscall. This will cause a
crash. In our signal handler design, we adjust the rsp register
and divert the control flow. As a result, it will not execute the
sigreturn system call and will execute the remaining ROP
gadgets on the stack instead.

Moreover, the add rsp instruction in the signal handler
should skip the signal frame. When the process receives a
signal, the kernel will insert a signal frame on the stack. The
signal frame is on top of the stack. The value of the
big constant in the gadget must bigger than the size of the
signal frame. The average size of the signal frame is 0x5a0 in
x64. A value that is bigger than the size can satisfy our
requirements. Note that different program provides different
add rsp gadget, the big constant value can not be determined
beforehand, so the precise value of the rsp register is
undetermined. To address this issue, we place a bunch of ret
instructions before the ROP chain on the stack. These ret
instructions function as trampoline. When the ret instruction
of the signal handler is executed, it will jump to the trampoline
and then slide to the remaining ROP chain.

Next, we need to determine the big constant value. To this
end, we put a testing address on the stack and then fill the
stack with 0x5a0 zeros. Finally, we put numerous ret instruc-
tions ended with a stop gadget on the stack. If the program
does not crash, we adjust the number of zeros to eventually
confirm the big constant value in the gadget.

Note that the signal handler does not limit the number of
subsequent gadgets. We skip the sigreturn system call. When
the control flow transfers to the remaining ROP chain, we can
execute an arbitrary number of gadgets. Our signal handler is
not sophisticated and can be used repeatedly. It only adjusts
the rsp register value. The content of the signal handler does
not consist of any system calls or special library functions.

2" Syscall

process exploited

Child process 2

O—

process exploited

Child process 3

process exploited

Signal handler() 31 Syscall

il
|

Send 2™
- signal

Fig. 4 Stitching a sequence of system calls
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Fig. 5 Stack layout change. Here we demonstrate how our malicious signal handler works. We describe the stack layout change of the signal

receiving process in eight stages

The specific functionality is implemented in the remaining
ROP chain. The advantage is two-fold. First, the crafted signal
handler in the ROP attack is constrained to have only one
gadget. There is no extra space (gadgets) for attackers to
realize more functionalities. Second, if the signal handler
implements specific functionality, it will limit the generality of
the signal handler. We must register different signal handlers
for different system calls.

Figure 5 illustrates the stack layout change during signal
execution. At stage (D, the victim program receives a crafted
malicious package from the remote attacker. The attacker
prepares the victim stack as the left part in Fig. 5. In stage @),
the victim program executes the sigaction system call, which
installs our malicious signal handler. In stage (), the victim
receives the first signal. During the execution of the syscall
instruction, the first signal arrives. The signal frame is inserted
on the top of the stack by the kernel.

The stack layout changes are shown as the middle part in
Fig. 5. Stage @ shows the stack layout after the execution of
the signal handler. When executing the add rsp, 0x8e0
instruction in the signal handler, the rsp register is updated to
point to the starting gadget of the ROP chain. When executing
the next ret instruction in the signal handler, the program pops
the address of the starting gadget of the second ROP chain
into the rip register.

In phase B, victim program executes the second system
call. The second system call for execution could be any system
call that is correlated with the attack. In phase ©), the victim
program receives the second signal. During the execution of
the syscall instruction, the second signal arrives. The signal
frame is put at the top of the user stack by the kernel. The
stack layout changes are shown as the right part in Fig. 5.
Stage (@ shows the stack layout after the second execution of
the signal handler. After executing the specific signal handler,
the rsp register is updated again. The program continues to
execute the third system call in phase ).

4.6.3 Timing of signal arrival

A signal is sent during system call execution. The signal must
arrive precisely. If it arrives too early, the system call has not
been executed. If it arrives too late, the program has already
crashed. The signal is sent by a sibling process that is

exploited in our attack.

In our targeted program, there is usually some shared
memory between processes. For example, address range from
0x7f0000000000 to 0x7ffa00000000 is shared by processes in
Nginx. We put a shared flag in the shared memory to synchr-
onize the signal sending process and the receiving process.
The signal sending process monitors the shared flag and waits
for the right moment to send the signal. The signal receiving
process modifies the shared flag to inform the sending process
to send the signal when it is ready to receive a signal.

These are all implemented through the ROP chain. The
signal sending process first utilizes the gadgets we previously
found to implement a conditional jump. The conditional jump
depends on whether the shared flag value changes. If the value
changes, the process jumps to execute a kill system call to
send the signal. Otherwise, it continues to check the shared
flag value. The signal receiving process changes the shared
flag value to inform the signal sending process before it
executes a system call. It is achieved by using a mov gadget.

Improving efficiency The whole attack mentioned above is
a race condition, so it can not succeed every time. Although
we carefully synchronize two processes, it is still possible that
the signal can not arrive during the execution of a system call.
It is because the period is too short.

We propose an optimization to improve the hit rate. We
register a signal handler for the SIGSEGV signal. When the
system call routine finishes, the program continues executing.
A memory access exception will occur. As a result, it will
trigger the SIGSEGV signal handler execution. The following
gadgets will execute. This approach improves efficiency
compared with the previous one.

