
Front. Comput. Sci., 2021, 15(5): 155209
https://doi.org/10.1007/s11704-020-9518-x

A semi-transparent selective undo algorithm for multi-user
collaborative editors

Weiwei CAI1, Fazhi HE 1, Xiao LV2, Yuan CHENG3

1 School of Computer Science, Wuhan University, Wuhan 430072, China
2 Department of Computer Engineering, Naval University of Engineering, Wuhan 430072, China

3 School of Information Management, Wuhan University, Wuhan 430072, China

c© Higher Education Press 2021

Abstract Multi-user collaborative editors are useful
computer-aided tools to support human-to-human collabora-
tion. For multi-user collaborative editors, selective undo is an
essential utility enabling users to undo any editing operations at
any time. Collaborative editors usually adopt operational trans-
formation (OT) to address concurrency and consistency issues.
However, it is still a great challenge to design an efficient and
correct OT algorithm capable of handling both normal do op-
erations and user-initiated undo operations because these two
kinds of operations can interfere with each other in various
forms. In this paper, we propose a semi-transparent selective
undo algorithm that handles both do and undo in a unified
framework, which separates the processing part of do oper-
ations from the processing part of undo operations. Formal
proofs are provided to prove the proposed algorithm under the
well-established criteria. Theoretical analysis and experimental
evaluation are conducted to show that the proposed algorithm
outperforms the prior OT-based selective undo algorithms.

Keywords human-centric collaboration, collaborative editing
systems, selective undo, concurrency control, replication con-
sistency

1 Introduction
Human-to-human collaboration is becoming more and more
critical in modern highly dispersed organizations and teams.
Computer-supported collaborative systems enable geographi-
cally separated people working together to achieve a common
goal through computer networks [1–11]. These systems pro-
vide strong technical supports for human-to-human collabora-
tion [12–15].

Multi-user collaborative editors (co-editors) are a typical
kind of collaborative systems. Co-editors allow users to freely
edit shared and replicated documents in a non-blocking way at
the same time [2, 6, 8, 16–20]. A general consistency require-
ment of co-editors is the operation effect preservation and con-
vergence preservation [2,8,16–18]. Operational transformation
(OT) can well satisfy the consistency requirements of co-editors

Received December 24, 2019; accepted June 9, 2020

E-mail: fzhe@whu.edu.cn

in unconstrained collaboration environments [2, 8, 16–18]. As
an optimistic concurrency control approach, OT coordinates
concurrent editing operations by transforming and executing
the operations in the transformed forms rather than the orig-
inal forms. Transformation of operations is the key for OT
technique to support a wide range of collaborative applica-
tions [2, 8, 9, 16–18].

Undo is a practical and powerful utility in interactive applica-
tions [21–30]. Undo utilities can help users revert unwanted ac-
tions and recover from errors. Most single-user editors provide
a linear undo utility, which allows users to undo the last op-
eration in chronological order. However, in unconstrained col-
laboration environments, the operations may be concurrently
generated by multiple users and executed in arbitrary orders
at different cooperating sites. The globally last operation may
be generated by other users, and the locally last operation may
not be the globally last operation. A suitable undo model for
such complicated interactions is non-linear undo, called selec-
tive undo or any undo [22, 23, 25–28], which allows operations
to be undone in any orders.

Several research work extended the OT-based consistency
maintenance algorithms to support both do and undo operations
in co-editors [23, 25–28]. Most solutions treat an undo com-
mand as an inverse operation and transform the inverse opera-
tion like a normal editing operation. However, normal editing
operations and inverse operations in essence have different se-
mantics and could interfere with each other, which complicates
the integrated OT solutions capable of supporting both do and
undo in correctness and efficiency.

In our view, the most critical reason for the complication is
that the existing solutions tightly couple undo-related problems
with do-related problems. We propose a semi-transparent selec-
tive undo algorithm to reduce the complication by decoupling
undo-related problems from do-related problems. The problem
separation needs to maintain a kind of metadata of shared doc-
uments on which the execution effect of undo operations has
no influence on the execution effect of do operations. Our solu-
tion is a semi-transparent approach in the sense that the solution
can transparently reuse the existing do algorithms to ensure the
consistency of the metadata and introduce new components to
achieve the consistency of the shared documents by the consis-



2 Front. Comput. Sci., 2021, 15(5): 155209

tent metadata. The main contributions are as follows:

1) We present an efficient and correct undo algorithm that
supports both do and undo operations in co-editors,

2) We prove the proposed algorithm with formal proofs un-
der the well-established correctness criteria [23, 25–28],

3) We conduct a comprehensive comparison of the proposed
algorithm and the prior algorithms with both theoretical
analysis and experimental evaluation.

The rest of this paper is structured as follows. Section 3 intro-
duces the basic concepts of OT technique and reviews the prior
work. Section 4 illustrates the proposed algorithm ST-Undo.
Section 5 discusses the operation migration scheme. Section 6
gives a working example of ST-Undo. Section 7 compares ST-
Undo with the prior approaches. The last section summaries
contributions and future directions.

2 Background and related work
2.1 OT supported co-editors
Co-editors generally adopt replicated storage, i.e., each cooper-
ating site maintains a copy of shared documents [16–20]. Users
can freely edit any part of local replicas. Updates (or opera-
tions) on the replicas are exchanged over networks among co-
operating sites. As the operations are allowed to be executed in
different orders at different replicas, distributed replicas may be
inconsistent.

To address the consistency issues in such unconstrained col-
laboration environments, the operational transformation (OT)
approach allows local operations (the operations generated at
local sites) to be executed immediately but requires remote op-
erations (the operations generated at remote sites) to be trans-
formed before their execution [16,27,31–33]. An OT algorithm
generally consists of two components: transformation control
algorithms and transformation functions.

Transformation control algorithms maintain a data structure
called history buffer, which records a set of executed operations
at each cooperating site [16, 27, 31–33]. Given a remote opera-
tion, according to causal/concurrent relations and context rela-
tions [16, 27, 34], the transformation control algorithms trans-
form the remote operation against its concurrent operations in
the history buffer in a certain order.

Transformation functions are responsible for doing the op-
eration transformation that may modify the parameters of an
operation and change its execution forms [35–39]. They are
dependent on the semantic of operations. Function T (Oa,Ob)
transforms Oa against Ob to get a transformed version of Oa,
denoted as O′a. For convenience, LT (O, L) represents the trans-
formation of O with a sequence of operations L one by one.
Transformation functions need to cooperate with transforma-
tion control algorithms and satisfy some properties, e.g., TP1
and TP2 [31].

Definition 1 (Transformation Property, TP1). Given two op-
erations Oa and Ob, generated from a state S , a transformation
function T satisfies TP1 if and only if the effect of executing
Oa before O′b is the same as the effect of executing Ob before
O′a, i.e., S · Oa · O′b = S · Ob · O′a, where O′a = T (Oa,Ob) and
O′b = T (Ob,Oa).

Definition 2 (Transformation Property, TP2). Given three op-
erations Oa, Ob, and Oc, generated from the same state, a
transformation function T satisfies TP2 if and only if the
transformation of Oc against Oa before O′b gets the same re-
sult as the transformation of Oc against Ob before O′a, i.e.,
LT (Oc, [Oa,O′b]) = LT (Oc, [Ob,O′a]), where O′a = T (Oa,Ob)
and O′b = T (Ob,Oa).

Following the established conventions [16, 35–41], a shared
text document is abstracted as a sequence of characters (or
objects). Every character has a positional index. Updates on
the documents can be represented by two primitive operations:
I(p, c) inserts character c at position p and D(p, c) deletes char-
acter c at position p.

The scenario depicted in Fig. 1 illustrates the basic idea of
OT. Initially, the replicated documents at site 1 and 2 have the
same state, S 10 = S 20 =“a”. Then User A and User B concur-
rently generate two operations O1 = I(1, y) and O2 = I(0, x),
respectively. The transformation and execution of O1 and O2 at
the cooperating sites are described as follows:

• at site 1, when O2 is received, the document state is
S 11 =“ay” and the history buffer is H11 = [O1]; O2 is
transformed by T (O2,O1); as O1 has no impact on the
effect position of O2, the transformation result is O′2 =
I(0, x); the document state becomes S 12 =“xay”;

• at site 2, when O1 is received, the document state is
S 21 =“xa” and the history buffer is H21 = [O2]; O1 is
transformed by T (O1,O2); as O2 shifts the effect posi-
tion of O1 to the right by one position, the transforma-
tion result is O′1 = I(2, y); the document state becomes
S 22 =“xay”.

2.2 Correctness criteria of selective undo
Users of interactive applications are familiar with the undo
functionality: undoing an operation is to eliminate the effect
of this operation and restore the document to a previous state at
the time that the last operation was not executed before. Multi-
user collaborative editors should also provide a similar undo
effect that is easy-to-understand and reasonable to collabora-
tive users. The undo effect in Definition 3 is a general spec-
ification of what undo effect should be achieved by undo al-
gorithms in collaboration environments [23]. This specification
has guided the design of undo algorithms for co-editors in the
literature [23, 25–28, 30]. Our undo algorithm also aims to

Fig. 1 Concurrent operations are commutative by transforming operations



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 3

achieve such undo effect.

Definition 3 (Undo Effect). Undoing an operation would re-
move the effect of its own but retain the effects of the other op-
erations.

We introduce an example to illustrate the undo effect. The
user at site 1 generates an operation O1 = D(1, c) on S 10 =“ac”
to get S 11=“a”. Concurrently, the user at site 2 generates an op-
eration O2 = I(1, b) on S 20 =“ac” to get S 21=“abc”. When
O2 is received at site 1, O2 is transformed and executed as
O′2 = I(1, b), and the document becomes S 12=“ab”. When
O1 is received at site 2, O1 is transformed and executed as
O′1 = D(2, c), and the document becomes S 22=“ab”. Accord-
ing to Definition 3, the undo effect of O1 should restore the
document to “abc”, which removes the effect of O1 but retains
the effect of O2. At site 2, the desired effect of undoing O1 can
be achieved by applying I(2, c) (the inverse operation of O′1) on
S 22. However, at site 1, applying I(1, c) (the inverse operation
of O′1) on S 12 fails to recover the document state “abc”. As O1

is not the last operation and O′2 has been executed after O1, the
inverse operation cannot remove the effect of O1.

