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Abstract Detection and segmentation of defocus blur is a
challenging task in digital imaging applications as the blurry
images comprise of blur and sharp regions that wrap significant
information and require effective methods for information
extraction. Existing defocus blur detection and segmentation
methods have several limitations i.e., discriminating sharp smo-
oth and blurred smooth regions, low recognition rate in noisy
images, and high computational cost without having any prior
knowledge of images i.e., blur degree and camera configura-
tion. Hence, there exists a dire need to develop an effective
method for defocus blur detection, and segmentation robust to
the above-mentioned limitations. This paper presents a novel
features descriptor local directional mean patterns (LDMP) for
defocus blur detection and employ KNN matting over the
detected LDMP-Trimap for the robust segmentation of sharp
and blur regions. We argue/hypothesize that most of the image
fields located in blurry regions have significantly less specific
local patterns than those in the sharp regions, therefore, pro-
posed LDMP features descriptor should reliably detect the defo-
cus blurred regions. The fusion of LDMP features with KNN
matting provides superior performance in terms of obtaining
high-quality segmented regions in the image. Additionally, the
proposed LDMP features descriptor is robust to noise and
successfully detects defocus blur in high-dense noisy images.
Experimental results on Shi and Zhao datasets demonstrate the
effectiveness of the proposed method in terms of defocus blur
detection. Evaluation and comparative analysis signify that our
method achieves superior segmentation performance and low
computational cost of 15 seconds.

Keywords defocus blur detection, local directional mean
patterns, image matting, sharpness metrics, blur segmentation

1 Introduction
Blur detection and segmentation is a challenging problem in
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image processing; as blur reduces the sharpness and contrast
details of an image. However, a good quality image consists of
clear and sharp objects. In modern digital photography, vari-
ous focusing techniques are intentionally used to highlight the
foreground objects and make the remaining part of the image
blurry. When such images are encountered in object detection,
the detection of sharp objects becomes challenging due to
blurred image regions. Blur detection and segmentation are
used in various applications that require the information wrap
only in sharp regions, such as object detection [1], image
matting [2], and image segmentation [3].

Blurring is usually caused by two factors, i.e., motion blur
and defocus blur. Several factors, such as the movement of
camera or objects, contribute to the motion blur of images.
Whereas, defocus blur is a visual effect intentionally intro-
duced by the photographers to highlight human subjects or
foreground objects. Motion and defocus blur cause the loss of
sharpness details in the image, and accurate object detection
from these blurred regions becomes challenging. In this case,
detection and segmentation of sharp and blurred regions be-
come essential so that restoration algorithms such as video de-
blurring [4], sharp region detection [5], etc. can be applied to
effectively restore the images.

Conventional approaches for the estimation of defocus blur
depends on multiple images [6—8], where images of the differ-
ent scenes are taken using similar focus settings. These appro-
aches have certain limitations such as the requirement of a
static scene, occlusion problem, etc. Nowadays, several appro-
aches have been proposed to estimate the defocus blur from a
single image without having any prior information about the
blur level, type or focus settings [9—15]. Analysis of defocus
blur with a single image can be categorized into frequency-
based [5,13,16], depth-intensity based [17-20] and local-
sharpness based approaches [7,21,22].

Frequency-based defocus blur detection method was pro-
posed in [13] by generating the coherent blur map via evalua-
ting the local frequency spectrum of the gradient fields. This
method [13] only extracts the color edge and flat area infor-
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mation to produce a coherent map. In [23], Xiao et al.
proposed a multi-scale SVD fusion-based method that is used
to perceive the defocus blur in the smooth region. To detect
the defocus map, Chakrabarti et al. [24] presented the Point
spread function (PSF) based on local frequency analysis. The
drawback of this approach [24] is the incorrect labeling of
regions in the final detected map. Su et al. [8] proposed a
Hough transformation based framework for blur detection and
classification. In [25] Golestaneh and Karam proposed “High
frequency multi-scale fusion and sort transform” HiFST
algorithm to segment the sharp and blur regions.

Depth based methods are also used for segmentation of
defocus blur using information about the blur edges. In [26],
Zhao et al. proposed a cross-ensemble network for diversity
enhancement based on multiple smaller defocus detectors to
differentiate sharp and blur regions. However, this approach is
unable to estimate the parameters accurately and is computa-
tionally more complex. Liu et al. [19] proposed distinct local
features i.e., power bands, saturation, association congruence,
and gradient histogram to determine the blur type. Further-
more, blur measures such as the variance of wavelet coeffi-
cients [27], higher-order statistics and local variance [20] are
also used for blur segmentation in a narrow depth of field ima-
ges.