4.7 Launch remote shell
In this subsection, we provide two solutions to launch a
remote shell.

Solution I We exploit four child processes to accomplish
the attack. The first three child processes, child process 1
(CP1), child process 2 (CP2), and child process 3 (CP3) are
used to send signals. We have to implement four system calls
(e.g., sigaction(), dup2(0, sock), dup2(1, sock), exec()), so we
need three signals to connect these syscall instructions.

The first three processes only implement one system call
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(kill) through the ROP chain. It is leveraged to send a signal to
other processes. The signal sending process need not know the
process ID of the signal receiving process. It can use
parameter zero, which means that the signal is sent to all
processes in the same group as the signal sending process.

The fourth child process (CP4) communicates with three
other child processes through shared memory. The fourth
child process (CP4) is used to launch a shell. The four system
calls executed by CP4 are implemented in four ROP chains.
These system calls are connected by a series of ref instruc-
tions. The first chain implements the sigaction system call.
Note that the first system call must be sigaction because we
must register a handler. Otherwise, the default signal handler
will respond to the signal and the control flow hijacking will
fail. The second and third ROP chains implement the dup?2
system call. These two system calls redirect the input and
output stream to the socket. Therefore, the attacker can
interact with the remote server. Finally, in the fourth ROP
chain, an exec system call is invoked to launch a remote shell.

Solution II Our second method is an improvement on the
first method. The first method needs the cooperation of sibling
processes and sends the signal timely. In the second method,
we register a signal handler for the SIGSEGV signal and only
one process is in need. After the system call has been
executed, the control flow executes the instructions behind it.
It usually encounters a memory access instruction, which
triggers a memory access exception. The kernel sends the
SIGSEGYV signal to the process. We replace the signal handler
of SIGSEGYV with ours to execute the remaining ROP chain on
the stack. When the process is exploited by a remote attacker,
it executes four system calls in four ROP chains (connected by
a series of ret gadgets). The process invokes sigaction system
call to register a signal handler for SIGSEGYV signal in the first
ROP chain. The following steps are similar to those in
solution I.

5 Evaluation

5.1 Methodology

Experimental setting We conduct three experiments. Two of
them (Apache and Nginx) are in a VMWare virtual machine.
One (ProFTPD) is in a VirtualBox virtual machine. The host
machine has an Intel Core i7-4600U with 2 cores @ 2.1GHz
2.7GHz and 8GB DRAM. In our 32 bit experiments, the
operating system of the virtual machine for Apache is Fedora
6 and the operating system of the virtual machine for
ProFTPD is Ubuntu 12.04. In our 64 bit experiments, the
operating system of the virtual machine for Nginx is Ubuntu
14.04.3.

Program configurations We use the default configuration
settings in the Apache 1.3.49. The Apache server is listening
on port 80. In the default configuration, the server process
number is five. The number of the child process will increase
linearly with the requests that need to be handled. Equally, we
use the default configuration settings in the ProFTPD 1.3.0.
The FTP server is listening on port 21. We create a user fiptest
with password fiptest. In Nginx 1.4.0, we change the
worker_processes from 2 to 4. Because in the first solution of
our attack, we need at least four child processes to launch a

shell. In the access control part, we need to allow the remote
attacker’s IP to access the server. After setting the configura-
tion file, we need to restart the server to enable this setting.

Memory layout The memory layout is as follows. Since
the ASLR defense is enabled, the starting addresses of all the
libraries and heap and stack are randomized in each execution.
But the text and data segment are always mapped to the same
memory addresses.

Deployed defense We deploy the DEP and ASLR defense
in all of our experiments. The stack canary is enabled in the
Nginx attack. Although our attack can bypass advanced
defenses such as the fine-grained ASLR and XOM defense,
we do not deploy them into the target system due to the fact
that the fine-grained ASLR and XOM defense have not been
widely adopted in the common systems. In addition, there is
no publically available code for these defenses. Nevertheless,
we do not violate any of these defenses in our attack no matter
whether they are deployed or not.

5.1.1 Attack procedure on apache

Apache is an HTTP server and mod jk is the Apache Tomcat
Connector. The vulnerability CVE-2007-0774(See CVE) in
mod_jk 1.2.20 is a missing boundary check bug that would
cause a stack buffer overflow. The stack-based buffer over-
flow in the map_uri_to_worker function allows attackers to
execute arbitrary code via a long URL that triggers the
overflow in a URI worker map routine. As shown in Listing 1,
the url buffer is stored on the stack with the size 4096. The
function copies the uri string to the buffer without any bounds
checking. The wri is a user input string. If its length is
oversized, it will cause an overflow. When we construct a
request with a big size which is more than 4095 bytes, we can
trigger the stack buffer overflow.