2.3 Interference between do and undo
In the OT-based systems that transform both do and undo

operations, the same and different types of operations interfere
with each other in various forms [23]. One of the most thorny
problems in handling both do and undo is that the ordering re-
lations between concurrently inserted objects may abnormally
be reversed in co-editing scenarios [35–40].

Figure 2 illustrates the abnormal ordering problem, which is
developed from the scenario depicted in Fig. 1. The difference is
that three users collaboratively edit a shared document and User
C at site 3 generates an operation O3 from the initial document
state. The transformation and execution of these operations are
illustrated as follows:

• at site 1, when O3 is received, the history buffer is
[O1,O′2]; O3 is transformed by LT (O3, [O1,O′2]); the
transformation result is O′3 = D(1, a), the document state
becomes S 13 =“xy”;

• at site 2, when O3 is received, the history buffer is
[O2,O′1]; O3 is transformed by LT (O3, [O2,O′1]); the
transformation result is O′3 = D(1, a), the document state
becomes S 23 =“xy”;

• at site 3, when O1 is received, the document state is S 31=“
” and the history buffer is H31 = [O3]; O1 is transformed
by T (O1,O3); as O3 has shifted the effect position of O1

to the left by one position, the transformation result is
O′1 = I(0, y); when O2 is received, the document state
is S 32 =“y” and the history buffer is H32 = [O3,O′1]; O2

is transformed by LT (O2, [O3,O′1]); as O3 has no impact
on the effect position of O2, the transformation result of
T (O2,O3) is O′2 = I(0, x), which has a position tie with
O′1; according to the tie-breaking policy1), the transfor-
mation result of T (O′2,O

′
1) may be O′2 = I(1, x); the doc-

ument state becomes S 33 =“yx”.

Fig. 2 Reversing the preceding order of objects

In the above scenario, the cooperating sites have different
document states after executing the same set of operations in
different orders. The inconsistency is obviously not acceptable.
To address the inconsistency issue, most OT algorithms impose
a transformation order that is consistent with total order rela-
tions among operations [33]. Even though convergent results
can be achieved by constraining transformation orders, the re-
sults may not preserve the preceding orders of concurrently in-
serted objects. As shown in Fig. 2, the final results may con-
verge to either “xy” or “yx”, due to the uncertainty of total or-
dering relations among operations. It is clear that the state “yx”
is strange and unreasonable to collaboration users, because “y”
would be definitely placed before “x” if O3 has not been gener-
ated by User C at site 3.

The abnormal ordering issue causes problems in handling
undo operations. Still consider the above example. If users want
to undo O3 at a cooperating site after the three operations have
been applied on all the replicas, the correct undo effect should
restore the document state “xay” for removing the effect of O3

but retaining the effects of O1 and O2. However, if the repli-
cas converge to “yx”, it is almost impossible to get the desired
document state “xay” after O3 is undone.

2.4 Overview of related work
In the literature, there are two highly researched concurrency
control approaches for co-editing systems: operational trans-
formation (OT) [42–44] and commutative replicated data type
(CRDT) [45–48].

2.4.1 Operational transformation
Early OT-based undo solutions transform inverse opera-
tions in the same way as do operations according to
causal/concurrent/context relations [23–28]. These solutions
have high computation cost in avoiding the necessary inverse
properties on the transformation functions. AnyUndo [23] en-
forces a do-undo pair to behave like an identity operation by
coupling and decoupling pairs of do and undo operations. The
time complexity for undo in AnyUndo is exponential in the
number of operations in the history buffer. COT [27] explicitly
represents causal/concurrent/context relations between a vari-
ety of operations by context vector timestamps. The time com-

1) The position tie is usually broken by site identifiers.



4 Front. Comput. Sci., 2021, 15(5): 155209

plexity of COT in handling undo operations is exponential in
the number of operations in the history buffer. By storing N
versions of a normal do operation, where N is the number of
cooperating sites, COT can achieve a linear time complexity in
handling undo operations. SOCT-Undo [24] works under the
assumption that there is a transformation function capable of
satisfying the inverse properties. The time complexity of SOCT-
Undo is quadratic in the number of operations in the history
buffer.

The follow-up OT-based undo solutions invent functional
components to address the abnormal ordering problem. TTF
[36] introduces an object sequence to keep deleted objects.
ABT [39] introduces a special history buffer in which insert
operations are placed before delete operations. UNO [25,26] is
a selective undo algorithm built on TTF. As deleted objects are
never lost, UNO can preserve the ordering relations among ob-
jects. Except for the object sequence, UNO stores both do and
undo operation in the history buffer. The time and space com-
plexity of UNO is linear in the size of the object sequence plus
the number of operations in the history buffer. ABTU [28] is de-
veloped from ABT [39]. In ABTU, undo operations are stored
in the form of inverse operations of the corresponding do opera-
tions in the history buffer. As an operation may be transformed
with both do and undo operations, ABTU arranges the oper-
ations in the history buffer according to their effect positions.
ABTU has a linear time and space complexity in the size of
history buffer.

2.4.2 Commutative replicated data type
CRDT addresses the abnormal ordering issue without requiring
transformation functions [45–48]. CRDT designs a replicated
data type on which the operations having concurrent relations
must be commutative. In other words, the concurrent operations
can lead to the same abstract state of the data type in any ex-
ecution orders. Specific to collaborative text editing, a CRDT
solution is a sequence data type capable of supporting the addi-
tion and removal of elements.

In the past decade, several CRDT-based undo solutions were
invented [46–48]. Those algorithms have common features:
recording operation effects in an object sequence, associating
objects with unique identifiers, searching objects by identifiers,
counting visible or invisible objects, and manipulating the ob-
ject sequence by identifiers-based operations. To guarantee the
consistency of object sequences, the CRDT-based solutions re-
quire the identifier-based operations with concurrent relations
to be commutative. However, achieving the consistency of the
object sequences is not the final target. The CRDT-based so-
lutions must convert the identifier-based operations to/from the
position-based operations to finally achieve the consistency of
shared and replicated documents. The time and space over-
head of the CRDT-based solutions are dependent on the size of
the object sequences because the conversion must update and
search the object sequences [43].

2.4.3 Comparison of OT and CRDT
According to the recent research studies [42–44], OT and
CRDT both adopt the strategy of transforming operations to
solve the consistency problems in collaborative applications.
They are both a kind of transformation-based concurrency con-

trol approaches but different in the way of transforming opera-
tions.

UNO [25,26] is an OT-based solution, but it has some typical
features of the CRDT-based solutions [45–48]. UNO requires
an object sequence to keep tombstones and position-based op-
erations to manipulate the object sequence. UNO achieves the
consistency of the object sequence by the combination of trans-
formation control algorithms and TTF transformation function.
However, to ensure the consistency of shared documents, UNO
must do the conversion between the operations manipulating
the object sequence and the operations manipulating the shared
documents. Thus, UNO has the same time and space complex-
ity as the CRDT-based solutions. They both are dependent on
the size of the object sequences. As UNO does not need to as-
sociate the complicated identifiers with objects, UNO could be
more efficient than the CRDT-based solutions in space over-
head.

3 The proposed algorithm
Keeping deleted characters can avoid the abnormal ordering
issue. ST-Undo stores an intermediate-layer document as the
metadata of shared documents. The metadata consists of vis-
ible or invisible objects, corresponding to the characters ever
appearing in shared documents. The undo effect of an opera-
tion on intermediate-layer documents only changes the visible
attribute of an object, without impacting its relative position in
the intermediate-layer documents. Thus, undoing operations do
not influence the transformation of normal do operations, ST-
Undo can individually address do-related problems and undo-
related problems at the intermediate-layer data model. This sec-
tion will illustrate the high-level workflow and low-level func-
tional components and how they interact with the metadata to
achieve the desired consistency and undo effect.

3.1 Two-layer operation and data model
Intermediate-layer documents are introduced as the metadata
of shared documents. From the perspective of applications, the
characters in a shared document are ordered and indexed in a
linear addressing space. The corresponding intermediate-layer
document records all the characters that ever have appeared in
the shared document, including the deleted characters. We refer
the application-layer documents to the shared documents and
refer the application-layer operations to the primitive character-
wise insert and delete.

An intermediate-layer document can be considered to be a
sequence of visible and invisible objects. Each object C has two
attributes: Num(C) represents its visible attribute, and Char(C)
records a normal character c. Num(C) records how many times
an object C is deleted by operations, which could be normal
do operations or undo operations. Given an object C, before
any operation targets it, we have Num(C) = 0. Every time C is
deleted, its visible attribute value is correspondingly updated,
Num(C) = Num(C) + 1. If Num(C) > 0, C is an invisible ob-
ject; otherwise C is a visible object. Two operations update an
intermediate-layer document: I(p, c) inserts a visible object C
at position p and M(p, c, v) marks the object at position p visi-
ble if v = −1 or invisible if v = +1.

Definition 4 (Effect of Intermediate-layer Insert). Given an



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 5

operation IO = I(p, c) defined on a state IS , the effect of ap-
plying IO on IS is expressed as IS · I(p, c) = IS [0, p− 1]+C+
IS [p, . . .], where Num(C) = 0 and Char(C) = c.

Definition 5 (Effect of Intermediate-layer Mark). Given an
operation IO = M(p, c, v) defined on a state IS , the effect of
applying IO on IS is expressed as IS · M(p, c, v) = IS [0, p −
1] +C′ + IS [p + 1, . . .], where Num(C′) = Num(IS [p]) + v.

Definitions 4 and 5 give formal specifications of the ef-
fects of intermediate-layer operations. It can be observed that
an intermediate-layer insert has a similar shifting effect as an
application-layer insert but an intermediate-layer mark opera-
tion has no shifting effect and only updates the visible attribute
of an object without moving objects.

The mapping relationship between an application-layer doc-
ument S and an intermediate-layer document IS can be de-
scribed as follows:

• S [p] �→ IS [p + m], where IS [p + m] is the pth visible
object and m is the number of invisible objects before
IS [p + m];

• IS [p] �→ S [p − m], where m is the number of invisible
objects before the visible object IS [p].