Most frequently used approaches for defocus blur segmen-
tation are based on local sharpness measurement. However,
these techniques need to specify a particular sharpness metric
for an image. In [10], Zhu et al. proposed a method for
computing point spread function (PSF) at the pixel level.
However, computation is based on the local frequency com-
ponent analysis [24] and only operates with defocus images.
Shi et al. [6] introduced peculiar local sharpness features, i.e.,
kurtosis and gradient histogram span for defocus blur segmen-
tation of local image regions. However, this method [6] is
unable to detect defocus blur in homogeneous smooth regions
in the image.

Recently, in [28] Shi et al. proposed a new sparse feature
dictionary for blur detection based on an external set of
defocus images. However, this method [28] is unable to
perform well in the case of immense blurred regions in the
image. In [29], Pang et al. proposed a kernel-specific feature
descriptor for the detection of blur images. Additionally, they
employed two different kernels for motion and defocus blur.
Moreover, SVM was used for classification. In [30], Kim et al.
proposed a deep learning method based on convolutional
Neural Network (CNN) to detect the motion and defocus blur.
Moreover, they employed the multi-scale reconstruction loss
function with both low- and high-level spectral features to
detect blur around the edges. In [31] Park et al. proposed a
fully connected neural network that works on both the deep
and handcrafted features. Convolutional neural network was
employed to extract the deep features. In [32], Tang et al.
proposed a deep neural network “DeFusionNET” that merges
and refine deep features for the detection of defocus blur. In
[21], the Local Binary Pattern (LBP) descriptor was employed
for defocus blur detection. However, this method is unable to
achieve better performance for images containing a high
density of noise as LBP is sensitive to noise specifically in

uniform or flat areas.

Existing state-of-the-arts have several limitations to detect
image blurring i.e., discriminating sharp smooth and blurred
smooth regions, low recognition accuracy in noisy images and
high computational cost. Additionally, existing defocus blur
detection methods are unable to accurately discriminate bet-
ween the sharp smooth and blurred smooth regions. Local
texture patterns descriptors achieve better accuracy and
efficiency in various applications i.e., facial expression reco-
gnition [33], image retrieval [34], etc. However, the perfor-
mance of existing local texture patterns degrades significantly
for noisy images. To address the aforementioned challenges,
we propose a novel features extraction method Local Direc-
tional Mean Patterns (LDMP) for defocus blur detection in
images containing high-density of noise. This paper presents a
novel method for blur detection and segmentation to retrieve
the sharp and blur regions from defocus blurry images without
quantifying the extent of blurriness. The main contributions of
the proposed research work are as follows:

eFor feature extraction, we propose a novel local directional
mean patterns (LDMP) approach to determine the LDMP-
Trimap from the image by utilizing the LDTP higher and
lower patterns that are robust to noisy images.

eWe employ an image matting based blur segmentation
approach to segment the blur and sharp regions of the image
from the proposed LDMP-Trimap.

eRigorous experimentation was performed against several
state-of-the-art methods over SHI and ZHAO datasets contai-
ning different distortions and high-dense noisy images to
prove the effectiveness of the proposed framework.

The rest of this paper is organized as follows. Section 2
describes the proposed blur detection and segmentation model.
Experimental results and analysis are presented in Section 3.
Section 4 demonstrates the discussion and the conclusion is
provided in Section 5.

2 Proposed method

The proposed method consists of two phases i.e., blur
detection and blur segmentation. In the first phase, we perform
blur detection to extract LDMP-Trimap using the local direc-
tional triplicate patterns (LDTP) and local directional mean
patterns (LDMP). Initially, we used LDTP to compute higher
and lower patterns of the blurry image. Later, we extract the
LDTP to obtain the LDMP that provides the optimal sharp and
blur patterns of the image. In order to obtain the LDMP-
Trimap, we employ flood filling over the obtained patterns
that display the detected sharp and blur regions.

In the second phase, we apply KNN matting over the
LDMP-Trimap image to segment the sharp and blur regions.
For KNN matting, LDMP-Trimap is convolved over the input
image to produce the binarized image of the sharp and blur
regions. More specifically, the resultant binary image repres-
ents the blur region as background denoted by white pixels
and sharp regions represent the foreground objects depicted
through black pixels as shown in Fig. 1.