Listing 1 Vulnerable code in Apache

const char =map_uri_to_worker(jk_uri_worker_map_t xuw_map

const char =uri
{
unsigned int i;

char =url_rewrite ;

const char =rv = NULL;

char url [JK_MAX _URI_LEN+1];

, jk_logger_t =x1)

/4095

if (luw_map || luri) {
JK_LOG_NULL_PARAMS(1);
JK_TRACE_EXIT(1);
return NULL;

}

for (i = 0; i < strlen(uri); i++)
if (uri[i] == ;")
break
else
url[i] = wuri[i]; //no bounds check,
uri.len > 4095
N0

stack overflow if
url[i] =

The way to exploit the vulnerability remotely is manifested
in Listing 2. The send exp() function creates a socket, packs
the ROP chain in a request, and finally sends the request. The
do_try exp() function invokes send exp() function to send an
exploit and invokes check alive() function to check whether
the remote server is still alive. If not alive, it means the remote



Tianning ZHANG et al.

process crash, the function returns zero. Otherwise, we send a
new request to check whether the process can respond to the
new request. If not, it executes an infinite loop, the function
returns 2.

Because the target buffer filters out numerous characters,
such as 0x0, 0x9, Oxa, Oxb. Many addresses cannot be put into
the exploited buffer so we miss many gadgets. A complete
int 0x80; ret type gadget is not found and even an int
0x80 instruction does not exist. Only the call *gs:0x10
instruction is available, so we use our signal approach to
implement the execution of a sequence of system calls. We
realize our signal mechanism by using the gadgets that we
found blindly.

5.1.2  Attack procedure on ProFTPD

ProFTPD is an FTP server. The vulnerability CVE-2006-5815
in ProFTPD 1.3.0 is a stack-based buffer overflow. The over-
flow can be exploited by an adversary to execute arbitrary
code. Listing 3 shows the vulnerable code. The vulnerable
function is the sreplace function in support.c file. The
overflowed buffer buf'is stored on the stack. By disassembling
the code, we find that the pointer array rarr is stored next to it
on the stack. There is an off-by-one comparison bug in this
function so the string terminator is overwritten. We denote the
site where the bug occurs. Since the adjacent array rarr is
filled with some value, the string length of the buf is bigger
than the original length blen when the string terminator is
overwritten. Hence, in the next iteration of the while loop, the
length parameter of the sstrncpy function becomes negative,
which is perceived as a large integer. Now we can trigger the
overflow to overwrite the return address.

Listing 2 Exploit code in Apache

def do_try_exp(rop)
s = send_exp(rop)
alive = check_alive(s)
if not alive
s.close ()
return false
end

req = "GET./_.AAA_HTTP/1.0\r\n"

req << "User—Agent:zzz"

req << "\r\n"

req << "Host:0x82—apache-mod_jk.c\r\n"
req << "\r\n"

s.write(req)

alive = check_alive(s)

s.close ()

return true if not alive
return 2
end

def send_exp(rop)

s = TCPSocket.new(S$ip, $port)
req
req

= sprintf ("GET./%s%s _HTTP/1.0\r\nUser—Agent: . %s\r\
nHost: %s\r\n\r\n", "A" = 4123, rop.pack("I="), "",
"Host:.0x82—-apache—-mod_jk.c\r\n\r\n"); # #4123
ebp.pack("I+")

s.puts(req)

s. flush ()

return s
end

In order to trigger the execution of the vulnerable sreplace
function, we modify the content of the .message file and send
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CWD to the server. The .message file exists in every directory
are used to show some customized information. It contains
some specifiers that will be replaced by other contents in
sreplace function. The CWD command which changing the
working directory will trigger the processing of the .message
file and ultimately executes the vulnerable sreplace function.

We implement our attack in the Metasploit framework. Our
attack script is written in the Ruby language. We will further
illustrate the concrete steps implemented in our attack script in
the following section. In ProFTPD, We find lots of useful
gadgets and stitch them to launch the final attack.

5.1.3 Attack procedure on Nginx

Nginx is an HTTP and reverses proxy server, a mail proxy
server, and a generic TCP/UDP proxy server. The vulnera-
bility CVE-2013-2028 in Nginx 1.4.0 is an integer overflow
problem that causes a stack buffer overflow. We exploit this
vulnerability to hijack the program's control flow and blindly
find all types of gadgets that resided in its code segment.

Listing 3 Vulnerable code in ProFTPD

char xsreplace (char *s, ...)

{

char sm, =xr,
char =smptr,

#SIC = S, *Cp;
*kTPLr;

char xmarr[33], =xrarr[33];
char buf[BUFMAX] = {’\0’}, =pbuf = NULL;
size_t mlen = 0, rlen = 0, blen; cp = buf;
while (xsrc) {
for (mptr = marr, rptr = rarr; smptr; mptr++, rptr++){
mlen = strlen (*mptr);
rlen = strlen(*rptr);
if (strncmp (src, =mptr, mlen) == 0){
sstrncpy (cp, *rptr, blen — strlen (pbuf));

if (((cp + rlen) — pbuf + 1) > blen){
cp = pbuf + blen - 1;
}

src += mlen;
break;
}
}
if (!«mptr){
if ((cp — pbuf + 1) > blen){ //off-by—one
cp = pbuf + blen - 1;
}
xCPp++ = *SrC++;
}
}

}.4,

Figure 6 manifests the whole attack procedure. Our attack
can be divided into the following steps.

Step 1 check vulnerability We start off by testing whether
the remote server contains a stack buffer overflow. We stop
the attack if the check fails. Once the stack canary is deployed,
we attempt to brute-force the value by stack reading. We also
obtain the stack frame pointer value and the return address in
this step.