3.2 Functional components and workflow

ST-Undo consists of four major functional components: a bi-
directional operation migration scheme, a transformation func-
tion for intermediate-layer operations, a transformation control
algorithm, and an undo algorithm. They work together to han-
dle do and undo operations.

Users at cooperating sites can concurrently edit the replicas
of shared documents. The changes made on the local replicas
are detected and delivered as application-layer operations to the
underlying ST-Undo algorithm. At the same time, ST-Undo al-
gorithm receives update information from other sites. It deliv-
ers transformed application-layer operations to co-editors for
reflecting other users’ actions. Figure 3 illustrates the workflow
of an application-layer operation at two cooperative sites,

• at site 1, the operation migration scheme first migrates O
to an intermediate-layer operation IO, and applies IO on
the intermediate-layer document IS 1; finally IO is sent to
site 2 over networks;

• at site 2, the transformation control algorithm first trans-
forms the received operation IO against its concurrent op-
erations that have been executed at site 2, and the opera-
tion migration scheme migrates the transformed operation
IO′ back to an application-layer operation O′ and applies
IO′ on IS 2; finally the user at site 2 is noticed of O after
O′ is applied on S 2.

Users at cooperating sites can undo any operation. As every
application-layer operation corresponds to one intermediate-
layer operation, undoing an application-layer operation is
equivalent to undoing an intermediate-layer operation. ST-
Undo algorithm accepts an undo command Undo(IO) and de-
livers an application-layer operation Ox to co-editor for remov-
ing the effect of O. Figure 4 illustrates the workflow of an undo
command at two cooperative sites,

• at site 1, the undo algorithm computes an operation IOx

that can undo the effect of IO on IS 1, then the operation
migration scheme migrates IOx to an application-layer
operation Ox and applies IOx on IS 1; finally the user is
noticed of the undo effect of O after Ox is applied on S 1;
the undo command Undo(IO) is sent to site 2;

• at site 2, the undo command is received and ready for ex-
ecution, the undo algorithm computes an operation IOx

that can undo the effect of IO on IS 2, then the operation
migration scheme migrates IOx to an application-layer
operation Ox and applies IOx on IS 2; finally the user is
noticed of the undo effect of O after Ox is applied on S 2.

In an ST-Undo system, there are at least two concurrent and
exclusive threads. One thread handles local do and undo oper-
ations, and the other thread handles remote do and undo oper-
ations. At a time, only one thread that performs the operation
migration procedure is running in the system.

Fig. 3 Workflow of do operations



6 Front. Comput. Sci., 2021, 15(5): 155209

Fig. 4 Workflow of undo operations

3.3 Supporting normal do operations
To be capable of handling do operations, ST-Undo chooses the
combination of an existing transformation control algorithm
and a transformation function specific to intermediate-layer op-
erations. There are several transformation control algorithms,
such as TIBOT [32], COT [27], POT [33], which are inde-
pendent of the specific operation and data models and only re-
quire the transformation functions capable of preserving TP1.
Thus, ST-Undo can guarantee the consistency of intermediate-
layer documents by TP1-preserving transformation functions
and TP2-avoiding transformation control algorithms. We in-
troduce a transformation function for intermediate-layer opera-
tions capable of satisfying TP1.

Some notations are introduced for the description of the
transformation function. Given an intermediate-layer operation
IO, Type(IO) denotes the operation type: I for insert operations
and M for mark operations, Pos(IO) denotes the positional in-
dex, S id(IO) denotes the unique identifier of the cooperating
site at which IO is generated.

Algorithm 1 describes a transformation function that trans-
forms a pair of intermediate-layer operations. If IO2 is a mark
operation, the resulting operation IO1

′ = T (IO1, IO2) is the
same as the original operation, as IO2 has no impact on IO1.
However, if IO2 is an insert operation, the resulting operation
IO1

′ = T (IO1, IO2) may change the position attribute to con-
sider the shifting effect of IO2 on IO1.

3.4 Supporting selective undo
The undo algorithm shares the history buffer with the do algo-
rithm for the operation selection and undo. However, the undo
algorithm does not add new operations, remove and transform
the existing operations in the history buffer. Do and undo oper-
ations do not interfere with each other in transformation, thus
the undo algorithm can transparently work together with the do
algorithm.

An undo command Undo(IO) indicates the selected opera-
tion to be undone. As every operation can be uniquely identi-
fied by a site identifier and a sequence number, it is trivial to

Algorithm 1 T(IO1,IO2)

Input: IO1 and IO2 are intermediate-layer ops
Output: IO′1 is a transformed version of IO1

1: IO′1 ← IO1;
2: if Type(IO1) = I ∧ Type(IO2) = I then
3: if Pos(IO1) > Pos(IO2) then
4: Pos(IO1

′)← Pos(IO1
′) + 1;

5: els if Pos(IO1) = Pos(IO2) ∧ S id(IO1) > S id(IO2) then
6: Pos(IO1

′)← Pos(IO1
′) + 1;

7: end if
8: els if Type(IO1) = M ∧ Type(IO2) = I then
9: if Pos(IO1) � Pos(IO2) then

10: Pos(IO1
′)← Pos(IO1

′) + 1;
11: end if
12: end if
13: Return IO1

′;

determine which operation in the history buffer should be un-
done. ST-Undo handles an undo command in a unified way, no
matter whether it is issued at local or remote cooperating sites.
Given an undo command Undo(IO), ST-Undo would perform
the following steps:

1) determine whether IO should be undone or redone,
2) transform a mark operation IOx against the operations ex-

ecuted or generated after IO to get IO′x, where IO′x is able
to cancel the effect of IO,

3) update the intermediate-layer document by the trans-
formed operation IO′x and migrate IO′x to an application-
layer operation Ox.

At the first step, ST-Undo first checks the number of undo
commands performed on the operation to address multi-undo
cases. In collaborative environments, an operation may be un-
done several times by sequential or concurrent operations. In
these cases, ST-Undo handles an undo command in the odd-
even-switch way [27]: if an operation is undone for odd times,
the operation is undone; if an operation is undone for even



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 7

times, the operation is redone.
At step 2, ST-Undo computes an operation IO′x whose execu-

tion effect can cancel the effect of IO on the intermediate-layer
document. First, an operation IOx is generated to remove the
effect of IO on the document state at the time of executing IO.
Between the execution of IO and the undo of IO, a sequence
of operations L may have been applied on the document. To
consider the effects of those operations, ST-Undo transforms
IOx against L to get an operation IO′x = LT (IOx, L), which can
remove the effect of IO on the document state at the time of
undoing IO.

At step 3, ST-Undo removes the effect of IO by applying IO′x
on the intermediate-layer document. As the state changes of
the intermediate-layer document need to be synchronized with
the application-layer document, IO′x would be migrated to an
application-layer operation Ox, which can remove the effect of
O on the current application-layer document.

3.5 Correctness
We formally prove that ST-Undo can maintain the consistency
of replicated documents and acquire the correct undo effect. ST-
Undo can guarantee the consistency by the combination of a
TP1-preserving transformation function and an existing TP2-
avoiding transformation control algorithm.

Lemma 1 The transformation function T given in Algor-
ithm 1 satisfies TP1.

Proof Given a pair of intermediate-layer operations IO1 and
IO2 generated on a state IS , we prove that IS · IO1 · IO′2 =
IS · IO2 · IO′1. Consider the three combinations of different op-
eration types,

1) IO1 = I(p1, c1) and IO2 = I(p2, c2), the position parame-
ters have four relations:

(a) p1 > p2, the left side is IS [0, p2 − 1] + C2 +

IS [p2, p1−1]+C1+ IS [p1, . . .], and the right side is
IS [0, p2−1]+C2+ IS [p2, p1−1]+C1+ IS [p1, . . .];

(b) p1 < p2, the left side is IS [0, p1 − 1] + C1 +

IS [p1, p2−1]+C2+ IS [p2, . . .]; and the right side is
IS [0, p1−1]+C1+ IS [p1, p2−1]+C2+ IS [p2, . . .];

(c) p1 = p2 and S id(IO1) > S id(IO2), the left side is
IS [0, p1 − 1] + C2 + C1 + IS [p1, . . .], and the right
side is IS [0, p2 − 1] +C2 + C1 + IS [p2, . . .];

(d) p1 = p2 and S id(IO1) < S id(IO2), the left side is
IS [0, p1 − 1] + C1 + C2 + IS [p1, . . .], and the right
side is IS [0, p2 − 1] +C1 + C2 + IS [p2, . . .];

in all cases, the left side equals the right side.
2) IO1 = I(p1, c1) and IO2 = M(p2, c2, v2), the position pa-

rameters have three relations:
(a) p1 > p2, the left side is IS [0, p2 − 1] + C2 +

IS [p2 +1, p1−1]+C1 + IS [p1, . . .], the right side is
IS [0, p2−1]+C2+IS [p2+1, p1−1]+C1+IS [p1, . . .];

(b) p1 = p2, the left side is IS [0, p1 − 1] + C1 + C2 +

IS [p1 + 1, . . .], the right side is IS [0, p2 − 1] +C1 +

C2 + IS [p2 + 1, . . .];
(c) p1 < p2, the left side is IS [0, p1 − 1] + C1 +

IS [p1, p2 −1]+C2 + IS [p2 +1, . . .], the right side is

IS [0, p1−1]+C1+IS [p1, p2−1]+C2+IS [p2+1, . . .];
in all cases, the left side equals the right side.

3) IO1 = M(p1, c1, v1) and IO2 = M(p2, c2, v2), as IO1 and
IO2 have no impact on each other, the left side equals the
right side, regardless of the position relations.

Combination 1, 2, and 3, the lemma is proved.

Lemma 2 Given a pair of intermediate-layer operations IO1

and IO2 generated on a state IS , if the effect of IO1 =

M(p1, c1, v1) is to mark the object C1 in IS , the effect of
IO′1 = T (IO1, IO2) is also to mark C1 in the new state IS · IO2.