2.1 Blur detection
In the first phase, we perform the defocus blur detection using
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Fig. 1 Flow diagram of blur detection and segmentation

the LDTP and LDMP techniques for the extraction of LDMP-
Trimap from the blurry image. We used the input image Iz,
consisting of sharp and blur regions to perform defocus blur
detection as follows:

Iyp = ¢, + by, (D
where ¢, and b, represents the clear and blur regions of the
image. If I;, consists of RGB colors, it must be first trans-

formed into a grayscale image /.

Igs = gry(/ap). (2)
2.2 Local directional triplicate pattern (LDTP)

We present the local directional triplicate patterns (LDTP) that
are computed by applying a pre-processing filter to Local
Ternary patterns (LTP) to extract the higher and lower patterns
of the image. In LDTP, firstly we employ the rank selection
median filter on I, to reduce the visual distortion of the image
as shown in Eq. (3).

Imf = ﬁned(lm)v (3)
where f.q represents the median filter and I, consists of
filtered smooth patterns of the image. Now, we extract the
local directional triplicate patterns MLy, Inf(c),Ar) from
the image /,,y obtained by the rank selection median filtering.
For this purpose, we used three-level thresholding along with
a user-specified threshold on the image structure as follows:

M(]mf(n)’ Imf(c),At) =

1, Lty 2 Infe) + A,
0,  ILnrwy > In f(c) = N&Lypny < Infe) + Ay, “)
_1, mf(n) mf(c) - Ah

where n is the neighbouring pixels and ¢ represents the center
value of the matrix. The threshold A; used in Eq. (4) controls

the sharpness sensitivity of the LDTP method. More speci-
fically, if A; is set to a higher value (i.e., 0.2, 0.3, etc.) then it
retrieves the least number of higher and lower patterns of the
image and if A; is set to a lower value (i.e., 0.001) then it
extracts more patterns that consist of sharp and blur pixels.
The impact of the LDTP threshold A, is shown in Fig. 2. In the
LDTP computation, we define the optimal threshold A, along-
with the central pixel value instead of setting the threshold
using only the central pixel value. For example, if the central
pixel has an integral value 35 and A; = 10 then the ranges from
Imf( o —A; to Imf( 5 + A, results in 25 to 45 respectively. The
integral value “0” is assigned to the pixel within the interval of
Imf(c) —A; to Imf(c) + A, whereas, assigns the value of “1” to
the pixel if it is greater than I, FoF A and “—1” if lesser than
Imf(c)—A,. For efficient defocus blur detection, higher and
lower patterns of the image must be computed separately.
Whereas, LDTP use triplicate condition to extract higher and
lower patterns of the image collectively as computed in Eq.
(4). Therefore, LDTP features M1y, fn), Ims(c),Ar) are further
divided into higher and lower patterns of the image
represented as Local Directional Higher Patterns (LDHP) and
Local Directional Lower Patterns (LDLP). However, to
compute LDHP and LDLP, we transform the negative values
from M (L), Img(c)» Ar) into positive values as shown in Fig. 3.

To obtain the LDHP features all the “—1” values from
MLy fnys Im(c), Ar) are converted into ‘0” while leaving the
rest of the values unchanged as shown in Eq. (5). Consequ-
ently, the resultant LDHP comprises of all positive higher
patterns of the image.

®)

Similarly, the LDLP features are obtained by replacing the
value “1” into “0” and “-1” into “1” from M (L (), L f(c)> Ar)

LDHP = {M(Lnfn). Imfe-A) = =1 = 0},

LDTP

Original LDTP
Input Threshold= Threshold=
0.001 0.0100

Fig. 2

LDTP LDTP LDTP
Threshold= Threshold= Threshold=
0.0450 0.1 0.2

Impact of LDTP Threshold on the input image to preserve sharpness map



Sample Image

Front. Comput. Sci.,

2022, 16(2): 162702

Rank Selection Filtered Image

15134 [ 66 | 60 | 156 0 (34|35 60| 59 Sample Frame LDTP
80 88 | 156 52 17 60 | 66 | 62 0
17 135 [ 83| 26| 62 —* 35|61 |44 52|52 1
61 | 85|44 |28 | 32 35 |83 | 83| 62| 62 0
1121220 (230234220 85 [115]225]221] 221

LDHP Weights LDHP Value MLpHP

0 [130]

0 >

0

Weights LDLP Value MuvpLp

1 8w | 4o | 20 -

1 >

0

Fig. 3 Local directional triplicate pattern computation

as shown in Egs. (6) and (7). Finally, the resultant LDLP
features contain all positive lower patterns of the image.