Step 2 find basic gadgets In order to initiate the sigreturn
system call for later usage, we need to figure out the addresses
of a pop rax; ret gadget and syscall instruction. We begin
with finding all pop reg; ret gadgets and chain them
together. We set all pop value to 33 (the sleep syscall number).
One of them may feed into the rax register. Then we place a
syscall candidate at the end of the chain. If the program won’t
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Main script
Stack
def pom() Script function
print("Pwning\n")
check vuln() ; dfef f?lr?d_all_gadlgets(il pop rax; ret
check_overflow_len() St 1..$rets. engt 0xf
- - b x= $rets[-i] S M
. ysca
P4 ret= verify pop(x-1, round)
/ Z J—
find_pops() X iffret =2) rax writable addr
find_rets() i next .
find_all gadgets() end 1 itabl :
verify mmap() ‘. ret= verify _mov_reg(x-2) rls no alff addr |1 fake sigframe
verify neg() * ifpet=2) rip test addr * crash
= \\ next 0. -~ -7
verify not_rax() \ end r/eE =7
\ . A
£ ret = verify_mov_mem_all(x-3) - - __ infinite loop
‘. | end ret 2 &)
verify_add_rsp() '\ | diff_gadget()
o d
do_sigaction() =
end

Fig. 6 The whole attack procedue in Ruby Script

crash and go to sleep, we find the syscall instruction. Next, we
test the pop reg; ret gadgets one by one to further deter-
mine the pop rax; ret gadget. As a result, we can find the
basic gadgets we need.

Step 3 locate all ret gadgets Up till now, we can further
find ret and ret-like instructions. This kind of gadget does
nothing but transfer control to the next gadget, so it can be
easily distinguished by blind execution.

Step 4 identify all memory access gadgets This step can be
implemented through the function find all gadgets. The
global variable $rets contains all the ret instruction address we
found in the previous step. For each ret instruction address, we
choose the address two or three bytes before the ret instruction
address as the testing address. These testing addresses are
treated as gadget candidates. Then we use following three
functions to verify them to distinguish valid gadgets. The
function verify pop() is invoked to test whether an address
contains pop, ret gadget. By using the function verify mov_
reg(), we can confirm whether an address is pertaining to a
memory read gadget. By leveraging the function verify mov_
mem_all(), we can recognize whether an address involves
memory write gadget.

Here we elaborate on the implementation of the verify _mov_
mem_all() function. We first place the sigreturn syscall and a
counterfeit signal frame on the stack. In the signal frame, we
set all general registers to a writable address (lower address on
the stack), and manipulate the rip register to the test address x-
3 (an address three bytes before a return instruction) as shown
in Fig. 6. Then we place a stop gadget on the stack which is an
infinite loop statement. This ROP chain will lead the program
to first execute the test address x-3 then jump to execute the
infinite loop. Since that we set all registers’ values to a
writable address, if the program crashes (the script function
returns zero), it is not a gadget. Otherwise, it is a kind of
memory access gadget, we can adjust the registers to further
determine the addressing register of the gadget.

Step 5 differentiate memory access gadgets Step 4 merely

determines whether a location contains a memory access gad-
get and the addressing register of the gadget. The remaining
details are all unknown. Hence, the function diff gadget() is
leveraged to further identify all the details of a gadget,
including its operator and operands. It can be used to facilitate
the distinguishment of gadgets, such as differentiate add from
adc. By manipulating the stack and sending different pay-
loads, we can easily determine all the details of a gadget.

Step 6 find signal handler In this phase, we fingerprint the
gadget we used as a signal handler. The gadget we used is in
the form of add rsp, big constant; ret. By padding
enough zeros and ret gadget, we can finally distinguish it.

Step 7 get a remote shell Finally, we prepare a long ROP
chain to initiate the sigaction system call. It will register a
signal handler for the SIGSEGV signal. Then, it executes the
dup system call and ultimately performs the exec system call
to spawn a remote shell. All of them are implemented in the
function do_sigaction().

During our attack, no code fragments are read in the
memory and there is no prior knowledge of the binary. There
isno syscall; ret type gadget available, so we leverage our
signal approach to achieve the execution of a sequence of
system calls.

Requirement For Overflow Byte The overflow bytes must
meet the following requirements. First of all, the overflow
bytes must not contain zero bytes, otherwise, it will stop the
ROP chain. Moreover, if the victim program sanitizes user
inputs, the overflow bytes must not contain the characters that
will be filtered out by the program. In Nginx, the program
does not perform any process on the input data, so all bytes
but zero can be used in the ROP chain. In Apache and
ProFTPD, the programs filter out numerous characters, such
as 0x9, Oxa, 0xb. These characters can not be used as an
overflow byte.