Proof Consider the operation type of IO2,

1) if IO2 = M(p2, c2, v2), as IO2 does not move any object
in IS , C1 is still at position p1 in IS · IO2; according to
the transformation function, Pos(IO′1) = Pos(IO1); thus
the effect of IO′1 is also to mark C1 in IS · IO2;

2) if IO2 = I(p2, c2), the position parameters have 3 rela-
tions:

(a) p1 > p2, IS · IO2 = IS [0, p2 − 1]+C2 + IS [p2, p1 −
1] + C1 + IS [p1 + 1, . . .], C1 is at position p1 + 1 in
IS · IO2; according to the transformation function,
Pos(IO′1) = Pos(IO1) + 1; thus the effect of IO′1 is
also to mark C1 in IS · IO2;

(b) p1 = p2, IS · IO2 = IS [0, p2 − 1] + C2 + C1 +

IS [p2+1, . . .], C1 is at position p2+1 in IS ·IO2; ac-
cording to the transformation function, Pos(IO′1) =
Pos(IO1) + 1; thus the effect of IO′1 is also to mark
C1 in IS · IO2;

(c) p1 < p2, IS · IO2 = IS [0, p1 − 1] + C1 + IS [p1 +

1, p2 − 1] + C2 + IS [p2, . . .], C1 is at position p1 in
IS · IO2; according to the transformation function,
Pos(IO′1) = Pos(IO1); thus the effect of IO′1 is also
to mark C1 in IS · IO2;

Combination 1 and 2, the lemma is proved.

According to Lemma 2, it is trivial to derive Lemma 3.

Lemma 3 Given an intermediate-layer mark operation IO, if
the effect of IO is to mark the object C in IS , the effect of
IO′ = LT (IO, L) is also to mark C in the state IS · L.

Theorem 1 Given an undo command Undo(O), ST-Undo
would remove the effect of O but retain the effects of the other
operations.

Proof We make the assumption that IO is the intermediate-
layer operation corresponding to O, the current application-
layer document state is S and intermediate-layer document state
is IS , and IO takes effect on the object C at position p. And we
introduce an auxiliary function F that returns a sequence of vis-
ible characters according to the given sequence of objects, e.g.,
F(IS ) = S .

At the step 2, an intermediate-layer mark operation IO′x
is generated by the algorithm; according to Lemma 3, IO′x
takes effect on C. At the step 3, ST-Undo migrates IO′x to an
application-layer operation Ox. We have the following equa-



8 Front. Comput. Sci., 2021, 15(5): 155209

tions before and after Undo(O) is handled,

S = F(IS [0, p − 1]) + F(C) + F(IS [p + 1, . . .])

S · Ox = F(IS [0, p − 1]) + F(C′) + F(IS [p + 1, . . .])

1) ST-Undo can preserve the effects of the other operations.
According to the above equations, it can be observed that
Undo(O) has no impact on IS [0, p−1] and IS [p+1, . . .],
which record the effects of the other operations. Thus the
effects of the other operations are retained after O is un-
done.

2) ST-Undo can remove the effect of O. Consider the opera-
tion type of O,

(a) O is an insertion, if C is visible and C′ is invisible,
the effect of Ox is to delete Char(C) from S ; if C
is invisible, C′ must be invisible, because the effect
of IOx is to mark C invisible; and Ox would be an
identity operation, which has no effect on S ; in both
cases, the effect of O is removed;

(b) O is a deletion, if C is invisible and C′ is visi-
ble, the effect of Ox is to insert Char(C) between
F(IS [0, p−1]) and F(IS [p+1, . . .]); if C is invisible
and C′ is invisible, there exist other operations that
have made C invisible, and Ox would be an identity
operation; in both cases, the effect of O is removed.

Combination of 1 and 2, the theorem is proved.

By adapting the application-layer data and operation model
to the intermediate-layer data and operation model, ST-Undo
can separately handle do operations and undo operations. The
consistency of intermediate-layer documents is guaranteed by
the combination of a transformation function for intermediate-
layer operations and an existing generic transformation control
algorithm. As the undo algorithm never modifies the history
buffer, the undo algorithm does not influence the do algorithm,
which transforms do operations with the operations in the his-
tory buffer. The undo algorithm can trivially remove the effect
of an operation and retain the effects of the other operations
on the intermediate-layer documents. ST-Undo finally derives
consistent shared and replicated documents from the consis-
tent intermediate-layer documents by the operation migration
scheme.

4 Operation migration scheme
We need an efficient data structure to represent intermediate-
layer documents and support the conversion between editing
operations to/from intermediate-layer operations. A data struc-
ture called hidden-object tree is designed to serve those pur-
poses. We come up with this design according to several heuris-
tics by our long-lasting observation and experimentation: (1)
an intermediate-layer document essentially is an abstract linear
data type, which has a variety of implementations, such as dy-
namic arrays, linked lists, and trees; (2) the visible objects in
an intermediate-layer document are not necessary for operation
migration, and therefore saving more objects increases space
overhead but may not decrease time overhead; (3) in considera-
tion of undo operations, invisible objects could be dynamically
added or removed. This section will illustrate the structure of

the hidden-object trees and the methods of performing the op-
eration conversion by the hidden-object trees.

4.1 HOT: hidden-object tree
A hidden-object tree is a binary search tree that stores a set of
invisible objects. Each node in the tree represents an invisible
object and has five attributes,

• Pos(node) represents the position attribute of a node,
• Num(node) records the sum of mark effects performed on

a node,
• S ize(node) records the number of nodes in the subtree

rooted by a node,
• Le f t(node) refers to the left child of a node,
• Right(node) refers to the right child of a node.

Assume the root node of a subtree is located at position p
(p < n), its left subtree represents the address space [0, p − 1]
and the right subtree represents the address space [p+ 1, n− 1].
More concretely, the position attribute of the left child equals its
addressing position in the space [0, n − 1], while the right child
is relatively addressed in the sense that its position is relative to
its parent node.

We take an example to illustrate hidden-object trees. Ini-
tially, a shared document is “abcdef”. After a sequence of
operations ([D(3, d),D(2, c),D(3, f )]) is executed, the doc-
ument becomes “abe”. Figure 5 depicts the tree. Accord-
ing to the size attribute of noded, we can derive that there
are three hidden objects in the intermediate-layer document:
noded, nodec, and node f . According to the position attributes,
we can derive their addressing positions: Pos(noded) = 3,
Pos(nodec) = 2, Pos(noded) + Pos(node f ) = 5. And the num-
bers of hidden objects positioned before noded, nodec, and
node f are S ize(Le f t(noded)) = 1, S ize(Le f t(nodec)) = 0, and
S ize(Le f t(node f )) + S ize(Le f t(noded)) + 1 = 2.

A hidden-object tree allows fast lookup, addition, removal,
and movement of hidden objects. To not be tedious, we intro-
duce four basic routines that manipulate a hidden-object tree,
without giving the implementations in detail,

• Search(pos,HOT ) retrieves the object whose addressing
position is pos,

• Add(pos,HOT ) adds a new object with addressing posi-
tion pos into HOT ,

• Remove(pos,HOT ) removes the object whose addressing
position is pos,

• Shi f t(pos,HOT ) increments the position attribute of the
objects by one whose addressing position is greater than
or equal to pos.

4.2 Operation migration
The operation migration scheme calls CountLR and CountRL
to count the number of hidden objects before a given position
in two directions. In the following descriptions, if a node is null,
its size attribute value is treated as 0 in default.

Given a position index p in the application-layer document,
the function CountLR in Algorithm 2 traverses the hidden-
object tree to get the number of hidden objects m positioned



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 9

Fig. 5 A hidden-object tree

Algorithm 2 CountLR(p,HOT )

Input: p is a position in S ;
Output: m is the number of objects before IS [p + m];

1: m← 0; if (p < 0) return 0;
2: cnode ← Le f t(Root(HOT ));
3: While cnode � null do
4: lnode← Le f t(cnode);
5: if p + S ize(lnode) < Pos(cnode) then
6: cnode ← lnode;
7: else
8: p← p + S ize(lnode) + 1 − Pos(cnode);
9: m← m + S ize(lnode) + 1;

10: cnode ← Right(cnode);
11: end if
12: end while
13: Return m;

before the pth visible object (the target object) in the
intermediate-layer document. For a traversed non-null node
cnode, if p + S ize(lnode) < Pos(cnode), the target object must
be positioned before cnode and the search continues in the sub-
tree Le f t(cnode); otherwise, all the objects in Le f t(cnode) and
cnode itself are positioned before the target object, the search
continues in the subtree Right(cnode).

Given a position index p in the intermediate-layer document,
the function CountRL in Algorithm 3 traverses the hidden-
object tree to get the number of hidden objects m positioned
before the target object whose addressing position is at position
p in the intermediate-layer document. For a traversed non-null
node cnode, if p < Pos(cnode), the target object must be po-
sitioned before cnode and the search continues in the subtree
Le f t(cnode); if p = Pos(cnode), the operation takes effect on
cnode and the search ends up in advance; if p > Pos(cnode),
all the objects in the subtree Le f t(cnode) and cnode itself are
positioned before the target object, the search continues in the
subtree Right(cnode).

The function MAI in Algorithm 4 migrates an application-
layer operation O to an intermediate-layer operation IO. The
position mapping is computed by CountLR. There are two
cases. When O is I(p, c), c is mapped to the object that is lo-
cated immediately after the (p−1)th visible object, the function
calls CountLR(p − 1) and returns an intermediate-layer opera-
tion I(p + m, c). When O is D(p, c), c is mapped to the pth
visible object, and the function calls CountLR(p) and returns
an intermediate-layer operation M(p + m, c,+1).