LDLP = {MLnyfn)> Ingie)» Ar) = 1 > 0}, (6)

(7

LDHP and LDLP values represent the binary bit streams
that must be transformed into decimal values. For this
purpose, we start extraction of bits from the east followed by
moving in a counter-clockwise direction to convert the bit
streams into equivalent decimal numbers as follows:

LDLP = {M(Imf(n)7]mf(c)’At) =-1- 1}

LDHP(Cyy) x 271, (®)

1
Mpup =

i=8

LDLP(C,,)x2"", )

1
Myprp =
i=8
where Cy, is the right neighbor pixel of the center pixel in a
matrix Mypyp and Mypyp. Finally, we obtain the M pyp and
My pyp representing the higher and lower patterns of the image
separately. Consequently, both patterns contain the specific
sharpness details of the input image that can be used effici-
ently for further LDMP processing (i.e., My pyp contain more

detailed left side sharp patterns and Myprp contains more

LDTP Upper

Detecting more
specific left side
patterns

specific right side sharp patterns of the image). Shown in Fig. 4
is an example of the patterns obtained by higher LDMP
(MLDHP) and lower LDMP (MLDLP)-

2.2.1 Local directional mean patterns (LDMP)

After obtaining the LDTP, we extract two separate higher
Mippp and lower My prp patterns from the input image. Now
we need to extract optimal Local Directional Mean Patterns
(LDMP) from M;pyp and Myprp patterns. For this purpose,
we need to verify the Mypgyp and Myprp patterns for the co-
occurrence of sharp pixels. We perform this task in a two-step
process. First, we compute the mean vector of both Mipgp
and M| prp patterns separately as follows:

(10)

(11)

After computing the mean vectors in Egs. (8) and (9), we
calculate the mean value from both calculated mean vectors as
follows:

LDTP Lower

Detecting less
specific left side
patterns

Fig. 4 Patterns comparison of LTP Upper and LTP Lower
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Z MVipup
i=1
LDHP(mean) = lT, (12)
n
Z MViprp
i=1
LDLP(ean) = - - 13)

By computing the mean value from the mean vectors, we
authenticate the co-occurrence of sharp pixels from both
Mipgp and Mpprp patterns and merged them into a single
optimal LDMP. We retain the values higher than their mean
values from Mppyp and Myprp patterns and concatenated
them together to obtain the optimal sharp features LDMP as
shown in Eq. (12). Additionally, we set the values less than
their mean values to “0” as shown in Fig. 5.

LDMP = [M1prp > LDHP(eany Y Mrprp > LDLP (mean)(]1~4)

There exists a connectivity gap between sharp pixels in
LDMP that need to be filled to generate the LDMP-Trimap.
For this purpose, we employ the flood filling method to fill
these gaps. Flood filling method is applied on the LDMP to
process the connectivity gap surrounded by filled pixels with
the specified color as shown in Fig. 6 and represented as fol-
lows:

TMipmp = ff(LDMP), (15)

where ff represents the flood filling method and 7 Mypyp
denotes the LDMP-Trimap obtained from LDMP as shown in
Fig. 7.

2.3 KNN matting

In the second phase, we apply KNN matting over the detected
LDMP-Trimap from LDMP. We employ the KNN matting to
perform matching over the blur and non-blur neighborhood
pixels using multiple layers. KNN matting implements the
non-local concept of alpha matting that decomposes the
Trimap image into the background and foreground layers
represented as “bg” and “fg” respectively. We used the de-

Sample Mrorr Image
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fault threshold of KNN matting for foreground and backgro-
und layers of the input image as:

fe=TMipyp, if (TMrpyp>0.99), (16)
bg=TMipyp, if (TMrpyp <0.01),
Im= fg+bg, 17

where TMipyp represents the LDMP-Trimap image. KNN
method produces the segmented result in four phases i.e., y-
Feature Computation, Laplacian clustering, Cholesky decom-
position, and PCG method.