General length of ROP chain The length of the ROP chain
varies during different attack phases. Table 3 exhibits the
general ROP chain length in our Nginx attack.
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Table 3 ROP chain length per attack phase in Nginx

Attack phase ROP chain length

SeBROP: blind ROP attacks without returns 13

Table 4 An excerpt of the gadgets we collect. We only list the most
frequently used gadgets

Searching for stop gadget 1 (8 bytes)
Looking for the < pop; ret > gadget 3 (24 bytes)
Fingerprinting the syscall instruction 51

Testing for a normal memory gadget 57
Differentiating a memory gadget around 57 and 118

Launching the final attack 376

Notice that, at the time we fingerprint the syscall instruction,
we need to chain all the pop; ret gadget we found with the
test address, the ROP chain length is dependent on the pop
gadgets in the victim code. In our attack, the ROP chain length
is 51. When we test for a normal gadget, the ROP chain length
is 57. The chain contains a forged signal frame. When we
begin to differentiate a gadget, the length of the ROP chain
varies depending on what kind of gadget the testing address
contains. But the average length is around 57 and 118.
(consists of one or two fake sigframe)

After we collect all kinds of gadgets, we need to launch the
final attack. The final chain involves “sigaction; rets; dup2;
rets; dup2; rets; exec”. The number of returns depends on the
constant value in the signal handler, which is the gadget we
found in the victim(such as, add rsp, 0x8e0; ret). The
constant value in the signal handler(such as 0x8e0) must
bigger than the kernel pushed signal frame, otherwise, the
remaining ROP chain will be covered by the signal frame. The
number of returns must be (A-B)/8. “A” represents the
constant value in the fake signal handler, here is 0x8e0. “B”
stands for the length of the kernel pushed signal frame. In this
case, the length of the signal frame is 0x5a0. Therefore we
must set (0x8e0-0x5a0)/8 returns. Because the size of the
kernel insert signal frame is not always the same, we need to
pad more returns to improve the hit. Here the length of our
final gadget chain is 376.

Gadgets collection: As a whole, the gadgets we found
include, pop, mov, add, adc, xor, and, or, rol, neg, not. Now
we take Nginx as an example. We show the concrete gadgets
in all categories in Table4. Here we only list the most
frequently used gadgets.

Gadgets stitching After we collect all the usable gadgets,
we chain them together to launch the final attack. In the
following, we will elaborate on how to use the aforementioned
gadgets to accomplish the attack. Towards the ultimate goal,
there are two solutions, registering a signal handler for
SIGSEGYV and registering for other signals.

Solution 1 To register a signal handler for SIGSEGV, we
first use the mov qword ptr [rsi + 8], rax ; ret gad-
get to write values into memory to construct a counterfeit
sa_sigaction structure, before implementing the first sigaction
system call. The pointer to the structure will be used as a
parameter of the sigaction system call subsequently. To
implement the sigaction system call, we take advantage of the
sigreturn gadget to set the parameters for the system call.
Because the sigaction system call contains four parameters
and the fourth parameter is passed through the r/0 register.
Since there isn’t any pop; ret kind gadget for r10, we benefit
from the sigreturn. At the same time, we manipulate the rip
value in the fake sigreturn frame to the syscall instruction

Gadgets
< sigreturn >
<pop rax; add rsp, 8; ret>
<pop rsi; pop rdi; ret>
<pop rdx; ret>
<pop rcx; ret>

Catagory

Set register

<mov dword ptr [rax], edi; ret>

Load/Store <mov qword ptr [rsi + 8], rax; ret>
<mov rax, qword ptr [rax + 8]; ret>
<add dword ptr [rcx], eax; ret>
<adc byte ptr [r8 - 0x77], r9b; ret>
Arithmetic <add dword ptr [rdx + 8], eax; ret>
<neg rax; ret>
<and byte ptr [rcx], al; ret>
Logical <xor byte ptr [rax - 0x77], cl; ret>
<not rax; add rsp, 8; ret>
Branching <sigreturn>
System Call < syscall > instr

address, so that after the sigreturn sets all registers’ value, the
program continues to execute the sigaction system call.

After setting the calling convention for the sigaction system
call and padding the right number of return gadgets, we use
the normal pop; ret gadget to manipulate the parameters for
the next two system calls (dup2). Finally, by using the
mov qword ptr [rsi + 8], rax ; ret gadget, we write
into memory the shell file path. We make use of the
pop; ret gadgets to set parameters for exec system call. To
this end, the attack accomplishes.

Solution 2 To register a signal handler for a normal signal
and achieve the final goal, we must take into consideration
both the signal sending process’s ROP chain and the signal
receiving process’s ROP chain. The ROP chains are more
complex.

The signal sending ROP chain consists of setting variables
on shared memory, monitoring the shared variables value
change, and sending the signal. The semantic is when the
shared variable is changed by the signal receiving ROP chain,
the signal sending ROP chain detects the change and sends the
signal. It is an inter-process communication.

In the first place, we utilize the mov gqword ptr [rsi +
8], rax; ret gadget to write variables on shared memory.
Additionally, We leverage lots of gadgets to realize a
conditional jump to monitor the shared variable value change.
Last but not least, we use pop; ret gadget and syscall instruc-
tion to implement a kill system call.