The function MIA in Algorithm 5 migrates an intermediate-

Algorithm 3 CountRL(p,HOT )

Input: p is a position in IS ;
Output: m is the number of hidden objects in IS [p];

1: m← 0; if (p = 0) return 0;
2: cnode ← Le f t(Root(HOT ));
3: while cnode � null do
4: lnode← Le f t(cnode);
5: if p < Pos(cnode) then
6: cnode ← lnode;
7: els if p = Pos(cnode) then
8: m← m + S ize(lnode); break;
9: else

10: p← p − Pos(cnode);
11: m← m + S ize(lnode) + 1;
12: cnode ← Right(cnode);
13: end if
14: end while
15: Return m;

Algorithm 4 MAI(O,HOT )

Input: O is an application-layer operation
Output: IO is an operation generated on HOT

1: if O is I(p, c) then
2: m← CountLR(p − 1,HOT );
3: IO← I(p + m, c);
4: else
5: m← CountLR(p, HOT );
6: IO← M(p + m, c,+1);
7: end if
8: Return IO;

Algorithm 5 MIA(IO,HOT )

Input: IO is an operation generated on HOT

Output: O is an application-layer operation
1: if IO is I(p, c) then
2: m← CountRL(p, HOT );
3: O← I(p − m, c);
4: else
5: node← S earch(p, HOT );
6: if IO is M(p, c,−1) and node = null then
7: m← CountRL(p, HOT );
8: O← I(p − m, c);
9: els if IO is M(p, c,+1) and Num(Node) = 1 then

10: m← CountRL(p, HOT );
11: O← D(p − m, c);
12: else
13: O← identity;
14: end if
15: end if
16: Return O;

layer operation IO to an application-layer operation O after the
effect of IO has been recored in HOT . The position mapping is
computed by CountRL. There are three cases,

1) when IO is I(p, c), IO is a normal do operation that in-
tends to insert a visible object at position p, and the func-
tion returns an application-layer operation I(p − m, c);

2) when IO is M(p, c,−1), IO is an undo operation that in-
tends to make the object node at position p visible; if node



10 Front. Comput. Sci., 2021, 15(5): 155209

does not exist in HOT , IO has made node visible, and the
function returns an application-layer operation I(p−m, c);
otherwise, node is invisible and the function returns an
identity operation;

3) when IO is M(p, c,+1), IO could a do or undo operation
that intends to make the visible object node at position
p invisible; if Num(node) = 1, IO has made node invis-
ible, and the function returns an application-layer oper-
ation D(p − m, c); otherwise, node was invisible before
executing IO and the function returns an identity opera-
tion.

4.3 Operation effect recording
An intermediate-layer operation could be generated in handling
do and undo operations. The effects of intermediate-layer oper-
ations are recorded in the hidden-object tree to stay consistent
with the application-layer document.

The Algorithm 6 describes how to apply an intermediate-
layer operation IO on a hidden-object tree HOT . In line 2, when
IO is an insert operation, the hidden objects whose address-
ing position is not less than Pos(IO) are shifted to the right
by one position. In lines 4–12, when IO is a mark operation,
the algorithm first finds the object whose addressing position is
Pos(IO); if no such object, a new visible object will be created
and added into HOT ; if the object exists, its visible attribute is
updated and the object will be removed if it becomes a visible
object.

The operation migration scheme efficiently stores the
intermediate-layer documents and manages the conversion be-
tween intermediate-layer and application-layer operations. As
an intermediate-layer document only stores invisible objects,
both space and time overhead of the scheme are dependent on
the number of deleted characters rather than the full set of char-
acters that ever appear in a shared and replicated document.

5 A working example
In this section, we use a representative co-editing scenario to
explain the proposed algorithm step by step in handling do
and undo operations and discuss the practical usefulness of ST-
Undo in real-world complex co-editing systems in detail.

Algorithm 6 Update(IO, HOT )

Input: IO is an intermediate-layer operation generated on HOT

Output:
1: if IO is I(p, c) then
2: S hi f t(p, HOT );
3: else
4: node← S earch(p, HOT );
5: if node � null

6: Num(node) ← Num(node) + v;
7: if Num(node) = 0 then
8: Remove(p, HOT );
9: end if

10: else
11: Add(p,HOT );
12: end if
13: end if

In Fig. 6, three users collaboratively edit a shared text docu-
ment. Initially, the document state is “a”. Users concurrently
generate do and undo operations: User A at site 1 gener-
ates O1 to delete the character “a”, User B at site 2 generates
O2 to delete the character “a” and then issues an undo action
Undo(O2), and User C at site 3 generates O3 to insert a charac-
ter “x” before “a”. We elaborate the collaboration processes by
ST-Undo as follows.

At site 1, S 10=“a”, H10 = [], tree10 = {};
1) User A generates O1 = D(0, a), S 11 =“ ”,

(a) migrate O1 to IO1 : M(0, a,+1);
(b) add IO1 to the history buffer, H11 = [IO1];
(c) update tree10 by IO1, tree11 = {{′a′, 0, 1, 1}}2);

2) Receive IO2 = M(0, a,+1),
(a) transform IO2 by LT (IO2, [IO1]), IO2

′ =

M(0, a,+1);
(b) add IO2 to the history buffer, H12 = [IO1, IO′2];
(c) migrate IO2

′ to O2
′ :identity;

(d) update tree11 by IO2
′, tree12 = {{‘a′, 0, 2, 1}};

(e) apply O′2, S 12 = S 11 · identity =“ ”;
3) Receive Undo(IO2),

(a) transform IOx by LT (IOx, []), IOx
′ = M(0, a,−1);

(b) migrate IOx
′ to Ox :identity;

(c) update tree12 by IOx
′, tree13 = {{′a′, 0, 1, 1}};

(d) apply Ox, S 13 = S 12 · identity =“ ”.
4) Receive IO3 = I(0, x),

(a) transform IO3 by LT (IO3, [IO1, IO2
′]), IO3

′ =
I(0, x);

(b) add IO3 to the history buffer, H14 =

[IO1, IO2
′, IO3

′];
(c) migrate IO3

′ to O′3 : I(0, x);
(d) update tree13 by IO3

′, tree14 = {{′a′, 1, 1, 1}};
(e) apply O′3, S 14 = S 13 · I(0, x) =“x”;

At site 2, S 20=“a”, H20 = [], tree20 = {};
1) User B generates O2 = D(0, a), S 21 =“ ”;

(a) migrate O2 to IO2 : M(0, a,+1);
(b) add IO2 to the history buffer, H21 = [IO2];
(c) update tree20 by IO2, tree20 = {{′a′, 0, 1, 1}};

2) User B issues Undo(IO2),
(a) transform IOx by LT (IOx, []), IOx

′ = M(0, a,−1);
(b) migrate IOx

′ to Ox : I(0, a);
(c) update tree21 by IOx

′, tree22 = {};
(d) apply Ox, S 22 = S 21 · I(0, a) =“a”.

3) Receive IO1 = M(0, a,+1),
(a) transform IO1 by LT (IO1, [IO2]), IO1

′ =

M(0, a,+1);
(b) add IO1 to the history buffer, H23 = [IO1, IO2

′],
whereIO2

′ = T (IO2, IO1);
(c) migrate IO1

′ to O′1 : D(0, a);

2) For clarity, a node is denoted by {Char, Pos,Num, S ize}



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 11

Fig. 6 A working example

(d) update tree22 by IO1
′, tree23 = {{′a′, 0, 1, 1}};

(e) apply O′1, S 23 = S 22 · D(0, a) =“ ”;
4) Receive IO3 = I(0, x),

(a) transform IO3 by LT (IO3, [IO1, IO2
′]), IO3

′ =
I(0, x);

(b) add IO3 to the history buffer, H24 =

[IO1, IO2
′, IO3

′];
(c) migrate IO3

′ to O′3 : I(0, x);
(d) update tree23 by IO3

′, tree24 = {{′a′, 1, 1, 1}};
(e) apply O′3, S 24 = S 23 · I(0, x) =“x”;

At site 3, S 30=“a”, H30 = [], tree30 = {};
1) User C generates O3 = I(0, x), S 31 =“xa”;

(a) migrate O3 to IO3 : I(0, x);
(b) add IO3 to the history buffer, H31 = [IO3];
(c) update tree30 by IO3, tree31 = {};

2) Receive IO1 = M(0, a,+1),
(a) transform IO1 by LT (IO1, [IO3]), IO1

′ =

M(1, a,+1);

(b) add IO1 to the history buffer, H32 = [IO1, IO3
′],

where IO′3 = T (IO3, IO1);
(c) migrate IO1

′ to O′1 : D(1, a);
(d) update tree31 by IO1

′, tree32 = {{′a′, 1, 1, 1}};
(e) apply O′1, S 32 = S 31 · D(1, a) =“x”;

3) Receive IO2 = M(0, a,+1),
(a) transform IO2 by LT (IO2, [IO1, IO3

′]), IO2
′ =

M(1, a,+1);
(b) add IO2 to the history buffer, H33 =

[IO1, IO2
′, IO3

′], where IO2
′ = T (IO2, IO1) and

IO3
′ = LT (IO3, [IO1, IO′2]);

(c) migrate IO2
′ to O′2 :identity;

(d) update tree32 by IO2
′, tree33 = {{′a′, 1, 2, 1}};

(e) apply O′2, S 33 = S 32 · identity =“x”;
4) Receive Undo(IO2),

(a) transform IOx : M(0, a,−1) by LT (IOx, [IO3
′]),

IOx
′ = M(1, a,−1);

(b) migrate IOx
′ to Ox :identity;

(c) update tree33 by IOx
′, tree34 = {{′a′, 1, 1, 1}};



12 Front. Comput. Sci., 2021, 15(5): 155209

(d) apply Ox, S 34 = S 33 · identity =“x”.

From the above example, it can be observed that the repli-
cated documents at different cooperating sites finally are consis-
tent after executing the same set of do and undo operations, re-
gardless of the execution orders. Furthermore, the correct undo
effect is delivered to the users: undoing an operation (e.g., O2)
only removes its own effect but preserves the effects of other op-
erations. The additional metadata only maintains deleted char-
acters not the full set of characters.

ST-Undo is applicable to the co-editing systems of which the
editing documents are linearly addressed. In other words, if a
single-user editor allows the objects in the documents to be ac-
cessed by positional index and maintains the objects in a linear-
addressing space, the single-user editor can be extended to a
multi-user collaborative editors by ST-Undo. Text editors usu-
ally meets the linear-addressing requirement.