2.3.1 - feature computation

In KNN matting, y-features computation includes the
extraction of spatial coherence details of the input color image
having center pixels “k” surrounded by the neighboring pixels
nn. The y-feature computation consists of two parts. The first
part provides the colors and image magnitude details and the
second part provides the spatial factor information computed as:

YF =RS p(Im,r X c,dig)r;[a;b]/Z+T,
(18)

Z=A(rXxr+cxc)xL,

T =rand(2,r X c) X 16_6,
where RS r, Img, and L represents the reshape function, input
image, and the level respectively. [a,b] is computed from the
function 728 ¢ that determines the equivalent subscript values

corresponding to a given single index into an array as:

la, bl =12S p([rc],1 : rxc). (19)

We used yr to compute the row-wise diagonal values of
foreground layer “fgqi,” and background layer “bggi,” as fol-
lows:

Rp=yr(fgaig: bdig)/ 100, (20)
where Rp contains the sparse sharp and blur patterns of the
image. However, we need to extract the maximum sharp and
blur pixels information. For this purpose, we extract the
maximum sharp and blur values M,,; by applying the absolute
function on the patterns Rp as follows:

130 105 [125] 149 [ 156 Samﬂ;ﬁ? HP M;EEI;M
112 | 105 [ 102] 156 | 165 130 105 [ 125 130] o [12s
101|230 [ 110] 126 | 165 — T2 hos Fioz2 —] 0 | 0 | 0
220 [133 [ 132 [ 154 [ 105 o e KT N
112 | 220 | 230 [ 350 [ 400

Sample Mepig Image Sample LDLP LDLP

24 | 3460 ] 47 [ 2 Matrix Mean = 38
30 [ 31 [ 32 ] 35 [ 30 24 | 34 | 60 oo [eo
25 | 66 |40 [ 45 [as —sf 3031 [32}—] 0 [ o [ 0 H
BB 25 | 66 | 40 o | 66| 40
1161820 [22

Fig. 5

Local directional mean pattern computation
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LDMP matrix before
flood filling

LDMP matrix after
flood filling

Fig. 6 Flood filling computation

LDMP-
trimap

Original input

Fig. 7 LDMP-trimap output

2 (abs(Rp,row(:,1)— @1

Rp,row(:,2)))/(dig +2),0).

n
Mg =max(1 —

2.3.2 Laplacian clustering

After computing the M,,; we employ the clustering to com-
bine the maximum nearest neighbor’s pixels into similar
clusters. In KNN matting, Laplacian clusters generate compar-
atively better results over Gaussian clusters in terms of nego-
tiable edge losses. For Laplacian clustering LC first, we need
to extract the R,,; from the M, as:

Ryar =S (LG, 1), L(:,2), My, 7 X C, ¥ X ), (22)
where [ contains the row values for each layer having 1 for
foreground and 2 for the background layer and r X ¢ represents

the dimension of R,,. Next, we compute the sparse patterns
that contain the diagonal values of R, as follows:

Dyyi=S4 (Z (Rya1,2),0,r%c,r= c) .

Finally, we apply the Laplacian clustering LC; containing
the set of multiple clusters as LC; = {LCy,LC3,...,LC;} on R,y
and D, from M, to create the clusters of neighboring values
as:

(23)

LC;i = Dyg — Ryal. (24)

As LC; includes multiple clusters of nearest regions so, we
have to combine all the clusters collectively to generate the
sparse patterns H denoting the sharp and blur regions. For this
purpose, we convolve and combine the LDMP-Trimap image
TMipyup with D,y and LC; to compute the sparse patterns H
as follows:

H=LC;i+AxD,y(Im, 0, rXc, rxc), (25)

where A is a constant and /m represents the foreground and
background layers of the Trimap image.

2.3.3 Cholesky Decomposition

The values obtained in the sparse patterns H are partially filled
and there exists a connectivity gap between the values highli-
ghting the blur and sharp regions. Therefore, this gap needs to
be filled to obtain optimal segmented results. To address this
issue, we employ “Cholesky Decomposition” CD over H with
zero-fill to completely fill the patterns that can be expressed
as:

Hcep = CD(H). (26)
2.3.4 PCG method

The conjugate gradient method is used to solve unconstrained
optimization problems i.e., energy minimization. Additionally,
PCG increases the robustness of proposed blur detection and
segmentation methods. Therefore, for Hcp optimization, we
normalize the Hcp by convolving the lambda constant with
foreground inside the Preconditioned Conjugate Gradients
(PCG) along-with the complement of H¢p that returns the
binarized segmented output X as follows:

X =PCG(H, A+fg, Hep, Hep'). (27)

Next, we apply the quantization process on the resultant X
to minimize the effects of the illumination change in the
image. If there exist higher illumination changes in an image,
a higher quantization (i.e., 10.0, 12.5) is used to overcome that
change. At last, a bilateral filter is applied over X to segment
the blur and preserve the sharp regions of an image. KNN
segmented results are shown in Fig. 8.