We will further illustrate how we use the gadgets we found
to accomplish the second step mentioned above. We first
utilize the mov eax, dword ptr [rax + 8]; ret gadget
to read the shared variable value. Then we execute the neg
rax; ret gadget and use the mov qword ptr [rsi + 8],
rax; ret to move the value into memory. We take advantage
of the and byte ptr [rcx], al; ret gadget to test whe-
ther the value change. Finally, by using mov eax, dword
ptr [rax + 8]; ret, mov qword ptr [rsi + 8], rax;
ret, add dword ptr [rax-0x7d], ecx; ret gadgets and
sigreturn gadget, we adjust the rsp register value to influence
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the control flow. The control flow either jumps to execute the
loop or goes to execute the aforementioned step three, sending
the signal.

The signal receiving ROP chain is similar to the chain in the
first solution, except that it changes the value of the shared
variables before executing each of the system calls. Also, it
executes some loops to wait for the right moment to initiate
the system call. The reason is there may be some delay from
the signal receiving process that changes the shared variable to
the signal sending process detects it and sends the signal. We
take advantage of lots of gadgets to realize the loop. There is
no sensible distinction between the gadgets we used to
implement the loop and those we used to realize the shared
variable monitoring. Still, there are some additional gadgets in
use, such as adc byte ptr [r8 - 0x77], r9b; ret, pop
rdx;ret.

5.2 Security analysis

Our approach can defeat existing defenses including ASLR/
fine-grained ASLR, XOM, stack canary, and methods that
hide or encrypt pointers to library functions [10]. First, since
we find all the gadgets in memory on-the-fly, the ASLR and
fine-grained ASLR protection can not prevent the SeBROP
attack. Also, we infer the gadgets using blind execution with-
out reading the code, so we can easily circumvent the XOM
defense mechanism. We leverage the stack speculation to leak
the stack canary. Finally, our attack does not require any
gadgets or functions in libraries. Hence, the defense
mechanisms that hide or encrypt code pointers for libraries can
not thwart the SeBROP attack.

5.3 Performance analysis

The attack in Apache can complete within less than 2,100
requests or 20 minutes. The attack in ProFTPD can
accomplish within less than 4,300 requests or 30 minutes. The
attack in Nginx can achieve in less than 8,500 requests or 45
minutes. Most of the time and requests are spent on finding all
types of gadgets. Comparing with previous research works
[23] which requires an average of 32,768 requests to break
ASLR, SeBROP only needs less than 2,100 requests and can
defeat both fine-grained ASLR and XOM. So the SeBROP
performance is acceptable. Compared to the BROP attack,
SeBROP also does not introduce much overhead. The BROP
attack can complete an attack in less than 4,000 requests or 20
minutes, while SeBROP can complete an attack in less than
8,500 requests or 45 minutes. However, the SeBROP attack
blindly fingerprints far more gadgets than the original BROP
attack. The more requests in SeBROP is spent on blindly
finding all types of gadgets that construct a Turing-completed
set, while the BROP attack merely finds gadgets that imple-

Table 5 Cumulative number of requests per attack phase

Attack Phase Nginx ProFTPD Apache
Stack Reading 710 0 0
Find basic gadgets 2280 1320 990
Find shared memory 2449 1490 1027
Find all ret instruction 5859 3087 1844
Fingerprint all gadgets 8390 4250 2066
Launch a shell 8395 4256 2068

ment a write system call by blind execution. Since the
SeBROP gadget searching approach is efficient, the SeBROP
attack time does not grow exponentially when taking into
consideration the large number of gadgets it finds. Thus,
SeBROP attack performance is acceptable.

Accuracy Since we find all types of gadget by inferring, it
is important to evaluate its accuracy. We need to validate
whether the identified code location holds the correct gadget,
and whether the details of a gadget are consistent with the
inferred information. In our 32-bit Apache attack, we find a
total of 20 gadgets, including 2 add gadgets, 1 adc gadget, 5
mov gadgets, 5 xor gadgets, 3 or gadgets, 1 and gadgets, 2 rol
gadgets, 1 not gadget. The number of gadgets we find in
Apache are restricted by the size of the binary and the filtering
of characters. In our 32-bit ProFTPD attack, we find 59
gadgets, including 15 add gadgets, 2 adc gadget, 31 mov
gadgets, 3 xor gadgets, 3 or gadgets, 1 and gadgets, 2 rol
gadgets, 1 not gadget and 1 neg gadgets in summary. In the

add adc mov xor or and rol not neg

(2)
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20
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add adc mov xor or and rol not neg
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200

150

100
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add adc mov xor or and rol not neg

()

Fig.7 Gadgets found in Apache, ProFTPD and Nginx. (a) Apache; (b) Pro-
FTPD; (c) Nginx
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64-bit Nginx experiments, we find totally 272 gadgets,
including 36 add gadgets, 1 adc gadget, 201 mov gadgets, 9
xor gadgets, 13 and gadgets, 7 or gadgets, 2 rol gadgets, 1 not
gadget and 2 neg gadgets. In both the 32-bit and the 64-bit
experiments, the gadgets we find by leveraging the SeBROP
approach are accurate in all details, including the operator, the
operand and the immediate offset.

Stability When we use our solution I to implement the
attack, we cannot achieve a one-time success, because there is
a race condition. Although we synchronize the signal sending
process and the signal receiving process, it is still possible that
the signal does not arrive on time. Because the period of the
system call is short. As a result, we have to try several times
(average 30 times) to finally win the race condition and get a
remote shell. But our solution II can achieve a high possibility
that successfully hijack the signal control flow.