To apply ST-Undo in a real-world complex co-editing sys-
tem, we need to devise a functional component capable of
translating the user actions that can change the document states
to/from the character-wise operations that can be handled by
ST-Undo. If the user-level operations are converted to the
algorithm-level operations, complicated collaboration scenar-
ios from the perspective of users are simplified by the scenar-
ios consisting of the algorithm-level operations with causal and
concurrency relations. In the above example, for the conve-
nience of discussion, we assume that users directly generate
the operations handled by ST-Undo. However, in real-world
co-editing systems, the user-level operations are far more com-
plex than the two character-wise operations. Translation of the
complex user-level operations to the simple algorithm-level op-
erations is a challenging task. And it is beyond the scope of this
paper.

6 Comparison to prior approaches
UNO [25, 26] and ABTU [28] are two relatively new undo ap-
proaches built on the OT-based consistency maintenance algo-
rithms capable of solving the abnormal ordering issue. UNO
[25, 26] and the CRDT-based undo solutions [46–48] have the
same usage of object sequences. And the time/space efficiency
of UNO and the CRDT-based undo solutions both are domi-
nated by the object sequences. We consider UNO to be a repre-
sentative of object-sequence centric undo approaches. As UNO
and ABTU have been compared with the prior approaches in
the literature [25, 26, 28, 30], the following discussions focus
on the comparison of ST-Undo, UNO and ABTU by theoretical
analysis and experimental evaluation.

6.1 Theoretical analysis
6.1.1 Comparison of ST-Undo and UNO
UNO (undo as a new operation) [25,26] extends selective undo
functionality on TTF systems [36]. At each cooperating site,
TTF systems maintain an object sequence consisting of visi-
ble and invisible objects in a dynamic array. Each object corre-
sponds to a character ever appearing in the shared documents. A
special transformation function is used in TTF systems to trans-
form the operations that manipulate the object sequence. To do
the conversion between editing operations and object-sequence
operations, TTF systems compute the position conversion by

traversing the object sequence and counting the visible and in-
visible objects.

UNO defines a new operation as the inverse of delete oper-
ations. Moreover, the TTF transformation function is extended
to support this new operation. After users issue an undo com-
mand, UNO interprets the undo command as a normal do oper-
ation and sends the do operation, instead of the undo command,
to other cooperating sites. Consequently, UNO handles an undo
command generated at remote sites like a remote do operation.

ST-Undo has two distinctive differences with UNO. First,
UNO stores both do and undo operations in the history buffer,
whereas ST-Undo only stores normal do operations in the his-
tory buffer. This difference brings multiple benefits to ST-Undo:
(1) the algorithm becomes simple, because the algorithm does
not need to consider the interference between do and undo, (2)
ST-Undo has better efficiency than UNO in doing transforma-
tions. Second, UNO maintains all the visible and invisible ob-
jects in the object sequence, but ST-Undo only maintains a set
of invisible objects stored in a binary search tree. Moreover,
UNO never removes objects from the object sequence, whereas
ST-Undo removes an object in the tree when it becomes visible.
With these differences, ST-Undo can outperform UNO in both
time and space efficiency.

6.1.2 Comparison of ST-Undo and ABTU
ABTU (ABT-based undo) [28] is established on the framework
of ABT [39], which aims to preserve object order relations.
ABT arranges the history buffer as insert-before-delete, i.e.,
insertions are placed before deletions. In local operation pro-
cessing, given a user-generated operation O, ABT transforms O
with deletion part to get a transformed operation O′ and broad-
cast O′ to other cooperating sites. In remote operation process-
ing, given a received operation O, ABT transforms O with its
concurrent operations in the insertion part to get an interme-
diate operation O′′, and then transforms O′′ with the deletion
part to get the final result O′. In handling both local and remote
operations, ABT updates the history buffer to keep the insert-
before-delete arrangement.

To improve the time efficiency of ABT, ABTU stores all the
operations in the history buffer with respect to the effect posi-
tion of operations, which is mandated as a total order. To be
capable of handling undo operations, ABTU associates every
operation with five vector timestamps to model the various re-
lations between the operations defined in ABTU. Compared to
ABTU, ABT associates every operation with one vector times-
tamp to detect causal and concurrent relations.

ST-Undo has three distinctive differences with ABTU. First,
in processing a normal do operation, the transformation cost
of ABTU depends on all the operations in the history buffer,
whereas the transformation cost of ST-Undo depends on its
concurrent operations. Second, ABTU models complex depen-
dency and do/undo/redo relations among operations by vector
timestamps, whereas ST-Undo only models causal dependency
between a normal do operation and its undo command, which
is compatible with general causal relations. Third, ABTU does
not fully respect the undo effect specified in Definition 3, but
ST-Undo does fully respect that undo effect. For example, if
O1 inserts a character and later O2 deletes the character, then



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 13

ABTU considers that O2 is dependent on O1. Unless O1 has
been undone, Undo(O2) is not permitted. In the case that mul-
tiple concurrent operations delete the same character, undoing
one of them would re-insert the character in the document. Con-
sequently, in ABTU, undoing an operation may remove not
only its own effect but also the other operations’ effects.

6.1.3 Comprehensive comparison
In terms of metadata, ST-Undo maintains a history buffer and
a hidden-object tree, ABT maintains a history buffer, and UNO
maintains a history buffer and an object sequence. The time and
space costs are related to these metadata. It is worth pointing
out that the history buffer of ST-Undo only stores normal do
operations, whereas the history buffers of UNO and ABT store
both do and undo operations. Moreover, ST-Undo and UNO
use scalar timestamps, but ABTU uses vector timestamps. To
evaluate the performance, we consider the following variables,

• n denotes the number of cooperating sites,
• N denotes the number of characters ever appearing in

shared documents, and Nd denotes the number of deleted
characters;

• M denotes the number of all operations accumulated in
the history buffer, Mc denotes the number of operations
that are concurrent to a given operation in the history
buffer, Md denoted the number of normal do operations
accumulated in the history buffer.

For UNO and ST-Undo, an object in the object sequence, a
node in the hidden object tree, and an operation in the history
buffer, have a fixed size. Thus the space complexity of UNO
and ST-Undo can be expressed as O(N + M) and O(Nd + Md),
respectively. For ABTU, an operation in the history buffer is
associated with five vector timestamps, and the size of a vector
timestamp is proportional to the number of cooperating sites.
The space complexity of ABTU is expressed by O(M × n). Ta-
ble 1 summarizes the space complexity.

The time cost of UNO is dominated by operation transforma-
tion and position conversion. Both the worst-time complexity
and average-time complexity of the position conversion proce-
dure are O(N). In local do processing, the main computation
is the position conversion, and the worst-case and average-case
time complexity are O(N). In local undo processing, the main
computation includes the operation transformation and the po-
sition conversion. In the worst case, an operation is transformed
with all the operations in the history buffer, and the time cost
is O(M). In the average case, assume every operation has the
same possibility being undone, the number of transformations
is
∑M

k=1 k× 1
M =

M
2 . The worst-case and average-case time com-

plexity are O(M+N). UNO handles remote do and undo opera-
tions in the same way, which first transforms a given operation
with its concurrent operations and then calls the position con-
version. Thus the worst-case and average-case time complexity
of UNO in remote do/undo processing are O(Mc + N).

Table 1 Space complexity of UNO, ABTU, and ST-Undo

UNO ABTU ST-Undo

O(N + M) O(M × n) O(Nd + Md)

No matter what operations are handled, the time cost of
ABTU includes two parts: operation placement and operation
transformation. The operation placement is similar to a step of
insertion sort. Its worst-case and average-case time complex-
ity are O(M). In local do processing, the operation placement
costs O(1) and the operation transformation costs O(M), and
the worst-case and average-case time complexity are O(M). In
remote do processing, the operation placement and the oper-
ation transformation both cost O(M), and the worst-case and
average-case time complexity are O(M). In local undo process-
ing, the operation placement costs O(1) and the operation trans-
formation costs O(M), and the worst-case and average-case
time complexity are O(M). In remote undo processing, the op-
eration placement and the operation transformation both cost
O(M), and the worst-case and average-case time complexity are
O(M).

The time cost of ST-Undo is dominated by operation
transformation and operation migration. The worst-case and
average-case time complexity of the operation migration pro-
cedure are O(Nd) and O(log(Nd)) respectively. In local do pro-
cessing, the main computation is the operation migration, and
the worst-case and average-case time complexity are O(Nd) and
O(log(Nd)) respectively. In remote do processing, ST-Undo first
transforms a given operation against its concurrent operations
in the history buffer and then calls the operation migration pro-
cedure, and the worst-case and average-case time complexity
are O(Mc + Nd) and O(Mc + log(Nd)) respectively. ST-Undo
handles local/remote undo commands in the same way, which
first calls the operation transformation and then operation mi-
gration. In the worst case, an operation is transformed with all
the operations in the history buffer; in the average case, as-
sume every operation has the same possibility being undone,
the number of transformations is

∑Md

k=1 k × 1
Md
=

Md

2 . The worst-
case and average-case time complexity are O(Md + Nd) and
O(Md + log(Nd)).

Table 2 summarizes the time complexity. The relations
among the variables in big O notation generally can be ex-
pressed as: N > M > Nd , M > Md, and M � Mc. It can
be seen that ST-Undo outperforms the other two algorithms in
both time and space efficiency.

6.2 Performance evaluation
We conducted two experiments to measure the time costs of
three algorithms in handling do and undo operations. All the
algorithms were implemented in Java and executed on a com-
puter running Windows 10 Education with an Intel CPU Core
i7-6600U (2.6 GHz) and 4 GB RAM. The two experiments
follow the same design pattern as the prior performance studies

Table 2 Time complexity of UNO, ABTU, and ST-Undo

Do/Undo UNO ABTU ST-Undo

Local Do O(N) O(Nd)
Remote Do O(Mc + N)

O(M)
O(Mc + Nd)

Worst case
Local Undo O(M + N)
Remote Undo O(Mc + N)

O(M) O(Md + Nd)

Local Do O(N) O(log(Nd))
Remote Do O(Mc + N)

O(M)
O(Mc + log(Nd ))

Average case
Local Undo O(M + N)
Remote Undo O(Mc + N)

O(M) O(Md + log(Nd ))



14 Front. Comput. Sci., 2021, 15(5): 155209

of co-editing algorithms [41, 49]. Each experiment is run 20
times to average the measured times.