In addition, we also tested alpha matting for the segmen-
tation over LDMP trimaps. However, the alpha matting failed
to segment the minor edges of the sharp objects correctly.
Consequently, the false positive rate of alpha matting is high
in comparison to the KNN-matting. A comparison of KNN
matting and alpha matting is shown in Fig. 9.

3 Experiments and results

3.1 Datasets

Performance of the proposed method is evaluated on Shi et al.
[28] and Zhao et al. [35] datasets. The Shi dataset [28] con-
sists of 1000 images where 296 images are of motion blur and
the rest 704 are defocused. We used 704 out-of-focus images
for defocus blur detection and segmentation. This dataset
provides the hand-drawn ground truth images that indicate the
blur and non-blur regions.

Original input LDMP- KNN-
trimap segmented
output

Fig. 8 KNN segmented results
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On the other hand, the Zhao dataset [35] consists of 500
images with pixel-wise annotated ground truth images. This
dataset contains several low contrast, homogenous regions and
cluttered background images that make this dataset more
challenging for blur detection and segmentation.

3.2 Performance evaluation of proposed method

We evaluated the performance of the proposed method using
precision, recall and fl-score metrics. We used these metrics
for performance evaluation as also adopted by the comparative
approaches. We computed the precision and recall as follows:

Tp
Pr= ——, 28
r Tp+Fp ( )
T
Re= ——1 (29)
Tp+Fn

where Fy represent the incorrectly estimated sharp regions,
Tp denotes the correctly estimated blur regions and Fp
represents the pixels incorrectly denoting blur regions avai-
lable in the ground truth. In addition, we also computed the
statistical measure F1-score that represents the harmonic mean

Original Our Our FFT[24]  Su[8]
images detection segmenta
-tion
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of precision and recall. F1-score is a true indicator for perfor-
mance comparison when some methods have better precision
and others have better recall. F1-score lies in the range of 0 to
1, where 0 represents the lowest and 1 represents the highest
value. We computed the F1-score as follows:

fl1=2x Pr xRe’

Pr+Re

where Pr and Re represents the precision and recall of the

proposed method. Shown in Table | are the values of preci-

sion, recall, and Fl-score of the proposed blur detection and
blur segmentation methods.

(30)

3.3  Comparative study

We also compared the performance of the proposed method
with existing state-of-the-art techniques [6,8,19,21,24,25,28,
29,31,32,35] along with LTP. More specifically, we provided
a comparative analysis in terms of both qualitative and quan-
titative evaluation.

In qualitative evaluation, a visual comparison of Zhao and
Shi datasets are shown in Figs. 10 and 11. As the results of
comparative approaches are presented in binarized form,
therefore, we also transform our LDMP-Trimap into binary
for a fair comparison. Our proposed detection and segmen-
tation techniques outperform all state-of-the-art techniques
over both datasets regardless of camera configuration and
scene interpretation. We evaluated the performance of the pro-
posed technique against eleven existing state-of-the-art tech-
niques [6,8,19,21,24,25,28,29,31,32,35] along with LTP on
Shi and Zhao datasets. In [24], Chakrabarti et al. performed

Table 1 Performance evaluation of the proposed methods
Precision Recall Fl-score
P \ i . .942 R
SHI Dataset roposed blur detectlor'l 0.875 0.9 0.907
Proposed blur segmentation ~ 0.881 0.944 0912
DUT Dataset Proposed blur detection 0.910 0.867 0.88
Proposed blur segmentation ~ 0.907 0.898 0.89

' yip1)

Liu[19] LTP Ground

truth

Fig. 10 Results achieved by different blur detection and segmentation methods on Shi dataset
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Images

BTB[35] DHDE[31] DNET[32] HIFST[25] KSFV[29]  YI[21]