Reducing crashes Once an attack produces thousands of
crashes, it is easy to be detected by the administrator. We
provide a solution to alleviate this issue. The crash is usually
caused by invalid memory accesses. The kernel will send the
SIGSEGYV signal to the process, so we change the SIGSEGV
signal handler to redirect the control flow to execute an ROP
chain on the stack. The chain implements a kill system call
that will kill the program. This method can be used early in the
attack when we obtain enough gadgets to implement a
sigaction system call. This can help us significantly reduce the
crashes caused by the attack.

6 Discussion

In this section, we will conduct some more discussions on the
SeBROP attack. We will demonstrate which vulnerabilities
give SeBROP attackers some maneuver space to accomplish
the attack. We also analyze how much human efforts are
involved in our attack, and discuss the limitations of SeBROP.
We also show the applicability of SeBROP on other platforms
and programs.

SeBROP applicability to other programs and vulnera-
bilities. For ease of description and implementation, in experi-
ments, we focus on the cases that are eminently exploitable by
our attack. So we select the vulnerabilities based on the two
following principles. First, we select stack buffer overflow
vulnerabilities in server-side programs. Since our attack is a
remote attack that hijacks the control flow by overwriting the
return address. Hence, a stack buffer overflow is more
suitable. In SeBROP, we frequently crash the program to test a
gadget’s location, so a server-side program that can automa-
tically restart meets our requirement. Second, the vulnera-
bilities should not limit the overflow length. They must be
able to consume overflow bytes of arbitrary length, due to the
fact that the final payload in our attack is relatively large. So
the vulnerabilities we have chosen are all server-side programs
and have no constraints on the number of overflow bytes.

Except for the three vulnerabilities, we investigate that most
of the server-side program’s buffer overflow vulnerability can
also work as our attack targets, such as the CVE-2002-0657 in
OpenSSL, the CVE-2001-0820 in ghttpd and CVE-1999-1457
in thttpd. We revisit the PoC code of these vulnerabilities and
find that a prototype of our attack can be implemented by
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performing some minor modifications to the PoC code. For
instance, for the CVE-2001-0820 in ghttpd, we can pass a long
argument to the vulnerable Log function and then trigger an
overflow to the stack buffer. The overflow bytes can be of
arbitrary size. They are all the best cases to illustrate the wild
applicability of our attack.

It is worth noting that our attack targets are not limited to
server-side stack overflow vulnerabilities. SeBROP can be
applied to more general scenarios.

In addition to the stack buffer overflow vulnerabilities, we
can also make use of a heap buffer overflow vulnerability. We
just need to find a stack pivot gadget. Then we use the gadget
to jump to an attacker-controlled buffer. It then works like a
stack. The remaining steps are the same as those in our stack-
based attacks.

We can also take advantage of a format string vulnerability.
This vulnerability can be exploited to implement arbitrary read
and write primitives. We convert it into a stack buffer
overflow to further hijack the control flow. We first send the
overflow bytes into the program memory through user input.
Then we use the arbitrary read primitive to leak the canary and
user input buffer and the memcpy function address on the
GOT table. Finally, we employ the arbitrary write primitive to
set memcpy address and parameters to the return address on
the stack (a return-into-libc attack). Once the program returns,
it will execute memcpy. The memcpy function will copy the
overflow bytes onto the stack. The program will begin to
execute the ROP chain upon the memcpy returns. To this end,
we can continue to mount a normal SeBROP attack.

Possibility of attack automation. As a variant of ROP
attack, our attack procedure can be divided into gadget
searching step and gadget stitching step. We will discuss
whether these steps can be achieved automatically. Speci-
fically, the gadget searching step can be automatically com-
pleted. The process of searching for gadgets presents no
essential difference among victim programs. This part of
attack scripts is always the same between different victims
when it applies to the same architecture such as x86. We can
adjust it to a new vulnerable program with very little modifi-
cation.

In general though, the vulnerability triggering step is
different between victim programs, the gadget gathering step
is the same. After we are able to overwrite the return address,
the following steps can be automatic. We begin with finding
stop gadgets and pop gadgets. Then we place a counterfeit
signal frame on the stack to test and identify more gadgets.
These do not need any human interventions.

Nonetheless, the gadget stitching step can be semi-automa-
tically completed. Depending on the gadgets we found, there
might be some human efforts involved. The reasons are as
follows.

First, different programs contain different gadgets set. We
should manually choose which gadgets to use to simplify the
ROP chain.

Second, the ROP chain length and the parameters set in the
chain vary according to different victims and attack stages.
We should manually compute the ROP chain length. Since we
use sigreturn gadget to pass values to all registers, we should
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carefully calculate the value passed to rsp register to make the
program returning to the right position on the stack. These
values are dynamically determined by the gadgets we use.
Every time we send an ROP chain containing sigreturn
gadget, we need to guarantee the rsp register is set to the right
value.