In the first experiment, we test the performance of handling
normal do operations. The collaboration workloads are simu-
lated by the following processes: (1) site 1 generates n1 editing
operations and concurrently site 2 generates n2 editing opera-
tions, (2) the n1 operations generated by site 1 are received and
handled at site 2. The n1 operations from site 1 are concurrent
to the n2 operations from site 2. Now the history buffer of site 1
stores n1 operations and the history buffer of site 2 stores n1+n2

operations. At the first step, we measure the time cost of han-
dling a newly generated operation at site 1. At the second step,
we measure the time cost of handling a remote operation that is
generated at site 1 and executed at site 2. In this experiment, we
vary n1 from 200 to 1000 with step 200 and set n2 to a constant
value 1000, and the shared document initially contains 1000
characters.

The results of the first experiment are shown in Figs. 7 and 8.
In the measurement of local/remote do operations, the time cost
of UNO and ABTU both grow linearly, whereas the time cost
of ST-Undo has no significant change, with the increasing num-
ber of do operations in the history buffer. More concretely, in
local operation processing, when the history buffer accumulates

Fig. 7 Time cost in handling a local do operation

Fig. 8 Time cost in handling a remote do operation

1000 operations, UNO spends about 80us more than ST-Undo,
and ABTU spends about 50us more than ST-Undo; in re-
mote operation processing, when the history buffer accumu-
lates 2000 operations (1000 concurrent operations and 1000
causally-related operations), UNO and ABTU spend approxi-
mately 130us and 50us more than ST-Undo.

In the second experiment, we test the performance of han-
dling undo operations. The collaboration workloads are simu-
lated by the following processes: (1) site 1 generate n1 editing
operations and then undoes the n1 operations, and site 2 concur-
rently generates n2 editing operations and then undoes the n2

editing operations; (2) site 2 receives the n1 editing operations
and n1 undo operations from site 1. The 2n1 do/undo operations
from site 1 are concurrent to the 2n2 do/undo operations from
site 2. For UNO and ABTU, the history buffer at site 1 contains
2n1 operations and the history buffer at site 2 contains 2n2 oper-
ations; for ST-Undo, the history buffer at site 1 and site 2 only
contain n1 and n2 normal do operations respectively. At the first
step, we measure the time cost in handling a local undo opera-
tion at site 1. At the second step, we measure the time cost in
handling a remote undo operation that is generated at site 1 and
executed at site 2. In this experiment, we vary n1 from 100 to
500 with step 100 and set n2 to a constant value 500, and the
shared document initially contains 1000 characters.

The results of the second experiment are shown in Figs. 9
and 10. In handling undo operations, the time cost of the three
algorithms have a linear growth with the increasing number
of do and undo operations. In specific, in handling local undo
operations, the execution time of UNO is longer than that of
ST-Undo roughly by a factor of six, and the execution time of
ABTU is about two times longer than that of ST-Undo; in han-
dling remote undo operations, ST-Undo and UNO have a close
growth rate with the increasing number of do and undo opera-
tions, which is lower than that of ABTU.

From the above experiments, it can be observed that UNO
and ABTU extend the undo capability at the price of degrading
the performance of normal do operations. Compared to UNO
and ABTU, ST-Undo can retain the high-efficiency of consis-
tency maintenance for do operations while providing an effi-
cient selective undo capability. The experiments confirmed that
ST-Undo is more efficient than UNO and ABTU.

Fig. 9 Time cost in handling a local undo operation



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 15

Fig. 10 Time cost in handling a remote undo operation

7 Conclusion
Undo is an essential functionality for interactive applications. In
computer supported collaboration environments, enabling mul-
tiple users undo any operation at any time is a great technical
challenge. In this work, we present a semi-transparent undo ap-
proach for multi-user collaborative editors. Our idea is to sep-
arate the undo-related problems from the do-related problems
and avoid the interference between do and undo operations as
much as possible. Main innovations in our approach include:
a multi-layer OT framework capable of handling both do and
undo operations in a unified way, an undo algorithm that trans-
parently works with existing do algorithms, an efficient oper-
ation migration scheme that has logarithmic time complexity
and linear space complexity in the number of deleted objects.
Compared to the prior approaches, the proposed algorithm not
only can deliver the desired undo effect to collaborative users
but also has better efficiency in time and space overhead.

Collaborative systems are becoming important computer-
aided tools for human-to-human collaboration. In future re-
search, we continue our work in the following directions.
Firstly, we will extend our idea to mobile and cloud com-
puting environments [50]. Secondly, we will enhance our algo-
rithm in real-world applications, such as collaborative digital
design [51–61] and knowledge-sharing social network or com-
munity [62–66]. Thirdly, we will discuss how to accelerate
massive-scale collaborative applications with parallel and opti-
mization methods [67–72].

Acknowledgements This work was supported by National Key R&D

Program of China (2017YFB0503004), the National Natural Science Foun-

dation of China (Grant No. 62072348), China Postdoctoral Science Foun-

dation (2019M662709), and Natural Science Foundation of Hubei Province

(2016FC0106305 and 2019CFB627).

References
1. Cho B, Sun C Z, Ng A. Issues and experiences in building heteroge-

neous co-editing systems. Proceedings of the ACM on Human-Computer

Interaction, 2019, 3(GROUP): 1–28
2. Fan H F, Li K, Li X Z, Song T Y, Zhang W Z, Shi Y. CoVSCode: a

novel real-time collaborative programming environment for lightweight

IDE. Applied Sciences, 2019, 9(21): 4642
3. Mirri S, Roccetti M, Salomoni P. Collaborative design of software ap-

plications: the role of users. Human-centric Computing and Information
Sciences, 2018, 8(1): 1–20

4. Liang Y Q, He F Z, Zeng X T. 3D mesh simplification with feature preser-

vation based on whale optimization algorithm and differential evolution.
Integrated Computer-Aided Engineering, 2020, 27(4): 417–435

5. Touhafi A, Braeken A, Tahiri A, Zbakh M. Coderlabs: a cloud-based plat-
form for real-time online labs with user collaboration. Concurrency and
Computation: Practice and Experience, 2018, 30(12): e4377

6. Gao L P, Gao D F, Xiong N X, Lee C. CoWebDraw: a real-time collabora-
tive graphical editing system supporting multi-clients based on HTML5.
Multimedia Tools and Applications, 2018, 77(4): 5067–5082

7. Ignat C L, André L, Oster G. Enhancing rich content wikis with real-time
collaboration. Concurrency and Computation: Practice and Experience,
2021, 33(8): e4110

8. Fan H F, Zhu H M, Liu Q, Shi Y, Sun C Z. A novel DAL scheme with
shared-locking for semantic conflict prevention in unconstrained real-
time collaborative programming. IEEE Access, 2017, 5: 22566–22583

9. Ng A, Sun C Z. Operational transformation for real-time synchronization
of shared workspace in cloud storage. In: Proceedings of ACM Interna-
tional Conference on Supporting Group Work. 2016, 61–70

10. Junuzovic S, Dewan P. Towards self-optimizing collaborative systems.
In: Proceedings of ACM Conference on Computer Supported Coopera-

tive Work. 2012, 1421–1430
11. Bartel J W, Dewan P. Towards multi-domain collaborative toolkits. In:

Proceedings of ACM Conference on Computer Supported Cooperative

Work. 2012, 1297–1306
12. Li G, Zhu H Y, Lu T, Ding X H, Gu N. Is it good to be like wikipedia?: ex-

ploring the trade-offs of introducing collaborative editing model to Q&A

sites. In: Proceedings of ACM Conference on Computer Supported Co-
operative Work and Social Computing. 2015, 1080–1091

13. Olson J S, Wang D K, Olson G M, Zhang J W. How people write to-

gether now: beginning the investigation with advanced undergraduates in
a project course. ACM Transactions on Computer-Human Interaction,
2017, 24(1): 1–40

14. Wang D K, Tan H D, Lu T. Why users do not want to write together when
they are writing together: users’ rationales for today’s collaborative writ-
ing practices. Proceedings of the ACM on Human-Computer Interaction,

2017, 1(CSCW): 1–18
15. Cai W W, Ng A, Sun C Z. Some discoveries from a concurrency bench-

mark study of major cloud storage systems. In: Proceedings of Interna-
tional Conferenceon on Cooperative Design, Visualization, and Engineer-
ing. 2018, 44–48

16. Sun C Z, Chen D, Jia X H, Zhang Y C, Yang Y. Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Transactions on Computer-Human Interaction,
1998, 5(1): 63–108

17. Ng A, Liu F, Xia S, Shen H F, Sun C Z. CoMaya: incorporating ad-
vanced collaboration capabilities into 3D digital media design tools. In:

Proceedings of ACM Conference on Computer Supported Cooperative
Work. 2008, 5–8

18. Sun C Z, Xia S, Sun D, Chen D, Shen H F, Cai W T. Transparent adap-

tation of single-user applications for multi-user real-time collaboration.
ACM Transactions on Computer-Human Interaction, 2006, 13(4): 531–
582

19. Xu B M, Gao Q, Li C Y. Reusing single-user applications to create collab-
orative multi-member applications. Advances in Engineering Software,
2009, 40(8): 618–622

20. Fan H F, Sun C Z, Shen H F. ATCoPE: any-time collaborative program-
ming environment for seamless integration of real-time and non-real-time
teamwork in software development. In: Proceedings of ACM Interna-



16 Front. Comput. Sci., 2021, 15(5): 155209

tional Conference on Supporting Group Work. 2012, 107–116
21. Prakash A, Knister M J. A framework for undoing actions in collabora-

tive systems. ACM Transactions on Computer-Human Interaction, 1994,
1(4): 295–330

22. Choudhary R, Dewan P. A general multi-user undo/redo model. In: Pro-

ceedings of European Conference on Computer-Supported Cooperative
Work. 1995, 231–246