Ground
Truth

SHI[28] SVD[8] DBDF[6] LTP

Fig. 11 Results achieved by different blur detection and segmentation methods on Zhao dataset

blur detection using the local Fourier transform by evaluating
small neighborhood being blurred using the point spread
function(PSF). However, the performance of this technique
[24] degrades when performing blur detection under real-time
conditions (i.e., camera configuration, scene interpretation,
etc.). Liu et al. [19] performed the partial image blur detection
and segment the image based on different types of blur i.e.,
defocus blur and motion blur. However, this technique [19] is
unable to accurately segment the blur region due to ineffective
edge detection. In [8], Su et al. performed defocus blur
segmentation using the Hough transformation. Although, this
technique [8] performs marginally better than [19,24] by pres-
erving the shape of detected objects. However, this method [§]
is unable to clearly segment the blur and non-blur regions. In
[29] Pang et al. used kernel-specific features descriptor to train
the SVM for blur detection, however, the method outperforms
the Discriminative Blur Detection Features (DBDF) [6] me-
thod but still unable to achieve better accuracy. Shi et al. [6]
employed various methods i.e. kurtosis, average power spec-
trum, and data-driven local filters comprising of Gabor and
Laplacian to distinguish the blur and sharp regions in the input
images. These methods [6] provide better blur detection
performance for defocus images, however, the performance of
these methods degrade significantly in high-dense noisy ima-
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ges. Shi et al. [28] used a sparse feature dictionary for blur
detection based on an external set of defocus images. How-
ever, this method [28] is unable to perform well in the case of
immense blurred regions in the image. Existing local binary
patterns-based approaches i.e., [21] are unable to perform
better segmentation on defocus images when encountered with
noise. In [25], high-frequency DCT coefficients were used to
detect the blur and non-blur regions, however unable to detect
minor edges in the homogenous regions.

Few recent techniques [26,30—32,35] used deep learning
frameworks i.e., convolutional neural networks (CNN) for
blur detection in defocused images. However, these techniques
have more computational cost as compared to approaches
using conventional machine learning classifiers.

For quantitative evaluation, we provided the PR curves of
the proposed and each comparative method on Shi and Zhao
datasets in Figs. 12 and 13. More specifically, we used preci-
sion, recall, and F1-score metrics for performance comparison
on Zhao and Shi datasets as shown in Fig. 14 and Fig. 15. More-
over, we presented separate curves and F1-score comparison
for blur detection LDMP and segmentation KNN matting
methods. The proposed KNN segmentation method achieves
the highest precision, recall, and F1-score over comparative
approaches. Additionally, the proposed blur detection LDMP
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Fig. 12 Precision-Recall Curves for detection and segmentation on Shi-dataset: (a) Precision recall curve of blur detection via LDMP;

(b) precision-recall curve of blur segmentation via KNN matting
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Fig. 13 Precision-Recall Curves for detection and segmentation on Zhao-dataset: (a) Precision recall curve of blur detection via LDMP;
(b) precision-recall curve of blur segmentation via KNN matting
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method also provides superior detection performance on Shi
[28] and Zhao [35] datasets over existing state-of-the-art met-
hods. More specifically, the proposed blur detection method
LDMP achieves the precision, recall and Fl-score of 0.875,
0.942, and 0.907 on Shi dataset and 0.910, 0.867, and 0.88
respectively on Zhao-dataset. Similarly, our KNN matting-
based blur segmentation method achieves the precision, recall
and Fl-score of 0.881, 0.944, and 0.912 on Shi-dataset and
0.907, 0.898, and 0.89 respectively on Zhao-dataset.

3.4 Time complexity analysis

We designed an experiment to compute the time complexity of
the proposed and existing methods. We provided the time
complexity values of the proposed and existing state-of-the-art
[6—10,19,21,28,35] in Table 2 and Table 3. From the results,
we can clearly observe that the proposed blur detection and
segmentation methods are the second-best in terms of effici-
ency after LBP [21] as compared to existing systems. More
precisely, we achieve the time complexity of 10 seconds,
whereas [21] achieves 3.55 seconds and [35] has the largest
computational complexity of 5 days. The main reason for the
efficient implementation of the proposed blur detection and
segmentation methods is the direct use of integral image
values which makes the complexity independent of the size of
the local region. For run-time computation, we implemented
the code of comparative methods provided by the authors, as
well as used our own implementations where code is not
provided. Ten randomly selected images with an approximate
size of 640x480 pixels are tested for time complexity analysis.
The optimal threshold A; is located within a certain range
[0.0250—0.0990] in LDTP computation over the input image.
Furthermore, we tuned the following parameters for KNN
matting i.e., lambda = 100, level = 1 and nearest neighbors lies
in the range of 3 (for material matting) to 15 (for natural

Table 2 Time complexity analysis of different blur detection methods

Sharpness metric Avg. runtime

Gradient histogram span (mGHS) [6, 19] 273.19 s
Local Binary pattern (mlbp) [21] 355s
Total variation (mTV) [7] 50.s00 s
Singular value decomposition (mSVD) [8] 38.66 s
Average power spectrum slope (mAPS) [6] 22.89 s
Proposed LDMP (Shi-Dataset) 15.00 s
Proposed LDMP (Zhao-Dataset) 10s