Third, to launch our final attack in solution I (register signal
handler for normal signals), the ROP chain cannot be decided
beforehand. We should repeatedly test the loop counter we
place onto the ROP chain to improve the hit rate. When we
register a signal other than SIGSEGV, the signal receiving
process must wait for the right time to launch a system call (in
the period of a signal arrival). So it circulates on a loop
counter. The value of the loop counter differs in victim
programs. Hence we need to repeatedly test different values to
find the appropriate value. Except for the loop counter, we
also pad several return gadgets on the stack to control time in
finer granularity. All of these will change the ROP chain
length, and will in turn influence the parameters set in the
ROP chain. After many trials, the ROP chain can be finally
determined.

This step can be partly automatic. Because it encounters
various uncertain values. It is difficult to determine these
values before the attack. But we believe as our attack script
becomes more and more complex, it will be able to handle
various circumstances and overcome the above-mentioned
issues. We will take it as our future work.

6.1 Generality and limitation of SeBROP attack

The limitation of the SeBROP attack is, it can not be applied
in Windows systems. Because Windows lacks a fork-like API,
the canary and text segment will be rerandomized after a
crash. Also, the Windows system does not implement POSIX
signals. However, SeBROP needs to leverage the signal return
and signal process mechanism to accomplish the attack.

Despite the inapplicability of SeBROP in Windows, other
systems, like i0S or Mac OS X, which support signal handling
can be our target platform.

As a whole, the SeBROP attack is independent of the
underlying architecture. No matter which instruction set the
system uses, x86, arm, or PowerPC, our attack can be success-
fully conducted by modifying the attack script. This feature is
much the same as the original ROP attack.

Meanwhile, the SeBROP attack can also support local
attacks. Although our implementations are all remote attacks,
browsers like chrome and ChakraCore, can be our target too.
We can use JavaScript to construct vulnerable objects and
send the exploit to test whether the program (JavaScript
engine) crashes.

7 SeBROP prevention

In this section, we discuss how to defend our SeBROP attack.
Defense methods include re-randomization, control-flow inte-
grity, and code pointer integrity.

7.1 Rerandomization

The first protection against our attack is to re-randomize
canaries [24] and code layout [25] as often as possible. If the
code layout changes periodically, the gadgets that we find

could become useless. The re-randomization technique is
effective. However, re-randomization techniques are not
deployed widely in the existing software system due to three
reasons [26]: (a) re-randomization techniques have high-
performance overhead; (b) re-randomization can not provide
common application binary features, such as self-referencing
code; (c¢) the whole code segment can not be re-randomized.
For example, Shuffler [25], a recently proposed defense
method, is unable to re-randomize the loader library.

Another method is to re-randomize the stack canary and the
ASLR after a process crash. The defense makes the program
randomizes every child processes independently [27], so the
information leaked by attackers from one child process can not
be used in another one. This method has not been widely
deployed because this approach prohibits resource sharing
between the parent process and its child processes [28].

Re-randomizing the code segment can effectively prevent
our SeBROP attack, no matter it is re-randomized periodically
or re-randomized after a crash. If the code segment is re-
randomized periodically, it introduces a deadline to attackers.
Because our attack spends some time finding gadgets, we
cannot complete the attack during a short time period. In
addition, if the code or canary is re-randomized after a crash,
the gadgets that we found in one process become useless. We
require these child processes to share the same memory
layout. Thus our attack can be thwarted if the memory layout
or canary changes.

7.2 Control-flow integrity

Another defense mechanism is control-flow integrity [29]. CFI
prevents code-reuse attacks by enforcing the control flow
graph (CFG) during program execution. However, a CFG
construction requires massive pointer analysis. Moreover,
current CFI techniques have a non-negligible performance
cost. More recently hardware-assisted CFI (e.g., HCFI [30])
has been proposed to improve the performance. However,
these approaches rely on specific hardware architecture modifi-
cations. Besides, researchers have proposed some coarse-
grained CFI methods [31-33].

The CFI defense thwarts our attack by detecting unintended
control flow transfer. When we hijack the control flow in the
return address and try to execute other instructions, the CFI
defense detects that the location is an invalid return location.
Then it prohibits unintended execution flow.

7.3 Code-pointer integrity

A newly proposed defense mechanism called Code-pointer
integrity [34] can guarantee the integrity of all code pointers
(e.g., function pointers, saved return addresses) in the pro-
gram. Code-pointer integrity techniques can prevent all con-
trol-flow hijacking attacks, including ROP attacks. This de-
fense mitigates our attack by protecting the return address.
When we hijack the control flow in the return address, it will
detect that the return address value is modified by attackers.

8 Conclusion

In this paper, we propose the SeBROP attack, which blindly
finds a Turing-complete set of gadgets without any pre-
knowledge of the victim program or reading/disassembling the
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code segment. We collect various types of gadgets by blind
execution. Moreover, we stitch a sequence of system calls by
leveraging the vulnerable signal handling mechanism. Our
attack can successfully defeat the state-of-the-art defense
mechanisms (e.g., fine-grained ASLR, DEP, XOM). It is
compatible with both 64-bit and 32-bit systems. We imple-
ment all of our attack primitives into three programs. The
complete attack is capable of spawning a remote shell on
Nginx (64-bit) with less than 8,500 requests, ProFTPD (32-
bit) with less than 4,300 requests, and Apache (32-bit) with
less than 2,100 requests.
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