23. Sun C Z. Undo as concurrent inverse in group editors. ACM Transactions

on Computer-Human Interaction, 2002, 9(4): 309–361
24. Ferrié J, Vidot N, Cart M. Concurrent undo operations in collaborative

environments using operational transformation. In: Proceedings of OTM

Confederated International Conference on the Move to Meaningful Inter-
net Systems. 2004, 155–173

25. Weiss S, Urso P, Molli P. An undo framework for P2P collaborative edit-
ing. In: Proceedings of EAI International Conference on Collaborative
Computing. 2009, 529–544

26. Weiss S, Urso P, Molli P. A flexible undo framework for collaborative
editing. INRIA Research Report, 2008, RR-6516

27. Sun D, Sun C Z. Context-based operational transformation in distributed

collaborative editing systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 2009, 20(10): 1454–1470

28. Shao B, Li D, Gu N. An algorithm for selective undo of any operation in

collaborative applications. In: Proceedings of ACM International Con-
ference on Supporting Group Work. 2010, 131–140

29. Yoon Y S, Myers B A. Supporting selective undo in a code editor. In:

Proceedings of International Conference on Software Engineering. 2015,
223–233

30. Cherif A, Imine A. Using CSP for coordinating undo-based collaborative

applications. In: Proceedings of ACM Symposium on Applied Comput-
ing. 2016, 1928–1935

31. Ressel M, Nitsche-Ruhland D, Gunzenhaeuser R. Integrating,
transformation-oriented approach to concurrency control and undo in
group editors. In: Proceedings of ACM Conference on Computer Sup-
ported Cooperative Work. 1996, 288–297

32. Li R, Li D, Sun C Z. A time interval based consistency control algorithm
for interactive groupware applications. In: Proceedings of IEEE Interna-
tional Conference on Parallel and Distributed Systems. 2004, 429–436

33. Xu Y, Sun C Z. Conditions and patterns for achieving convergence in OT-
based co-editors. IEEE Transactions on Parallel and Distributed Systems,
2016, 27(3): 695–709

34. Lamport L. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 1978, 21(7): 558–565

35. Li D, Li R. Preserving operation effects relation in group editors. In: Pro-
ceedings of ACM Conference on Computer Supported Cooperative Work.
2004, 457–466

36. Oster G, Molli P, Urso P, Imine A. Tombstone transformation functions
for ensuring consistency in collaborative editing systems. In: Proceed-
ings of EAI International Conference on Collaborative Computing. 2006,

1–10
37. Li R, Li D. A new operational transformation framework for real-time

group editors. IEEE Transactions on Parallel and Distributed Systems,

2007, 18(3): 307–319
38. Imine A. Flexible concurrency control for real-time collaborative edi-

tors. In: Proceedings of IEEE International Conference on Distributed

Computing Systems. 2008, 423–428
39. Li D, Li R. An admissibility-based operational transformation frame-

work for collaborative editing systems. Computer Supported Cooperative
Work, 2010, 19(1): 1–43

40. Gu N, Yang J M, Zhang Q W. Consistency maintenance based on the mark

& retrace technique in groupware systems. In: Proceedings of ACM In-
ternational Conference on Supporting Group Work. 2005, 264–273

41. Shao B, Li D, Gu N. A fast operational transformation algorithm for mo-

bile and asynchronous collaboration. IEEE Transactions on Parallel and
Distributed Systems, 2010, 21(12): 1707-1720

42. Sun C Z, Sun D, Ng A, Cai W W, Cho B. Real differences between OT and
CRDT under a general transformation framework for consistency main-
tenance in co-editors. Proceedings of the ACM on Human-Computer
Interaction, 2020, 4(GROUP): 1–26

43. Sun D, Sun C Z, Ng A, Cai W W. Real differences between OT and
CRDT in correctness and complexity for consistency maintenance in co-
editors. Proceedings of the ACM on Human-Computer Interaction, 2020,

4(CSCW1): 1-30
44. Sun D, Sun C Z, Ng A, Cai W W. Real differences between OT and CRDT

in building co-editing systems and real world applications. 2020, arXiv
preprint arXiv:1905.01517

45. Oster G, Urso P, Molli P, Imine A. Data consistency for P2P collaborative

editing. In: Proceedings of ACM Conference on Computer Supported
Cooperative Work. 2006, 259–268

46. Shapiro M, Preguiça N, Baquero C, Zawirski M. Conflict-free replicated

data types. INRIA Research Report, 2011, RR-7687
47. Weiss S, Urso P, Molli P. Logoot-Undo: distributed collaborative editing

system on P2P networks. IEEE Transactions on Parallel and Distributed

Systems, 2010, 21(8): 1162–1174
48. Yu W H. Supporting string-wise operations and selective undo for peer-

to-peer group editing. In: Proceedings of ACM International Conference
on Supporting Group Work. 2014, 226–237

49. Li D, Li R. A performance study of group editing algorithms. In: Pro-

ceedings of IEEE International Conference on Parallel and Distributed
Systems. 2006, 300–307

50. Lim Y, Ahn S. Architecture for mobile group communication in campus

environment. Frontiers of Computer Science, 2013, 7(4): 505–513
51. Gao L P, Yu F Y, Chen Q K, Xiong N X. Consistency maintenance of do

and undo/redo operations in real-time collaborative bitmap editing sys-

tems. Cluster Computing, 2016, 19(1): 255–267
52. Li H R, He F Z, Liang Y Q, Quan Q. A dividing-based many-objective

evolutionary algorithm for large-scale feature selection. Soft Computing,

2020, 24(9): 6851–6870
53. Zhang S D, He F Z. DRCDN: learning deep residual convolutional de-

hazing networks. The Visual Computer, 2020, 36(9): 1797–1808
54. Cui Z Y, Liu Y, Zhao W. YUN: a fast ground-to-air cloud image recog-

nition framework. In: Proceedings of IEEE International Conference on

Computer Supported Cooperative Work in Design. 2019, 290–294.
55. Quan Q, He F Z, Li H R. A multi-phase blending method with incremen-

tal intensity for training detection networks. The Visual Computer, 2021,

37(2): 245–259
56. Yu H P, He F Z, Pan Y T. A scalable region-based level set method using

adaptive bilateral filter for noisy image segmentation. Multimedia Tools

and Applications, 2020, 79: 5743–5765
57. Gao M, Ling B, Yang L, Wen J H, Xiong Q Y, Li S. From similarity

perspective: a robust collaborative filtering approach for service recom-
mendations. Frontiers of Computer Science, 2019, 13(2): 231–246

58. Chen Y L, He F Z, Li H R, Zhang D J, Wu Y Q. A full migration

BBO algorithm with enhanced population quality bounds for multimodal
biomedical image registration. Applied Soft Computing, 2020, 93:
106335

59. Su K, Yang G P, Yang L, Su P, Yin Y L. Non-negative locality-constrained
vocabulary tree for finger vein image retrieval. Frontiers of Computer
Science, 2019, 13(2): 318–332

60. Yong J S, He F Z, Li H R, Zhou W Q. A novel bat algorithm based
on cross boundary learning and uniform explosion strategy. Applied
Mathematics—A Journal of Chinese Universities, 2019, 34(4): 482-504

61. Wu C X, Li L F, Peng C W, Wu Y, Xiong N X, Lee C. Design and analysis
of an effective graphics collaborative editing system. Eurasip Journal on
Image and Video Processing, 2019, 1: 50



Weiwei CAI et al. A semi-transparent selective undo algorithm for multi-user collaborative editors 17

62. Zhang J, He F Z, Chen Y L. A new haze removal approach for sky/river
alike scenes based on external and internal clues. Multimedia Tools and
Applications, 2020, 79: 2085–2107

63. Wang T, Zhang Q P, Liu Z, Liu W L, Wen D. On social computing re-
search collaboration patterns: a social network perspective. Frontiers of
Computer Science, 2012, 6(1): 122–130

64. Pan Y T, He F Z, Yu H P. Learning social representations with deep

autoencoder for recommender system. World Wide Web, 2020, 23(4):
2259–2279

65. Shi X H, Lu H T. Community detection in scientific collaborative net-
work with bayesian matrix learning. Frontiers of Computer Science,

2019, 13(1): 212–214

66. Pan Y T, He F Z, Yu H P. A correlative denoising autoencoder to model
social influence for top-n recommender system. Frontiers of Computer
Science, 2020, 14(3): 143301

67. Zhang G, Li Y M, Shi Y H. Distributed learning particle swarm optimizer

for global optimization of multimodal problems. Frontiers of Computer
Science, 2018, 12(1): 122–134

68. Luo J K, He F Z, Yong J S. An efficient and robust bat algorithm with
fusion of opposition-based learning and whale optimization algorithm.

Intelligent Data Analysis, 2020, 24(3): 581–606

69. Zhao W, Shen H H, Zhang F, Tan H Z. Adaptive power optimization
for mobile traffic based on machine learning. In: Proceedings of IEEE
International Conference on Computer Supported Cooperative Work in

Design. 2019, 500–505

70. Luo J K, He F Z, Li H R, Z X T, Liang Y Q. A novel whale optimiza-
tion algorithm with filtering disturbance and non-linear step. International
Journal of Bio-Inspired Computation, 2020, 16: 137–148

71. Hou N, He F Z, Zhou Y, Chen Y L. An efficient GPU-based parallel tabu
search algorithm for hardware/software co-design. Frontiers of Computer
Science, 2020, 14(5): 145316

72. Zhang S Q, Qin Z, Yang Y H, Shen L, Wang Z Y. Transparent partial

page migration between CPU and GPU. Frontiers of Computer Science,
2020, 14(3): 143101

Weiwei Cai is currently a PhD candidate at School
of Computer Science of Wuhan University, China.
His research interests include computer supported
collaborative work and distributed computing sys-
tems.

Fazhi He is currently a professor at School of
Computer Science of Wuhan University, China.
His research interests include collaborative com-
puting, computer graphics, computer vision, high-
performance computing.

Xiao Lv is currently a lecturer at Department of
Computer Engineering of Naval University of En-
gineering, China. Her research interests include
computer supported collaborative work, collabo-
rative design.

Yuan Cheng is currently a lecturer at School of
Information Management of Wuhan University,
China. Her research interests include computer
supported collaborative work, scientific visualiza-
tion, computation geometry.