Table 3 Time complexity analysis of different segmentation methods

Blur segmentation Avg. runtime

Proposed KNN (Zhao-Dataset) 10s
Proposed KNN (Shi-Dataset) 15s
Shi [6] 705.27 s
LBP [21] 40 ms
Tang [32] 11.6 h
Zhao [35] 5 days
Su [8] 37s
Shi [28] 38.36s
Vu [7] 19.18 s
Zhuo and Sim [9] 20.59 s
Zhu [10] 12 min

image matting).

The values are selected after the detailed experimentation
and the proposed methods produced the best results on these
parameter settings. The Matlab 2018@ is used for the imple-
mentation of the proposed methods. Moreover, the proposed
techniques are implemented on Intel(R) Core (TM) m3-7Y30
CPU @ 1.00 GHz, 1.61 GHz with an 8 GB memory system.

4 Discussion

In this section, we compared the Local Binary Patterns (LBP)
[21] approach with our proposed method. It has been observed
that the LBP segmentation does not perform well when
distinct depth discontinuity occurs between the background
and foreground regions in the images. In [21], the sharpness of
an image is estimated through local neighborhood processing.
However, it is difficult to integrate areas with different shar-
pness extents within a local window, especially around the
edges where the depth discontinuity occurs. Although the
noise reduction method was employed in [21] for image
denoising, however, LBP descriptor is still unable to provide
better results as compared to the proposed method as shown in
Fig.16. We can clearly observe from Fig.16 that the LBP
descriptor is unable to effectively segment the image corru-
pted by the noise. To overcome this problem, we employed
the proposed three-level thresholding to generate the LDTP
and an optimal LDMP-Trimap. Where LDMP provides better
performance as compared to the LBP descriptor as it is robust
to noise and variation in illumination conditions. Blur detec-
tion and segmentation methods achieve better results than
LBP in both cases, with noise removal and without noise
removal as shown in Fig. 16. From the results, we can clearly
observe that our proposed LDMP descriptor outperforms the
LBP descriptor [21] for defocus blur detection and segmen-
tation for high-dense noisy images. Although, our blur detec-
tion and segmentation approaches are computationally more
expensive than LBP slightly. However, the algorithmic com-
plexity of both approaches is O N(logN). Hence from the
results obtained after this experiment, we argue that our
proposed LDMP is more effective and efficient descriptor
over LBP for high-dense noisy images. It is also important to
mention that the proposed framework was specifically desi-
gned for the detection of the sharp objects amongst the defo-
cus objects. However, still able to detect the foreground obje-
cts even in the presence of motion blur as shown in Fig. 17.
To evaluate the performance of the proposed framework on
motion blur images, we also conducted some experiments on
motion blur images from the Shi et al. [28] dataset. The
proposed framework achieves better results on defocus blur
images over motion blur images. We would like to mention
that the performance of the proposed method slightly drops
while discriminating sharp and smooth blur regions due to the
consideration of a smaller local neighborhood. This limitation
can be addressed by decreasing the threshold A, value (i.e.,
0.0120, 0.0100) as shown in Fig. 18. However, we plan to
extend the proposed framework in terms of blur detection and
segmentation for smooth blur and sharp blur regions along
with other types of blur as well.
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5 Conclusions and future work

This paper has addressed, defocus blur detection and segmen-
tation problem without exploiting any information regarding
camera configuration, level, and intensity of the blur. For this
purpose, we present Local Directional Triplicate Patterns
(LDTP) and novel Local Directional Mean patterns (LDMP)
descriptors for the detection of blur and sharp regions in the
image. Additionally, the proposed method extracts the LDMP-
Trimap images using the local sharpness patterns of an input
image for blur segmentation. In order to perform binarized

segmentation of blur and non-blur regions, KNN matting is
applied over the detected LDMP-Trimap. Moreover, the
resultant binarized segmented output indicates the blur and
sharp regions separately. Experimental results on Shi and
Zhao datasets have demonstrated that the proposed method is
robust to noise and is able to generate more accurate defocus
maps over comparative methods. The proposed method pro-
vides superior detection performance as compared to existing
systems. Additionally, our method is most efficient among all
comparative methods that make it suitable for real-time
processing. In the future, we plan to extend the proposed work
by making it robust to homogenous regions and motion blur.
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